CHAPTER 1 COMPLEX NUMBER

Size: px
Start display at page:

Download "CHAPTER 1 COMPLEX NUMBER"

Transcription

1 BA0 ENGINEERING MATHEMATICS 0 CHAPTER COMPLEX NUMBER. INTRODUCTION TO COMPLEX NUMBERS.. Quadratic Equations Examples of quadratic equations:. x + 3x 5 = 0. x x 6 = 0 3. x = 4 i The roots of an equation are the x-values that make it "work" We can find the roots of a quadratic equation either by using the quadratic formula or by factoring. We can have 3 situations when solving quadratic equations. Case : Two roots Example: x + 3x 5 = 0 We proceed to solve this equation using the quadratic formula as we did earlier: Case : One root Example: 4x x + 9 = 0 Notice what happens when we use the quadratic formula this time. Under the square root we get = 0.

2 BA0 ENGINEERING MATHEMATICS 0 So it means we only have one root. We can also say that this is a repeated root, since we are expecting roots. Case 3: No Real Roots Example: x 4x + 0 = 0 This example gives us a problem. Under the square root, we get (-64), and we have been told repeatedly by our teachers that we cannot have the square root of a negative number. Can we find such a root?. Imaginary Numbers To allow for these "hidden roots", around the year 800, the concept of (-) was proposed and is now accepted as an extension of the real number system. The symbol used is and is called an imaginary number...3 Powers Of Since stands for, let us consider some powers of.

3 BA0 ENGINEERING MATHEMATICS 0 Recall: And, for any value of a. Using these, we can derive the following: i i i even power odd power Example : Simplify each of the following equation i 3i Example : Simplify. i 3. i i i i i i i i i i i i i 3

4 BA0 ENGINEERING MATHEMATICS 0 Example 3: Simplify the expressions below.. i 3i 7 4 i i 3i 8 i 3 i 3 8 i 3 3 i COMPLEX NUMBERS Complex numbers have a real part and an imaginary part. Example:. Real part: 5, Imaginary part:. Real part: -3, Imaginary part: - Some examples of complex numbers are 3 i, 5 i, i, 0 3 i, 5 0 i, 0 0i 3 NOTE: We can write the complex number as. There is no difference in meaning. 4

5 BA0 ENGINEERING MATHEMATICS 0.. Solving Equations with Complex Numbers We now return to our problem from above. We didn't know then what to do with. Now we can write the solution using complex numbers, as follows: 4 64 x 4 i 64 4 i8 4 i@ 4i Exercise:. Express in terms of : 4. Simplify: a. b. c. d x 6x5 0 x 4x3 0 x 6x0 0 5

6 BA0 ENGINEERING MATHEMATICS 0.3 ADDITION AND SUBTRACTION OF COMPLEX NUMBERS If and, Then, x u yi vi z w x yi u vi x u yi vi z w x yi u vi Example: Solve the problem below:...4 MULTIPLICATION OF COMPLEX NUMBERS Expand brackets as usual, but care with j! If, and So, a p a qi bi p bi qi z w a bi p qi ap aqi pbi bqi ap aqi pbi bq ap aqi pbi bq 6

7 BA0 ENGINEERING MATHEMATICS 0 Example: Solve each equation in the form Multiplying By The Conjugate Example 6 is a special case. is the conjugate of. In general: is the conjugate of and is the conjugate of. Notice that when we multiply conjugates, our final answer is real only (it does not contain any imaginary terms). We use the idea of conjugate when dividing complex numbers. 7

8 BA0 ENGINEERING MATHEMATICS 0.5 DIVISION OF COMPLEX NUMBERS If, and. So, z a bi w p qi a bi p qi p qi p qi ap aqi pbi bqi p pqi pqi q i Multiply with conjugate to get a real number. If conjugate of is ap aqi pbi bqi p pqi pqi q ap aqi pbi bqi p q Example:. Express in the form. Simplify: 4i 9i 3. i i i 5 3i 8

9 BA0 ENGINEERING MATHEMATICS 0 Exercise:. Express in the form : a) i 39 3i b) c) 3 i i i d) i.5.5i e) f) g) 3 4i i 4 i 8 i 4i h) ( 3 i) (3 5i). If and, solve the following and write each answer in standard form. a) b) c) 3. Express in the form. 9

10 BA0 ENGINEERING MATHEMATICS 0.6 EQUIVALENT COMPLEX NUMBERS Two complex numbers and are equivalent if: The real parts are equal (x = a), and The imaginary parts are equal (y = b). Example:. Given that, then a = 3 and b =.. Find the value of and, ( x y) ( x - y) i i ( xy) 4.8 () ( x- y) 6. () x4.8 y (3) 4.8 y y y 6. y y.4.4 y y 0.7 if, y 0.7 x x 5.5 x5.5 y 0.7 Exercise: x yi 7i 4 i ans : x 0., y.6. 5i 3 7. x yi ans : x, y i 5 3i x yi 4 i ans : x 6, y x yi 3i 5 i ans : x 4, y x yi 7 i ans : x 45, y a bi i 5 3i 7. a bi 3 3 i 0

11 BA0 ENGINEERING MATHEMATICS 0.7 GRAPHICAL REPRESENTATION OF COMPLEX NUMBERS We can represent complex numbers in the complex plane. We use the horizontal axis for the real part and the vertical axis for the imaginary part. Represent Complex Number Imaginary axis Argument of z Y P(X,Y) X Modulus of z R P (X,-Y) Real axis Example: The number is represented by: A is the representation of the complex number.

12 BA0 ENGINEERING MATHEMATICS 0.7. ADDING COMPLEX NUMBERS GRAPHICALLY We can add complex numbers graphically. Example:. Add and graphically. We add the complex numbers by setting up a parallelogram. The solution is (4 + i ).. Subtract from graphically.

