Asymmetric dark matter from. and New Strong Dynamics. Mads Toudal Frandsen Rudolf Peierls Centre for Theoretical Physics

Size: px
Start display at page:

Download "Asymmetric dark matter from. and New Strong Dynamics. Mads Toudal Frandsen Rudolf Peierls Centre for Theoretical Physics"

Transcription

1 Asymmetric dark matter from and New Strong Dynamics Rudolf Peierls Centre for Theoretical Physics November 5 th 2010

2 What is the world made of?

3 What is the world made of? Baryons but no antibaryons Baryon mass (mainly) from strong dynamics Ω DM /Ω B ~ O(1)

4 What should the world be made of? Mass scale Particle Symmetry/ Quantum # Λ QCD Baryons U(1) baryon number Stability Production Abundance > yr (dim-6 OK) freeze-out from thermal equilibrium asymmetry Chemical equilibrium maintained when annihilaton rate exceeds the Hubble expansion rate Ω B ~10-10 Ω B ~ 0.05 Freeze-out at T ~ m N /45, with: Have to invoke an asymmetry: Observed ratio is 10 9 times bigger: A 'baryon disaster'?!

5

6 Sakharov conditions for baryogenesis: 1. Baryon number violation 2. C and CP violation 3. Departure from thermal equilibrium Any pre-existing fermion asymmetry would be redistributed by the B+L violating processes (which conserve B-L) : The fermion number N i terms of the statistical function c i and the Chemical potential μ is: The fermion number violating processes (sphalerons) create equal number of fermion doublets: (Bahr, Chivukula & Farhi 90; Harvey and Turner 90)

7

8 What should the world be made of? Mass scale Particle Symmetry/ Quantum # Stability Production Abundance Λ QCD Nucleons U(1) baryon number > yr (dim-6 OK) freeze-out from thermal equilibrium asymmetry Ω B ~10-10 Ω B ~ 0.05 Λ Fermi ~ G F -1/2 Neutralino? R-parity? violated? freeze-out from thermal equilibrium Ω LSP ~ 0.3 In (softly broken) susy we could have a WIMP miracle : But why then is the abundance of thermal relics comparable to that of baryons born non-thermally, with Ω DM /Ω B ~ 5?

9 A TeV scale particle sharing the asymmetry (e.g. a technibaryon) could explain the ratio of dark to baryonic matter... (Nussinov 1985) Even more naturally is a ~ 5 GeV particle (e.g. a 'dark baryon' from a hidden strong sector) (Gelmini et al 87, Raby and West 87, DB Kaplan 92, Hooper et al 05, Kitano and Low 05, DE Kaplan et al 09, Kribs et al 09, Sannino and Zwicky 09, An et al 10, M.T.F & Sarkar 10,...) Mass scale Particle Symmetry/ Quantum # Λ QCD Nucleons U(1) baryon number Λ TC ~ Λ Fermi Λ DB ~5 Λ QCD Technibaryon? Dark Baryon? (Bahr, Chivukula and Farhi 90) U(1) techibaryon U(1) dark baryon number? Stability Production Abundance > yr (dim-6 OK) freeze-out from thermal equilibrium Asymmetry Ω B ~10-10 Ω B ~ 0.05 Asymmetry Ω TC ~ 0.3 Ω DB ~ 0.3 Is it natural to have similar initial asymmetry in the visible and dark sector?