13 BA0 ENGINEERING MATHEMATICS 0 Exercise:. Perform graphically: i. 3 i i ii. i 3 4i iii. 5i 4 i. Given state each of the following function in the Argand Diagram. a) z, z, z3, z 4 b) z z c) z3 z4 d) z z e) z4 z3 3

14 BA0 ENGINEERING MATHEMATICS 0.8 MODULUS AND ARGUMENT Modulus, R z x y Argument, y x - tan Example: Find Modulus and Argument for each Complex Number. a. z i b. z 3 4i c. z3 4i d. z i 4

15 BA0 ENGINEERING MATHEMATICS 0.9 FORM OF COMPLEX NUMBERS We can write complex numbers in 4 different ways: Example: Cartesian form x yi 5 6i r cos isin 8 cos4 isin 4 Trigonometric form Polar form z R z 84 Exponential form z Re i.5 ( z 6e i.9. Polar Form of a Complex Number Our aim in this section is to write complex numbers in terms of a distance from the origin and a direction (or angle) from the positive horizontal axis. We find the real (horizontal) and imaginary (vertical) components in terms of r (the length of the vector) and θ (the angle made with the real axis): From Pythagoras, we have: r = x + y and basic trigonometry gives us: x = r cos θ y = r sin θ 5

16 BA0 ENGINEERING MATHEMATICS 0 Multiplying the last expression throughout by gives us: So we can write the polar form of a complex number as: r is the absolute value (or modulus) of the complex number θ is the argument of the complex number. There are two other ways of writing the polar form of a complex number: r cis θ [means r (cos θ + j sin θ)] r θ [means once again, r (cos θ + j sin θ)] NOTE: When writing a complex number in polar form, the angle θ can be in DEGREES or RADIANS. Example : Find the polar form and represent graphically the complex number. Solution: We need to find r and θ. To find θ, we first find the acute angle α : 6

17 BA0 ENGINEERING MATHEMATICS 0 Now, is in the fourth quadrant, so θ = = So, expressing in polar form, we have: 7-5j = 8.6 (cos j sin 34.5 ) We could also write this answer as 7-5j = 8.6 cis Also we could write: 7-5j = The graph is as follows: Example : Express 3(cos 3 + j sin 3 ) in cartesian form Represent graphically and give the cartesian form of Represent i 3 graphically and write it in polar form 7

18 BA0 ENGINEERING MATHEMATICS 0 Exercises:. Represent i graphically and write it in polar form. Represent graphically and give the cartesian form of 6(cos80 + i sin80 ) And the good news is... Now that you know what it all means, you can use your calculator directly to convert from cartesian to polar forms and in the other direction, too. HOW TO CONVERT USING CALCULATOR. Polar Form Cartesian Form Example: Convert 56 7 to rectangular form Shift Rec 56, 7 ) = RCL tan Answer: i 8

19 BA0 ENGINEERING MATHEMATICS 0. Cartesian Form Polar Form Example: Convert to polar form r Shift Pol, -4 ) = RCL tan Answer: Exponential Form of a Complex Number IMPORTANT: In this section, θ MUST be expressed in radians. The exponential form of a complex number is: re i (r is the absolute value of the complex number, the same as we had before and θ is in radians.) Example : Express in exponential form. Solution: We have r = 5 from the question. We must express θ = 35 in radians. Recall: 9

20 BA0 ENGINEERING MATHEMATICS 0 So (or.36 radians) So we can write Example : Express in exponential form. 0

21 BA0 ENGINEERING MATHEMATICS 0 Exercises:. Express in exponential form:. Express in exponential form: 3. Express in polar and rectangular forms:.0 Products and Quotients of Complex Numbers When performing addition and subtraction of complex numbers, use rectangular form. (This is because we just add real parts then add imaginary parts; or subtract real parts, subtract imaginary parts.) When performing multiplication or finding powers and roots of complex numbers, use polar and exponential forms. (This is because it is a lot easier than using rectangular form.) We start with an example using exponential form, and then generalise it for polar and rectangular forms..0. Multiplying Complex Numbers in Polar Form We can generalise the example we just did, as follows: i i re re rr e i From this, we can develop a formula for multiplying using polar form: cos sin cos sin r r cos isin r i r i or with equivalent meaning:

22 BA0 ENGINEERING MATHEMATICS 0 r r rr In words, all this confusing-looking algebra simply means... To multiply complex numbers in polar form, Multiply the r parts Add the angle parts Example : Find 3(cos 0 isin 0 ) 5(cos 45 i sin 45 )

23 BA0 ENGINEERING MATHEMATICS 0.0. Division As we did before, we do an example in exponential form first, then generalise it for polar form. Example in Exponential Form: 8e e 4e 3.6i.i 3.6i.i 4e.4i [We divided the number parts, and subtracted the indices, just using normal algebra.] From this, we can conclude the following: r cos isin r cos r cos isin r or r r r r In words, this simply means... isin To divide complex numbers in polar form, Divide the r parts and Subtract the angle parts Example: i. Evaluate the following by first converting numerator and denominator into polar form. ii. Then check your answer by multiplying numerator and denominator by the conjugate of the denominator. 5i i 3

24 BA0 ENGINEERING MATHEMATICS 0 Solution: 4

25 BA0 ENGINEERING MATHEMATICS 0 Exercise: Express 5cos 59 isin59 in Cartesian form, polar form and exponential form. Find 8i Find using polar 7 i form Evaluate: ( )(6 0 ) Evaluate: Express 65e i5.45 in Cartesian form, polar form and trigonometric form. 5

26 BA0 ENGINEERING MATHEMATICS 0 POLITEKNIK KOTA BHARU JABATAN MATEMATIK, SAINS DAN KOMPUTER BA 0 ENGINEERING MATHEMATICS PAST YEAR FINAL EXAMINATION QUESTIONS A. Algebraic Operations Of Complex Number 3 i 7 5i. Simplify i. Given u 3 i, v 3i, and w 5i i. u v ii. iii. w u vw u 3. State each of the complex number in form a ib i. 3 ii State the value of Z Z and Z Z in each case i. Z 3i ; Z i ii. 5 Z i ; Z 6 3 i 4 5. Given z 3 7i and w 5i, find: i. z w ii. iii. z w z w 6. Simplify each of the complex numbers: i. 5 7i 3 4i 6 3i ii. iii. i i 7. Given that x y x yi 80 5i. Find the value of x and y. 6

27 BA0 ENGINEERING MATHEMATICS 0 8. If 3i z, find z in form a ib. i 9. Simplify each of the complex numbers in form a jb. i. ii. 6 j 5 7 j 4 5 j 3 j iii. 3 7 j4 5 j B. Graphical Representation and other Form of Complex Numbers 0. Given Z 3 i and Z i. Find the modulus and argument of: i. Z Z ii. Z Z. Given Z 4 i, Z 0, and Z rad (Given 80 ).. Given z i, z 3 i 0.35i 3 4e. Find i. Calculate modulus and argument of z, z and z z. ii. Sketch Argand diagram for z z. 3. Find the modulus and argument for each complex number: i. 4 3i ii. 3i 4. Given z 8cos 75 sin 75 dan z 6cos 54 sin 54 i i. z z ii. z z Z Z Z i 3 in the polar expression.. Find: iii. Find the sum of z 3 4i and z 5 3i by using an Argand diagram. 7

28 BA0 ENGINEERING MATHEMATICS 0 5. Given x yj j, where x and y are real numbers. 3 j i. Find the value of x and y ii. Refer to the answer in (i). Find the modulus and the argument. 6. Given Z 5cos 37 i sin 37 i. Cartesian/ Rectangular Form. ii. 7. Simplify i. Exponential Form. 5,express Z in: cos 60 i sin 60 4cos 30 i sin 30 cos 50 i sin State each of the complex number in form a ib i. 6 j7 8 j5 4 j0 ii. 4 j44 j3 iii j5 iv. 3 j4 j5 j j3 v j 9. Given z 4 3i and z 4 3i. Find the modulus and argument for each complex number and show it in Argand diagram: i. z z ii. z z 3 0. Express each complex numbers to the polar form. i. z 5 8 j ii. z 3 4 j 8

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10.

) z r θ ( ) ( ) ( ) = then. Complete Solutions to Examination Questions Complete Solutions to Examination Questions 10. Complete Solutions to Examination Questions 0 Complete Solutions to Examination Questions 0. (i We need to determine + given + j, j: + + j + j (ii The product ( ( + j6 + 6 j 8 + j is given by ( + j( j

More information

Introduction. The first chapter of FP1 introduces you to imaginary and complex numbers

Introduction. The first chapter of FP1 introduces you to imaginary and complex numbers Introduction The first chapter of FP1 introduces you to imaginary and complex numbers You will have seen at GCSE level that some quadratic equations cannot be solved Imaginary and complex numbers will

More information

AH Complex Numbers.notebook October 12, 2016

AH Complex Numbers.notebook October 12, 2016 Complex Numbers Complex Numbers Complex Numbers were first introduced in the 16th century by an Italian mathematician called Cardano. He referred to them as ficticious numbers. Given an equation that does

More information

Module 10 Polar Form of Complex Numbers

Module 10 Polar Form of Complex Numbers MAC 1114 Module 10 Polar Form of Complex Numbers Learning Objectives Upon completing this module, you should be able to: 1. Identify and simplify imaginary and complex numbers. 2. Add and subtract complex

More information

This leaflet describes how complex numbers are added, subtracted, multiplied and divided.

This leaflet describes how complex numbers are added, subtracted, multiplied and divided. 7. Introduction. Complex arithmetic This leaflet describes how complex numbers are added, subtracted, multiplied and divided. 1. Addition and subtraction of complex numbers. Given two complex numbers we

More information

Chapter 7 PHASORS ALGEBRA

Chapter 7 PHASORS ALGEBRA 164 Chapter 7 PHASORS ALGEBRA Vectors, in general, may be located anywhere in space. We have restricted ourselves thus for to vectors which are all located in one plane (co planar vectors), but they may

More information

Complex Numbers Introduction. Number Systems. Natural Numbers ℵ Integer Z Rational Q Real Complex C

Complex Numbers Introduction. Number Systems. Natural Numbers ℵ Integer Z Rational Q Real Complex C Number Systems Natural Numbers ℵ Integer Z Rational Q R Real Complex C Number Systems Natural Numbers ℵ Integer Z Rational Q R Real Complex C The Natural Number System All whole numbers greater then zero

More information

10.1 Complex Arithmetic Argand Diagrams and the Polar Form The Exponential Form of a Complex Number De Moivre s Theorem 29

10.1 Complex Arithmetic Argand Diagrams and the Polar Form The Exponential Form of a Complex Number De Moivre s Theorem 29 10 Contents Complex Numbers 10.1 Complex Arithmetic 2 10.2 Argand Diagrams and the Polar Form 12 10.3 The Exponential Form of a Complex Number 20 10.4 De Moivre s Theorem 29 Learning outcomes In this Workbook

More information

ALGEBRAIC LONG DIVISION

ALGEBRAIC LONG DIVISION QUESTIONS: 2014; 2c 2013; 1c ALGEBRAIC LONG DIVISION x + n ax 3 + bx 2 + cx +d Used to find factors and remainders of functions for instance 2x 3 + 9x 2 + 8x + p This process is useful for finding factors

More information

CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation?

CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation? BA01 ENGINEERING MATHEMATICS 01 CHAPTER DIFFERENTIATION.1 FIRST ORDER DIFFERENTIATION What is Differentiation? Differentiation is all about finding rates of change of one quantity compared to another.