10 Sakharov conditions for baryogenesis: 1. Baryon number violation 2. C and CP violation 3. Departure from thermal equilibrium Any pre-existing fermion asymmetry would be redistributed by the B+L violating processes (which conserve B-L) : The fermion number N i terms of the statistical function c i and the Chemical potential μ is: The fermion number violating processes (sphalerons) create equal number of fermion doublets: (Bahr, Chivukula & Farhi 90; Harvey and Turner 90)

11 If composite ADM is electrically neutral but has constituents with EW charges, sphalerons may distribute the asymmetry among baryons and dark matter Can we construct natural explicit models? EW scale ADM from Technicolor models Minimal (Walking) Technicolour GeV scale ADM e.g. from a Dark mirror sector/world Technicolour breaks the electroweak symmetry and the technifermions can form composite ADM A dark mirror sector (e.g. a complete copy of the SM) is coupled via Higgs-Mirror Higgs and heavy right handed neutrinos which generate neutrino masses in the SM and provide leptogenesis of matter in the SM as well as ADM from the mirror sector

12 and LHC Phenomenology LAPTh Annecy-le-Vieux, November 5 th 2010 m.frandsen1@physics.ox.ac.uk

13 Outline 1 Technicolor and Technibaryon Dark Matter 2 3

14 Technicolor Technicolor: (Weinberg 78, Susskind 78) 1 In the SM without a Higgs, QCD breaks the EW symmetry: ū L u R + d L d R 0 M W = gf π 2. 2 Consider a new strongly interacting gauge theory with F TC Π = v EW = 246GeV. 3 Let the electroweak gauge group be a subgroup of the chiral symmetry group.

15 Technicolor Technicolor: (Weinberg 78, Susskind 78) 1 In the SM without a Higgs, QCD breaks the EW symmetry: ū L u R + d L d R 0 M W = gf π 2. 2 Consider a new strongly interacting gauge theory with F TC Π = v EW = 246GeV. 3 Let the electroweak gauge group be a subgroup of the chiral symmetry group. Example: Scaled-up QCD!

16 Technicolor 1 The SM gauge group is augmented: G SM SU(3) c SU(2) W U(1) Y G TC.

17 Technicolor 1 The SM gauge group is augmented: G SM SU(3) c SU(2) W U(1) Y G TC. 2 The Higgs sector of the SM is replaced: L Higgs 1 4 F a µν F aµν + i Q L γ µ D µ Q L + i Q R γ µ D µ Q R +...

18 Technicolor 1 The SM gauge group is augmented: G SM SU(3) c SU(2) W U(1) Y G TC. 2 The Higgs sector of the SM is replaced: L Higgs 1 4 F a µν F aµν + i Q L γ µ D µ Q L + i Q R γ µ D µ Q R +... Minimal chiral symmetries: 3 GB s + Custodial + DM. SU L (2) SU R (2) U TB (1) SU V (2) U TB (1).

19 Technicolor dark matter Technocosmology (Nussinov 85) Lightest Technibaryon as Asymmetric Dark Matter

20 Technicolor dark matter Technocosmology (Nussinov 85) Lightest Technibaryon as Asymmetric Dark Matter The LTB abundance: Ω TB /Ω B = m TB /m B n TB /n B

21 Technicolor dark matter Technocosmology (Nussinov 85) Lightest Technibaryon as Asymmetric Dark Matter The LTB abundance: From initial n B n TB : Ω TB /Ω B = m TB /m B n TB /n B Ω TB /Ω B m TB /m B (m TB /T sphaleron ) 3/2 e m TB/T sphaleron T sphaleron v EW, (Chivukula and Walker 90; Bahr, Chivukula and Farhi 90; Harvey and Turner 90; Ellis et al 95; Sarkar 95; Gudnason, Kouvaris and Sannino 05)

22 Technicolor dark matter Technocosmology (Nussinov 85) Lightest Technibaryon as Asymmetric Dark Matter The LTB abundance: From initial n B n TB : Ω TB /Ω B = m TB /m B n TB /n B Ω TB /Ω B m TB /m B (m TB /T sphaleron ) 3/2 e m TB/T sphaleron T sphaleron v EW, M TB TeV (Chivukula and Walker 90; Bahr, Chivukula and Farhi 90; Harvey and Turner 90; Ellis et al 95; Sarkar 95; Gudnason, Kouvaris and Sannino 05)