More information

ENGIN 211, Engineering Math. Complex Numbers

ENGIN 211, Engineering Math. Complex Numbers ENGIN 211, Engineering Math Complex Numbers 1 Imaginary Number and the Symbol J Consider the solutions for this quadratic equation: x 2 + 1 = 0 x = ± 1 1 is called the imaginary number, and we use the

More information

Chapter 9: Complex Numbers

Chapter 9: Complex Numbers Chapter 9: Comple Numbers 9.1 Imaginary Number 9. Comple Number - definition - argand diagram - equality of comple number 9.3 Algebraic operations on comple number - addition and subtraction - multiplication

More information

Complex Numbers. Introduction

Complex Numbers. Introduction 10 Assessment statements 1.5 Complex numbers: the number i 5 1 ; the term s real part, imaginary part, conjugate, modulus and argument. Cartesian form z 5 a 1 ib. Sums, products and quotients of complex

More information

1,cost 1 1,tant 0 1,cott ,cost 0 1,tant 0. 1,cott 1 0. ,cost 5 6,tant ,cott x 2 1 x. 1 x 2. Name: Class: Date:

1,cost 1 1,tant 0 1,cott ,cost 0 1,tant 0. 1,cott 1 0. ,cost 5 6,tant ,cott x 2 1 x. 1 x 2. Name: Class: Date: Class: Date: Practice Test (Trigonometry) Instructor: Koshal Dahal Multiple Choice Questions SHOW ALL WORK, EVEN FOR MULTIPLE CHOICE QUESTIONS, TO RECEIVE CREDIT. 1. Find the values of the trigonometric

More information

3 COMPLEX NUMBERS. 3.0 Introduction. Objectives

3 COMPLEX NUMBERS. 3.0 Introduction. Objectives 3 COMPLEX NUMBERS Objectives After studying this chapter you should understand how quadratic equations lead to complex numbers and how to plot complex numbers on an Argand diagram; be able to relate graphs

More information

Notes on Complex Numbers

Notes on Complex Numbers Notes on Complex Numbers Math 70: Ideas in Mathematics (Section 00) Imaginary Numbers University of Pennsylvania. October 7, 04. Instructor: Subhrajit Bhattacharya The set of real algebraic numbers, A,

More information

P3.C8.COMPLEX NUMBERS

P3.C8.COMPLEX NUMBERS Recall: Within the real number system, we can solve equation of the form and b 2 4ac 0. ax 2 + bx + c =0, where a, b, c R What is R? They are real numbers on the number line e.g: 2, 4, π, 3.167, 2 3 Therefore,

More information

2.0 COMPLEX NUMBER SYSTEM. Bakiss Hiyana bt Abu Bakar JKE, POLISAS BHAB 1

2.0 COMPLEX NUMBER SYSTEM. Bakiss Hiyana bt Abu Bakar JKE, POLISAS BHAB 1 2.0 COMPLEX NUMBER SYSTEM Bakiss Hiyana bt Abu Bakar JKE, POLISAS BHAB 1 COURSE LEARNING OUTCOME 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit

More information

Complex Numbers. 1 Introduction. 2 Imaginary Number. December 11, Multiplication of Imaginary Number

Complex Numbers. 1 Introduction. 2 Imaginary Number. December 11, Multiplication of Imaginary Number Complex Numbers December, 206 Introduction 2 Imaginary Number In your study of mathematics, you may have noticed that some quadratic equations do not have any real number solutions. For example, try as

More information

Complex Numbers, Polar Coordinates, and Parametric Equations

Complex Numbers, Polar Coordinates, and Parametric Equations 8 Complex Numbers, Polar Coordinates, and Parametric Equations If a golfer tees off with an initial velocity of v 0 feet per second and an initial angle of trajectory u, we can describe the position of

More information

Lesson 73 Polar Form of Complex Numbers. Relationships Among x, y, r, and. Polar Form of a Complex Number. x r cos y r sin. r x 2 y 2.

Lesson 73 Polar Form of Complex Numbers. Relationships Among x, y, r, and. Polar Form of a Complex Number. x r cos y r sin. r x 2 y 2. Lesson 7 Polar Form of Complex Numbers HL Math - Santowski Relationships Among x, y, r, and x r cos y r sin r x y tan y x, if x 0 Polar Form of a Complex Number The expression r(cos isin ) is called the

More information

Core Mathematics 2 Trigonometry

Core Mathematics 2 Trigonometry Core Mathematics 2 Trigonometry Edited by: K V Kumaran Email: kvkumaran@gmail.com Core Mathematics 2 Trigonometry 2 1 Trigonometry Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.

More information

Quick Overview: Complex Numbers

Quick Overview: Complex Numbers Quick Overview: Complex Numbers February 23, 2012 1 Initial Definitions Definition 1 The complex number z is defined as: z = a + bi (1) where a, b are real numbers and i = 1. Remarks about the definition:

More information

Chapter 8: Polar Coordinates and Vectors

Chapter 8: Polar Coordinates and Vectors Chapter 8: Polar Coordinates and Vectors 8.1 Polar Coordinates This is another way (in addition to the x-y system) of specifying the position of a point in the plane. We give the distance r of the point

More information

Chapter 1.6. Perform Operations with Complex Numbers

Chapter 1.6. Perform Operations with Complex Numbers Chapter 1.6 Perform Operations with Complex Numbers EXAMPLE Warm-Up 1 Exercises Solve a quadratic equation Solve 2x 2 + 11 = 37. 2x 2 + 11 = 37 2x 2 = 48 Write original equation. Subtract 11 from each

More information

CM2202: Scientific Computing and Multimedia Applications General Maths: 3. Complex Numbers

CM2202: Scientific Computing and Multimedia Applications General Maths: 3. Complex Numbers CM2202: Scientific Computing and Multimedia Applications General Maths: 3. Complex Numbers Prof. David Marshall School of Computer Science & Informatics A problem when solving some equations There are

More information

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations

sin cos 1 1 tan sec 1 cot csc Pre-Calculus Mathematics Trigonometric Identities and Equations Pre-Calculus Mathematics 12 6.1 Trigonometric Identities and Equations Goal: 1. Identify the Fundamental Trigonometric Identities 2. Simplify a Trigonometric Expression 3. Determine the restrictions on

More information

Math 1302 Notes 2. How many solutions? What type of solution in the real number system? What kind of equation is it?

Math 1302 Notes 2. How many solutions? What type of solution in the real number system? What kind of equation is it? Math 1302 Notes 2 We know that x 2 + 4 = 0 has How many solutions? What type of solution in the real number system? What kind of equation is it? What happens if we enlarge our current system? Remember

More information

Polar Form of Complex Numbers

Polar Form of Complex Numbers OpenStax-CNX module: m49408 1 Polar Form of Complex Numbers OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section, you will:

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( )

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( ) Syllabus Objectives: 5.1 The student will explore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

1. COMPLEX NUMBERS. z 1 + z 2 := (a 1 + a 2 ) + i(b 1 + b 2 ); Multiplication by;

1. COMPLEX NUMBERS. z 1 + z 2 := (a 1 + a 2 ) + i(b 1 + b 2 ); Multiplication by; 1. COMPLEX NUMBERS Notations: N the set of the natural numbers, Z the set of the integers, R the set of real numbers, Q := the set of the rational numbers. Given a quadratic equation ax 2 + bx + c = 0,

More information

In Z: x + 3 = 2 3x = 2 x = 1 No solution In Q: 3x = 2 x 2 = 2. x = 2 No solution. In R: x 2 = 2 x = 0 x = ± 2 No solution Z Q.

In Z: x + 3 = 2 3x = 2 x = 1 No solution In Q: 3x = 2 x 2 = 2. x = 2 No solution. In R: x 2 = 2 x = 0 x = ± 2 No solution Z Q. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH 1141 HIGHER MATHEMATICS 1A ALGEBRA. Section 1: - Complex Numbers. 1. The Number Systems. Let us begin by trying to solve various

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 2 - COMPLEX NUMBERS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 2 - COMPLEX NUMBERS EDEXCEL NATIONAL CERTIFICATE UNIT 8 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME - ALGEBRAIC TECHNIQUES TUTORIAL - COMPLEX NUMBERS CONTENTS Be able to apply algebraic techniques Arithmetic progression (AP):

More information

Overview of Complex Numbers

Overview of Complex Numbers Overview of Complex Numbers Definition 1 The complex number z is defined as: z = a+bi, where a, b are real numbers and i = 1. General notes about z = a + bi Engineers typically use j instead of i. Examples

More information

Further Mathematics SAMPLE. Marking Scheme

Further Mathematics SAMPLE. Marking Scheme Further Mathematics SAMPLE Marking Scheme This marking scheme has been prepared as a guide only to markers. This is not a set of model answers, or the exclusive answers to the questions, and there will

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS Chapter 5 COMPLEX NUMBERS AND QUADRATIC EQUATIONS 5. Overview We know that the square of a real number is always non-negative e.g. (4) 6 and ( 4) 6. Therefore, square root of 6 is ± 4. What about the square

More information

PURE MATHEMATICS AM 27

PURE MATHEMATICS AM 27 AM SYLLABUS (2020) PURE MATHEMATICS AM 27 SYLLABUS 1 Pure Mathematics AM 27 (Available in September ) Syllabus Paper I(3hrs)+Paper II(3hrs) 1. AIMS To prepare students for further studies in Mathematics

More information

Topic 4 Notes Jeremy Orloff

Topic 4 Notes Jeremy Orloff Topic 4 Notes Jeremy Orloff 4 Complex numbers and exponentials 4.1 Goals 1. Do arithmetic with complex numbers.. Define and compute: magnitude, argument and complex conjugate of a complex number. 3. Euler

More information

ENGIN 211, Engineering Math. Complex Numbers

ENGIN 211, Engineering Math. Complex Numbers ENGIN 211, Engineering Math Complex Numbers 1 Imaginary Number and the Symbol J Consider the solutions for this quadratic equation: x 2 + 1 = 0 x = ± 1 1 is called the imaginary number, and we use the

More information

Natural Numbers Positive Integers. Rational Numbers

Natural Numbers Positive Integers. Rational Numbers Chapter A - - Real Numbers Types of Real Numbers, 2,, 4, Name(s) for the set Natural Numbers Positive Integers Symbol(s) for the set, -, - 2, - Negative integers 0,, 2,, 4, Non- negative integers, -, -

More information

The modulus, or absolute value, of a complex number z a bi is its distance from the origin. From Figure 3 we see that if z a bi, then.

The modulus, or absolute value, of a complex number z a bi is its distance from the origin. From Figure 3 we see that if z a bi, then. COMPLEX NUMBERS _+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers Syllabus Objectives: 5.1 The student will eplore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

PURE MATHEMATICS AM 27

PURE MATHEMATICS AM 27 AM Syllabus (014): Pure Mathematics AM SYLLABUS (014) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (014): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)

More information

CURRICULUM GUIDE. Honors Algebra II / Trigonometry

CURRICULUM GUIDE. Honors Algebra II / Trigonometry CURRICULUM GUIDE Honors Algebra II / Trigonometry The Honors course is fast-paced, incorporating the topics of Algebra II/ Trigonometry plus some topics of the pre-calculus course. More emphasis is placed

More information

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b 1 A- LEVEL MATHEMATICS P 3 Complex Numbers (NOTES) 1. Given a quadratic equation : x 2 + 1 = 0 or ( x 2 = -1 ) has no solution in the set of real numbers, as there does not exist any real number whose

More information

The Petronas Towers of Kuala Lumpur

The Petronas Towers of Kuala Lumpur BA0 ENGINEERING MATHEMATICS 0 CHAPTER 4 INTEGRATION 4. INTRODUCTION TO INTEGRATION Why do we need to study Integration? The Petronas Towers of Kuala Lumpur Often we know the relationship involving the