23 Technicolor dark matter Technocosmology (Nussinov 85) Lightest Technibaryon as Asymmetric Dark Matter The LTB abundance: From initial n B n TB : Ω TB /Ω B = m TB /m B n TB /n B Ω TB /Ω B m TB /m B (m TB /T sphaleron ) 3/2 e m TB/T sphaleron T sphaleron v EW, M TB TeV (Chivukula and Walker 90; Bahr, Chivukula and Farhi 90; Harvey and Turner 90; Ellis et al 95; Sarkar 95; Gudnason, Kouvaris and Sannino 05) Scaled up technineutron now ruled out by recoil experiments σ TN,p cm 2

24 Extended Technicolor and fermion masses ETC ETC: (Eichten and Lane 80) New gauge theory with SM and TC fermions in the same multiplet. ψ L, QL Q L Q R ψ R,Q R

25 Extended Technicolor and fermion masses ETC ψ L, QL Q L Q R ψ R,Q R

26 Extended Technicolor and fermion masses ETC ψ L, QL Q L Q R ψ R,Q R 1 Four fermion operators: QQ QQ α Λ 2 ETC QQ ψψ + β + γ Λ 2 ETC ψψ ψψ Λ 2 ETC (Too!) Generically Λ ETC > 10 3 TeV to suppress FCNC s: (King 89; Evans and Ross 94; Appelquist and Shrock 02; Evans and Sannino 05; Christensen, Piai and Shrock 06)

27 Extended Technicolor and fermion masses ETC ψ L, QL Q L Q R ψ R,Q R 1 Four fermion operators: QQ QQ α Λ 2 ETC QQ ψψ + β + γ Λ 2 ETC ψψ ψψ Λ 2 ETC (Too!) Generically Λ ETC > 10 3 TeV to suppress FCNC s: (King 89; Evans and Ross 94; Appelquist and Shrock 02; Evans and Sannino 05; Christensen, Piai and Shrock 06) 3 Focus on Technicolor sector

28 Constraints from LEP 1 A minimal matter content in the TC sector is favored: S 16πΠ W 3 B (0), T 4π s 2 W c2 W M2 Z (Π W 1 W 1(0) Π W 3 W 3(0)) Q, L W 3 B U 0 m t = ± 2.1 GeV m H = GeV m W prel. T 0 Γ ll d(r S naive = N TC ) -0.2 D 6π S = S naive (1 + δ) -0.4 sin 2 θ lept eff m H m t 68 % CL S (Kennedy and Lynn 89; Peskin and Takeuchi 90; Altarelli and Barbieri 91)

29 Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ.

30 Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. Orthogonal TC QCD TC Symplectic TC

31 Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. Orthogonal TC R real QCD TC R complex Symplectic TC R pseudo-real

32 Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. Orthogonal TC R real F of SO(N) QCD TC R complex F of SU(N) Symplectic TC R pseudo-real F of Sp(2N)

33 Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. Orthogonal TC R real F of SO(N) SU(4)/SO(4) QCD TC R complex F of SU(N) G GB : SU(2) Symplectic TC R pseudo-real F of Sp(2N) SU(4)/Sp(4)

34 Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. Orthogonal TC R real F of SO(N) SU(4)/SO(4) 3 Π 3 3 QCD TC R complex F of SU(N) G GB : SU(2) 3 Π Symplectic TC R pseudo-real F of Sp(2N) SU(4)/Sp(4) 3 Π 1 1

35 Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. Orthogonal TC R real F of SO(N) SU(4)/SO(4) 3 Π 3 3 ( ) Π Ti T i Π T QCD TC R complex F of SU(N) G GB : SU(2) 3 Π ( Π 0 Π Π = + ) Π Π 0 Symplectic TC R pseudo-real F of Sp(2N) SU(4)/Sp(4) 3 Π 1 1 ( ) Π Ts Ts Π T