More information

3-3 Complex Numbers. Simplify. SOLUTION: 2. SOLUTION: 3. (4i)( 3i) SOLUTION: 4. SOLUTION: 5. SOLUTION: esolutions Manual - Powered by Cognero Page 1

3-3 Complex Numbers. Simplify. SOLUTION: 2. SOLUTION: 3. (4i)( 3i) SOLUTION: 4. SOLUTION: 5. SOLUTION: esolutions Manual - Powered by Cognero Page 1 1. Simplify. 2. 3. (4i)( 3i) 4. 5. esolutions Manual - Powered by Cognero Page 1 6. 7. Solve each equation. 8. Find the values of a and b that make each equation true. 9. 3a + (4b + 2)i = 9 6i Set the

More information

CHAPTER 3: Quadratic Functions and Equations; Inequalities

CHAPTER 3: Quadratic Functions and Equations; Inequalities MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 3: Quadratic Functions and Equations; Inequalities 3.1 The Complex Numbers 3.2 Quadratic Equations, Functions, Zeros, and

More information

Complex numbers in polar form

Complex numbers in polar form remember remember Chapter Complex s 19 1. The magnitude (or modulus or absolute value) of z = x + yi is the length of the line segment from (0, 0) to z and is denoted by z, x + yi or mod z.. z = x + y

More information

Chapter 8. Complex Numbers, Polar Equations, and Parametric Equations. Section 8.1: Complex Numbers. 26. { ± 6i}

Chapter 8. Complex Numbers, Polar Equations, and Parametric Equations. Section 8.1: Complex Numbers. 26. { ± 6i} Chapter 8 Complex Numbers, Polar Equations, and Parametric Equations 6. { ± 6i} Section 8.1: Complex Numbers 1. true. true. true 4. true 5. false (Every real number is a complex number. 6. true 7. 4 is

More information

Complex Numbers and Polar Coordinates

Complex Numbers and Polar Coordinates Chapter 5 Complex Numbers and Polar Coordinates One of the goals of algebra is to find solutions to polynomial equations. You have probably done this many times in the past, solving equations like x 1

More information

MODULE 1: FOUNDATIONS OF MATHEMATICS

MODULE 1: FOUNDATIONS OF MATHEMATICS MODULE 1: FOUNDATIONS OF MATHEMATICS GENERAL OBJECTIVES On completion of this Module, students should: 1. acquire competency in the application of algebraic techniques; 2. appreciate the role of exponential

More information

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x)

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x) Evaluate the function: c. (g o f )(x + 2) d. ( f ( f (x)) 1. f x = 4x! 2 a. f( 2) b. f(x 1) c. f (x + h) f (x) h 4. g x = 3x! + 1 Find g!! (x) 5. p x = 4x! + 2 Find p!! (x) 2. m x = 3x! + 2x 1 m(x + h)

More information

Complex Numbers. Basic algebra. Definitions. part of the complex number a+ib. ffl Addition: Notation: We i write for 1; that is we

Complex Numbers. Basic algebra. Definitions. part of the complex number a+ib. ffl Addition: Notation: We i write for 1; that is we Complex Numbers Definitions Notation We i write for 1; that is we define p to be p 1 so i 2 = 1. i Basic algebra Equality a + ib = c + id when a = c b = and d. Addition A complex number is any expression

More information

Rational Numbers. a) 5 is a rational number TRUE FALSE. is a rational number TRUE FALSE

Rational Numbers. a) 5 is a rational number TRUE FALSE. is a rational number TRUE FALSE Fry Texas A&M University!! Math 150!! Chapter 1!! Fall 2014! 1 Chapter 1A - - Real Numbers Types of Real Numbers Name(s) for the set 1, 2,, 4, Natural Numbers Positive Integers Symbol(s) for the set, -,

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

JUST THE MATHS UNIT NUMBER 6.2. COMPLEX NUMBERS 2 (The Argand Diagram) A.J.Hobson

JUST THE MATHS UNIT NUMBER 6.2. COMPLEX NUMBERS 2 (The Argand Diagram) A.J.Hobson JUST THE MATHS UNIT NUMBER 6.2 COMPLEX NUMBERS 2 (The Argand Diagram) by A.J.Hobson 6.2.1 Introduction 6.2.2 Graphical addition and subtraction 6.2.3 Multiplication by j 6.2.4 Modulus and argument 6.2.5

More information

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Complex Numbers. James K. Peterson. September 19, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline 1 Complex Numbers 2 Complex Number Calculations

More information

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions

Complex Numbers. Outline. James K. Peterson. September 19, Complex Numbers. Complex Number Calculations. Complex Functions Complex Numbers James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 19, 2013 Outline Complex Numbers Complex Number Calculations Complex

More information

The Big 50 Revision Guidelines for C3

The Big 50 Revision Guidelines for C3 The Big 50 Revision Guidelines for C3 If you can understand all of these you ll do very well 1. Know how to recognise linear algebraic factors, especially within The difference of two squares, in order

More information

0615a2. Algebra 2/Trigonometry Regents Exam x 2 y? 4 x. y 2. x 3 y

0615a2. Algebra 2/Trigonometry Regents Exam x 2 y? 4 x. y 2. x 3 y Algebra /Trigonometry Regents Exam 065 www.jmap.org 065a Which list of ordered pairs does not represent a one-to-one function? ) (, ),(,0),(,),(4,) ) (,),(,),(,4),(4,6) ) (,),(,4),(,),(4,) 4) (,5),(,4),(,),(4,0)

More information

PreCalculus Honors Curriculum Pacing Guide First Half of Semester

PreCalculus Honors Curriculum Pacing Guide First Half of Semester Unit 1 Introduction to Trigonometry (9 days) First Half of PC.FT.1 PC.FT.2 PC.FT.2a PC.FT.2b PC.FT.3 PC.FT.4 PC.FT.8 PC.GCI.5 Understand that the radian measure of an angle is the length of the arc on