36 Minimal Technicolor Theory Space 2 EW charged Dirac Flavors. No QCD charges. ( ) Q L = U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. Orthogonal TC R real F of SO(N) SU(4)/SO(4) 3 Π 3 3 ( ) Π Ti T i Π T ( T 0 T T i = + ) T T 0 QCD TC R complex F of SU(N) G GB : SU(2) 3 Π ( Π 0 Π Π = + ) Π Π 0 Symplectic TC T s = R pseudo-real F of Sp(2N) SU(4)/Sp(4) 3 Π 1 1 ( ) Π Ts T s Π T ( ) T T 0

37 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. (1)

38 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. (1) itimp TIMP TIMP (M.T.F and F.Sannino 09) (Bahr, Chivukula and Farhi 90; Nussinov 92) (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

39 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. (1) itimp TIMP 4 of SU(4) TIMP (M.T.F and F.Sannino 09) (Bahr, Chivukula and Farhi 90; Nussinov 92) (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

40 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. (1) itimp TIMP 4 of SU(4) U L D L U L D L TIMP (M.T.F and F.Sannino 09) (Bahr, Chivukula and Farhi 90; Nussinov 92) (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

41 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. (1) itimp TIMP 4 of SU(4) U L D L U L D L SM singlet TIMP (M.T.F and F.Sannino 09) (Bahr, Chivukula and Farhi 90; Nussinov 92) (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

42 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. (1) itimp (M.T.F and F.Sannino 09) TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π (Bahr, Chivukula and Farhi 90; Nussinov 92) TIMP (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

43 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. (1) itimp (M.T.F and F.Sannino 09) TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π (Bahr, Chivukula and Farhi 90; Nussinov 92) TIMP (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

44 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. (1) itimp R real (M.T.F and F.Sannino 09) TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π (Bahr, Chivukula and Farhi 90; Nussinov 92) TIMP R pseudo-real (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

45 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. (1) itimp R real T 0 U L D L (M.T.F and F.Sannino 09) TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π (Bahr, Chivukula and Farhi 90; Nussinov 92) TIMP R pseudo-real T 0 U L D L (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

46 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. (1) itimp R real T 0 U L D L Iso-spin 0 GB (M.T.F and F.Sannino 09) TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π (Bahr, Chivukula and Farhi 90; Nussinov 92) TIMP R pseudo-real T 0 U L D L SM singlet GB (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

47 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. (1) itimp R real T 0 U L D L Iso-spin 0 GB M T 0 g F Π (M.T.F and F.Sannino 09) TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π (Bahr, Chivukula and Farhi 90; Nussinov 92) TIMP R pseudo-real T 0 U L D L SM singlet GB M 2 T 0 g 2 F 2 Π (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

48 Dark Matter from Minimal Technicolor TIMP: Complex scalar, charged under the U(1) TB symmetry Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ. (1) itimp R real T 0 U L D L Iso-spin 0 GB M T 0 g F Π TIMP 4 of SU(4) U L D L U L D L SM singlet M T N 3/2 TC F Π TIMP R pseudo-real T 0 U L D L SM singlet GB M 2 T 0 g 2 F 2 Π (M.T.F and F.Sannino 09) (Bahr, Chivukula and Farhi 90; Nussinov 92) (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09) (Other candidates in MT: Gudnason, Kouvaris and Sannino 05; Kainulainen, Virkajärvi and Tuominen 06, 09, 10; Kouvaris 07; Khlopov and Kouvaris 08)

49 Direct detection Charge radius L B = ie d B Λ 2 T µ T ν F µν. (Bagnasco, Dine and Thomas 93) T γ T T H T N N N N Composite Higgs L Yuk H = d Hv ev T TH or L GB H = d 13 Λ H µt µ T. (M.T.F and Sannino 09)

50 Direct detection Charge radius L B = ie d B Λ 2 T µ T ν F µν. (Bagnasco, Dine and Thomas 93) T γ T T H T N N N N Composite Higgs L Yuk H = d Hv ev T TH or L GB H = d 13 Λ H µt µ T. (M.T.F and Sannino 09) For colored baryons: Gluonic polarizabilities (Nussinov 92 ; Chivukula et al 92)

51 Direct detection Charge radius L B = ie d B Λ 2 T µ T ν F µν. (Bagnasco, Dine and Thomas 93) T γ T T H T N N N N Composite Higgs L Yuk H = d Hv ev T TH or L GB H = d 13 Λ H µt µ T. (M.T.F and Sannino 09) For colored baryons: Gluonic polarizabilities (Nussinov 92 ; Chivukula et al 92) For spin-1/2 baryons: Dipole moments (Nussinov 92 ; Bagnasco, Dine and Thomas 93)

52 Direct Detection Limits on TIMPs Σnucleon cm TeV d12 3 mh db CDMS Ge XENON m T GeV (Foadi, M.T.F and Sannino 09; Belyaev, M.T.F, Sannino and Sarkar; Exclusion limits courtesy of C. Mccabe 10)

53 Direct Detection Limits on TIMPs Σnucleon cm TeV d12 3 mh db CDMS Ge XENON m T GeV (Foadi, M.T.F and Sannino 09; Belyaev, M.T.F, Sannino and Sarkar; Exclusion limits courtesy of C. Mccabe 10) Indirect detection of Decaying Dark Matter: (Nardi, Sannino and Strumia 09)

54 LHC signatures of (i)timps q Z,R 1,2 H T T (i)timp Invisible Higgs (Foadi, M.T.F and Sannino 08 ; Godbole, Guchait, Mazumdar, Moretti and Roy 03). q Z l + l

55 LHC signatures of (i)timps q Z,R 1,2 H T T (i)timp Invisible Higgs (Foadi, M.T.F and Sannino 08 ; Godbole, Guchait, Mazumdar, Moretti and Roy 03). q Z l + l itimp Antlers q W ± (M.T.F and Sannino 09 ; Han, Kim and Song 09) T Z,R ± 1,2 T 0 q T ± W T 0

56 LHC signatures of (i)timps q Z,R 1,2 H T T (i)timp Invisible Higgs (Foadi, M.T.F and Sannino 08 ; Godbole, Guchait, Mazumdar, Moretti and Roy 03). itimp Antlers (M.T.F and Sannino 09 ; Han, Kim and Song 09) q q q Z T Z,R ± 1,2 Note: The same signatures from a new stable heavy lepton! (M.T.F, Masina and Sannino 09 ; Antipin, Heikinheimo, Tuominen 09) T ± W ± W l + l T 0 T 0

57 (i)timp missing energy signals q Z,R 1,2 H Z q T T l + l Number of events/5 100 fb WW 10 1 ZZ M H =160 M H =200 M H =300 M A =500,gt=5,S= Missing p T (GeV) Number of events/5 100 fb WW 10 1 ZZ M H =160 M H =300 M H =450 M A =750,gt=5,S= Missing p T (GeV) (Foadi, M.T.F and Sannino 08; Godbole, Guchait, Mazumdar, Moretti and Roy 03).

58 Walking Technicolor 1 TC sector: Walking reduces the full S-parameter (Sundrum and Hsu 92; Appelquist and Sannino 98; Harada, Kurachi and Yamawaki 03; Kurachi and Shrock 06)

59 Walking Technicolor 1 TC sector: Walking reduces the full S-parameter (Sundrum and Hsu 92; Appelquist and Sannino 98; Harada, Kurachi and Yamawaki 03; Kurachi and Shrock 06) 2 ETC sector: Walking reduces tension between SM fermion masses and FCNC s (Holdom 81, 85; Yamawaki, Bando and Matumoto 86; Appelquist, Karabali and Wijewardhana 86)