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions Chapter 2 Polynomial and Rational Functions Overview: 2.2 Polynomial Functions of Higher Degree 2.3 Real Zeros of Polynomial Functions 2.4 Complex Numbers 2.5 The Fundamental Theorem of Algebra 2.6 Rational

More information

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers Fry Texas A&M University! Fall 2016! Math 150 Notes! Section 1A! Page 1 Chapter 1A -- Real Numbers Math Symbols: iff or Example: Let A = {2, 4, 6, 8, 10, 12, 14, 16,...} and let B = {3, 6, 9, 12, 15, 18,

More information

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity SB Activity Activity 1 Creating Equations 1-1 Learning Targets: Create an equation in one variable from a real-world context. Solve an equation in one variable. 1-2 Learning Targets: Create equations in

More information

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity SB Activity Activity 1 Creating Equations 1-1 Learning Targets: Create an equation in one variable from a real-world context. Solve an equation in one variable. 1-2 Learning Targets: Create equations in

More information

P.6 Complex Numbers. -6, 5i, 25, -7i, 5 2 i + 2 3, i, 5-3i, i. DEFINITION Complex Number. Operations with Complex Numbers

P.6 Complex Numbers. -6, 5i, 25, -7i, 5 2 i + 2 3, i, 5-3i, i. DEFINITION Complex Number. Operations with Complex Numbers SECTION P.6 Complex Numbers 49 P.6 Complex Numbers What you ll learn about Complex Numbers Operations with Complex Numbers Complex Conjugates and Division Complex Solutions of Quadratic Equations... and

More information

Twitter: @Owen134866 www.mathsfreeresourcelibrary.com Prior Knowledge Check 1) Simplify: a) 3x 2 5x 5 b) 5x3 y 2 15x 7 2) Factorise: a) x 2 2x 24 b) 3x 2 17x + 20 15x 2 y 3 3) Use long division to calculate:

More information

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers CLASSIFICATIONS OF NUMBERS NATURAL NUMBERS = N = {1,2,3,4,...}

More information

Unit 3 Specialist Maths

Unit 3 Specialist Maths Unit 3 Specialist Maths succeeding in the vce, 017 extract from the master class teaching materials Our Master Classes form a component of a highly specialised weekly program, which is designed to ensure

More information

Objectives List. Important Students should expect test questions that require a synthesis of these objectives.

Objectives List. Important Students should expect test questions that require a synthesis of these objectives. MATH 1040 - of One Variable, Part I Textbook 1: : Algebra and Trigonometry for ET. 4 th edition by Brent, Muller Textbook 2:. Early Transcendentals, 3 rd edition by Briggs, Cochran, Gillett, Schulz s List

More information

Chapter Lessons Standards Classical Methodologies

Chapter Lessons Standards Classical Methodologies ACE GSE Precalculus Curriculum Map # of Days Chapter Lessons Standards Classical Methodologies Performance Tasks 12 1: from a Calculus Perspective 1: 2: Analyzing Graphs of and Relations 3: Continuity,

More information

A Learning Progression for Complex Numbers

A Learning Progression for Complex Numbers A Learning Progression for Complex Numbers In mathematics curriculum development around the world, the opportunity for students to study complex numbers in secondary schools is decreasing. Given that the

More information

Some commonly encountered sets and their notations

Some commonly encountered sets and their notations NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS (This notes are based on the book Introductory Mathematics by Ng Wee Seng ) LECTURE SETS & FUNCTIONS Some commonly encountered sets and their

More information

Algebra II Notes Quadratic Functions Unit Complex Numbers. Math Background

Algebra II Notes Quadratic Functions Unit Complex Numbers. Math Background Complex Numbers Math Background Previously, you Studied the real number system and its sets of numbers Applied the commutative, associative and distributive properties to real numbers Used the order of

More information

Algebraic. techniques1

Algebraic. techniques1 techniques Algebraic An electrician, a bank worker, a plumber and so on all have tools of their trade. Without these tools, and a good working knowledge of how to use them, it would be impossible for them

More information

hp calculators HP 9s Solving Problems Involving Complex Numbers Basic Concepts Practice Solving Problems Involving Complex Numbers

hp calculators HP 9s Solving Problems Involving Complex Numbers Basic Concepts Practice Solving Problems Involving Complex Numbers Basic Concepts Practice Solving Problems Involving Complex Numbers Basic concepts There is no real number x such that x + 1 = 0. To solve this kind of equations a new set of numbers must be introduced.

More information

2. Algebraic functions, power functions, exponential functions, trig functions

2. Algebraic functions, power functions, exponential functions, trig functions Math, Prep: Familiar Functions (.,.,.5, Appendix D) Name: Names of collaborators: Main Points to Review:. Functions, models, graphs, tables, domain and range. Algebraic functions, power functions, exponential

More information

College Trigonometry

College Trigonometry College Trigonometry George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 131 George Voutsadakis (LSSU) Trigonometry January 2015 1 / 25 Outline 1 Functions

More information

Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x x 2-9x x 2 + 6x + 5

Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x x 2-9x x 2 + 6x + 5 Day 6: 6.4 Solving Polynomial Equations Warm Up: Factor. 1. x 2-2x - 15 2. x 2-9x + 14 3. x 2 + 6x + 5 Solving Equations by Factoring Recall the factoring pattern: Difference of Squares:...... Note: There

More information

SCOPE AND SEQUENCE CHART

SCOPE AND SEQUENCE CHART Unit Name 1 Introduction to Trigonometric Functions GSE PRECALCULUS SCOPE AND SEQUENCE CHART Unit Description Georgia Standards of Excellence Unit Duration Unit 1: Students will use the unit circle to

More information

MATH 135: COMPLEX NUMBERS

MATH 135: COMPLEX NUMBERS MATH 135: COMPLEX NUMBERS (WINTER, 010) The complex numbers C are important in just about every branch of mathematics. These notes 1 present some basic facts about them. 1. The Complex Plane A complex