60 Conformal window and Walking (Fig:Sannino, cp3-origins 09)

61 ETC fermion masses and Walking 1 Four fermion operators: α QQ QQ Λ 2 ETC QQ ψψ ψψ ψψ + β Λ 2 + γ ETC Λ ETC

62 ETC fermion masses and Walking 1 Four fermion operators: α QQ QQ Λ 2 ETC 2 Fermion masses: QQ ψψ ψψ ψψ + β Λ 2 + γ ETC Λ ETC M ψ QQ ETC Λ 2 ETC d(r TC ) Λ3 γ TC Λγ ETC Λ 2 ETC

63 ETC fermion masses and Walking 1 Four fermion operators: α QQ QQ Λ 2 ETC 2 Fermion masses: QQ ψψ ψψ ψψ + β Λ 2 + γ ETC Λ ETC M ψ QQ ETC Λ 2 ETC d(r TC ) Λ3 γ TC Λγ ETC Λ 2 ETC 3 Condensate enhancement from Walking: < QQ > ETC ( Λ ETC Λ TC ) γ(α ) < QQ > TC (Holdom 81, 85; Yamawaki, Bando and Matumoto 86; Appelquist, Karabali and Wijewardhana 86)

64 ETC fermion masses and Walking 1 Four fermion operators: α QQ QQ Λ 2 ETC 2 Fermion masses: QQ ψψ ψψ ψψ + β Λ 2 + γ ETC Λ ETC M ψ QQ ETC Λ 2 ETC d(r TC ) Λ3 γ TC Λγ ETC Λ 2 ETC 3 Condensate enhancement from Walking: < QQ > ETC ( Λ ETC Λ TC ) γ(α ) < QQ > TC (Holdom 81, 85; Yamawaki, Bando and Matumoto 86; Appelquist, Karabali and Wijewardhana 86) 4 (Too) Naively Λ ETC > 10 3 TeV to suppress FCNC s: (King 89; Evans and Ross 94; Appelquist and Shrock 02; Evans and Sannino 05; Christensen, Piai and Shrock 06)

65 Analytical approaches to the conformal window 3C 2 (R), α 4π = β 0 β 1. (Appelquist, Lane and Muhanta 88; Cohen and Georgi 89; Sannino and 1 Ladder approximation: α c = π Tuominen 04; Dietrich and Sannino 06; Ryttov and Sannino 07) 2 All-orders beta function conjecture(s) (Ryttov and Sannino 08; Antipin and Tuominen 09; Dietrich 09) 3 Dualities (Sannino 09) 4 Compactification approach (Unsal and Poppitz 09; Ogilvie and Myers 09;) 5 Worldline formalism (Armoni 09) 6 Holography (Hong and Yee 06; Alvares, Evans, Gebauer and Weatherill 09) 7 Metric Confinenement MC and Causal Analytic couplings (Oehme and Zimmerman 80; Nishijima 86; Oehme 1990; Gardi and Grunberg 98; M.T.F, Pickup and Teper 10)

66 Conformal window lower bounds: MC and AO N f N f Fundamental rep I N f II,SD N f II,MC N f CA N f II,AO N f N C 2 index symmetric rep N f N f Adjoint rep N C AS N C (M.T.F, T. Pickup and M. Teper 10) N C

67 Some Minimal Models of Walking Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ.. (2)

68 Some Minimal Models of Walking Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ.. (2) MWT model: (Sannino and Tuominen 04) G TC = SU(2). R = Adj. Leptons. (Dietrich, Sannino and Tuominen 05)

69 Some Minimal Models of Walking Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ.. (2) MWT model: (Sannino and Tuominen 04) G TC = SU(2). R = Adj. Leptons. (Dietrich, Sannino and Tuominen 05) OMT model G TC = SO(4) NMWT model G TC = SU(3) UMT model G TC = SU(2) (M.T.F and F.Sannino 09) (Sannino and Tuominen 04) (Ryttov and Sannino 08)

70 Some Minimal Models of Walking Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ.. (2) MWT model: (Sannino and Tuominen 04) G TC = SU(2). R = Adj. Leptons. (Dietrich, Sannino and Tuominen 05) OMT model G TC = SO(4) R = F (M.T.F and F.Sannino 09) NMWT model G TC = SU(3) R = 2S (Sannino and Tuominen 04) UMT model G TC = SU(2) R = F,Adj (Ryttov and Sannino 08)

71 Some Minimal Models of Walking Technicolor Q L = ( ) U +1/2 L,D 1/2 T +1/2 L, U R, D 1/2 R ; λ.. (2) MWT model: (Sannino and Tuominen 04) G TC = SU(2). R = Adj. Leptons. (Dietrich, Sannino and Tuominen 05) OMT model G TC = SO(4) R = F itimp (M.T.F and F.Sannino 09) NMWT model G TC = SU(3) R = 2S (Sannino and Tuominen 04) UMT model G TC = SU(2) R = F,Adj TIMP (Ryttov and Sannino 08)

72 Conformal window lower bounds: MC and AO N f N f Fundamental rep I N f II,SD N f II,MC N f CA N f II,AO N f N C 2 index symmetric rep N f N f Adjoint rep N C AS N C (M.T.F, T. Pickup and M. Teper 10) N C

73 Lattice simulations (Dedicated collaborations: Lattice Strong Dynamics (US) ; Strong BSM (EU) )

74 EFT for strong LHC common sector: SU L (2) SU R (2) U TB (1) SU V (2) U TB (1). New states: Lightest (axial)-vector triplets and scalar R ±,0 1, R ±,0 2, H. TIMPs Input parameters and constraints: Main free parameters: e, G F, M Z ; S, Sum Rules. M A, g, M H. (Appelquist, Da Silva and Sannino 99; Foadi, M.T.F, Ryttov and Sannino

75 EFT for strong LHC common sector: SU L (2) SU R (2) U TB (1) SU V (2) U TB (1). New states: Lightest (axial)-vector triplets and scalar R ±,0 1, R ±,0 2, H. TIMPs Input parameters and constraints: Main free parameters: e, G F, M Z ; S, Sum Rules. M A, g, M H. (Appelquist, Da Silva and Sannino 99; Foadi, M.T.F, Ryttov and Sannino EFTs for BESS models, 3-site/4-site models and LSTC (Casalbuoni, Deandrea, De Curtis, Dominici, Gatto, Grazzini 95; He et al 08; Lane and Martin 09)

76 Parameter space (Foadi, M.T.F and Sannino 07 ; Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

77 Mass spectrum, imposing S and WSR1 Mass Spectrum (TeV) R ± 2,0 0.6 R 1 ±,0 S=0.3 g = M A (TeV) Mass Spectrum (TeV) R ± 2,0 0.6 R 1 ±,0 S=0.3 g = M A (TeV) Figure: R 1,2 spectrum. (Foadi, M.T.F, Ryttov and Sannino 08)

78 LHC Phenomenology Basic phenomenology controlled by g, M A, M H. g/ g R 1,2 g R 1,2

79 LHC Phenomenology Basic phenomenology controlled by g, M A, M H. g/ g R 1,2 g R 1,2 Different decay channels probe R 1,R 2 and H.

80 LHC Phenomenology Basic phenomenology controlled by g, M A, M H. g/ g R 1,2 g R 1,2 Different decay channels probe R 1,R 2 and H. Di-lepton: R 0 1,2 l+ l. Single top: R ± 1,2 tb

81 LHC Phenomenology Basic phenomenology controlled by g, M A, M H. g/ g R 1,2 g R 1,2 Different decay channels probe R 1,R 2 and H. Di-lepton: R 0 1,2 l+ l. Single top: R ± 1,2 tb Di-boson: R 2 ZW/WW.