More information

OCR Maths FP1. Topic Questions from Papers. Complex Numbers. Answers

OCR Maths FP1. Topic Questions from Papers. Complex Numbers. Answers OCR Maths FP1 Topic Questions from Papers Complex Numbers Answers PhysicsAndMathsTutor.com . 1 (i) i Correct real and imaginary parts z* = i 1i Correct conjugate seen or implied Correct real and imaginary

More information

Trigonometric Identities Exam Questions

Trigonometric Identities Exam Questions Trigonometric Identities Exam Questions Name: ANSWERS January 01 January 017 Multiple Choice 1. Simplify the following expression: cos x 1 cot x a. sin x b. cos x c. cot x d. sec x. Identify a non-permissible

More information

Precalculus Graphical, Numerical, Algebraic 9 th Edition, 2015

Precalculus Graphical, Numerical, Algebraic 9 th Edition, 2015 A Correlation of 9 th Edition, To The Copyright Pearson Education, Inc. or its affiliate(s). All rights reserved. A Correlation of, to the, - The Complex Number System N.CN Use properties of rational and

More information

xvi xxiii xxvi Construction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7

xvi xxiii xxvi Construction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7 About the Author v Preface to the Instructor xvi WileyPLUS xxii Acknowledgments xxiii Preface to the Student xxvi 1 The Real Numbers 1 1.1 The Real Line 2 Construction of the Real Line 2 Is Every Real

More information

With this expanded version of what we mean by a solution to an equation we can solve equations that previously had no solution.

With this expanded version of what we mean by a solution to an equation we can solve equations that previously had no solution. M 74 An introduction to Complex Numbers. 1 Solving equations Throughout the calculus sequence we have limited our discussion to real valued solutions to equations. We know the equation x 1 = 0 has distinct

More information

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Background knowledge: (a) The arithmetic of integers (including HCFs and LCMs), of fractions, and of real numbers.

More information

Complex Numbers CK-12. Say Thanks to the Authors Click (No sign in required)

Complex Numbers CK-12. Say Thanks to the Authors Click  (No sign in required) Complex Numbers CK-12 Say Thanks to the Authors Click http://www.ck12.org/saythanks No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

UNIT TWO POLAR COORDINATES AND COMPLEX NUMBERS MATH 611B 15 HOURS

UNIT TWO POLAR COORDINATES AND COMPLEX NUMBERS MATH 611B 15 HOURS UNIT TWO POLAR COORDINATES AND COMPLEX NUMBERS MATH 611B 15 HOURS Revised Dec 10, 02 38 SCO: By the end of grade 12, students will be expected to: C97 construct and examine graphs in the polar plane Elaborations

More information

Polar Equations and Complex Numbers

Polar Equations and Complex Numbers Polar Equations and Complex Numbers Art Fortgang, (ArtF) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other

More information

Practical Algebra. A Step-by-step Approach. Brought to you by Softmath, producers of Algebrator Software

Practical Algebra. A Step-by-step Approach. Brought to you by Softmath, producers of Algebrator Software Practical Algebra A Step-by-step Approach Brought to you by Softmath, producers of Algebrator Software 2 Algebra e-book Table of Contents Chapter 1 Algebraic expressions 5 1 Collecting... like terms 5

More information

Section 1.3 Review of Complex Numbers

Section 1.3 Review of Complex Numbers 1 Section 1. Review of Complex Numbers Objective 1: Imaginary and Complex Numbers In Science and Engineering, such quantities like the 5 occur all the time. So, we need to develop a number system that

More information

5-9. Complex Numbers. Key Concept. Square Root of a Negative Real Number. Key Concept. Complex Numbers VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING

5-9. Complex Numbers. Key Concept. Square Root of a Negative Real Number. Key Concept. Complex Numbers VOCABULARY TEKS FOCUS ESSENTIAL UNDERSTANDING TEKS FOCUS 5-9 Complex Numbers VOCABULARY TEKS (7)(A) Add, subtract, and multiply complex TEKS (1)(F) Analyze mathematical relationships to connect and communicate mathematical ideas. Additional TEKS (1)(D),

More information

PLC Papers. Created For:

PLC Papers. Created For: PLC Papers Created For: Algebra and proof 2 Grade 8 Objective: Use algebra to construct proofs Question 1 a) If n is a positive integer explain why the expression 2n + 1 is always an odd number. b) Use

More information

Salisbury Township School District Planned Course of Study Honors Pre Calculus Salisbury Inspire, Think, Learn, Grow Together!

Salisbury Township School District Planned Course of Study Honors Pre Calculus Salisbury Inspire, Think, Learn, Grow Together! Topic/Unit: Linear Functions Big Ideas/Enduring Understandings: Patterns can be represented numerically, graphically, symbolically, and verbally and provide insights into potential relationships. A linear

More information

SECTION 6.3: VECTORS IN THE PLANE

SECTION 6.3: VECTORS IN THE PLANE (Section 6.3: Vectors in the Plane) 6.18 SECTION 6.3: VECTORS IN THE PLANE Assume a, b, c, and d are real numbers. PART A: INTRO A scalar has magnitude but not direction. We think of real numbers as scalars,

More information

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY

A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETRY A BRIEF REVIEW OF ALGEBRA AND TRIGONOMETR Some Key Concepts:. The slope and the equation of a straight line. Functions and functional notation. The average rate of change of a function and the DIFFERENCE-

More information

West Essex Regional School District. AP Calculus AB. Summer Packet

West Essex Regional School District. AP Calculus AB. Summer Packet West Esse Regional School District AP Calculus AB Summer Packet 05-06 Calculus AB Calculus AB covers the equivalent of a one semester college calculus course. Our focus will be on differential and integral

More information

3 + 4i 2 + 3i. 3 4i Fig 1b

3 + 4i 2 + 3i. 3 4i Fig 1b The introduction of complex numbers in the 16th century was a natural step in a sequence of extensions of the positive integers, starting with the introduction of negative numbers (to solve equations of

More information