82 LHC Phenomenology Basic phenomenology controlled by g, M A, M H. g/ g R 1,2 g R 1,2 Different decay channels probe R 1,R 2 and H. Di-lepton: R 0 1,2 l+ l. Single top: R ± 1,2 tb Di-boson: R 2 ZW/WW. Higgs-Strahlung: R 1 HZ/HW.

83 LHC Phenomenology Basic phenomenology controlled by g, M A, M H. g/ g R 1,2 g R 1,2 Different decay channels probe R 1,R 2 and H. Di-lepton: R 0 1,2 l+ l. Single top: R ± 1,2 tb Di-boson: R 2 ZW/WW. Higgs-Strahlung: R 1 HZ/HW. Higgs-Decays: H ZZ/WW (b b?).

84 LHC Phenomenology Basic phenomenology controlled by g, M A, M H. g/ g R 1,2 g R 1,2 Different decay channels probe R 1,R 2 and H. Di-lepton: R 0 1,2 l+ l. Single top: R ± 1,2 tb Di-boson: R 2 ZW/WW. Higgs-Strahlung: R 1 HZ/HW. Higgs-Decays: H ZZ/WW (b b?). boosted tops, W, Z and H

85 LHC Phenomenology Basic phenomenology controlled by g, M A, M H. g/ g R 1,2 g R 1,2 Different decay channels probe R 1,R 2 and H. Di-lepton: R 0 1,2 l+ l. Single top: R ± 1,2 tb Di-boson: R 2 ZW/WW. Higgs-Strahlung: R 1 HZ/HW. Higgs-Decays: H ZZ/WW (b b?). boosted tops, W, Z and H Lattice can (in principle) narrow down parameter space for each model

86 LHC Phenomenology Basic phenomenology controlled by g, M A, M H. g/ g R 1,2 g R 1,2 Different decay channels probe R 1,R 2 and H. Di-lepton: R 0 1,2 l+ l. Single top: R ± 1,2 tb Di-boson: R 2 ZW/WW. Higgs-Strahlung: R 1 HZ/HW. Higgs-Decays: H ZZ/WW (b b?). boosted tops, W, Z and H Lattice can (in principle) narrow down parameter space for each model MWT/OMT, NMWT, UMT etc...

87 Vector Production σ(pb) 10 2 σ(pb) R ± R ± R ± 2 R ± S=0.3 g = S=0.3 g = Mass (TeV) Mass (TeV) Figure: DY production of R 1,2. (Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

88 Vector BRs BR(R ± 1) ff nl tb W ± Z BR(R ± 1) ff nl W ± H tb 10-3 W ± H 10-3 W ± Z S= S=0.3 g = Mass (TeV) g = Mass (TeV) Figure: BR s of R 1. (Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

89 l + l LHC using CalcHEP Number of events/ fb S=0.3 g = M ll (GeV) Number of events/ fb S=0.3 g = M T l (GeV) Figure: Left: Dilepton invariant mass distributions M ll for pp R 0 1,2 l+ l Right: Single lepton transverse mass distributions M T l pp R ± 1,2 l± (Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

90 Results for tb d N ev d M rec (tb) pp tb pp tt pp w+bb pp w+jj M(tb ), GeV rec d N ev d M(tb) M(tb), GeV Figure: Reconstructed (left plot) and partonic (right plot) invariant mass of top and b-quarks after final cuts. Distributions normalized to 30 fb 1. (A. Belyaev, M.T.F and A.Sherstnev in preparation)

91 Di-boson vs Higgs-strahlung q Z,R 2 W q Z,R 1 H q W/Z q W/Z Number of events/ fb S=0.3 g = M T 3l (GeV) Events/15 GeV S=0.3,s=0 M A = 700 GeV, M H =200 g ~ =5 pp WH WZZ pp ZH ZZZ pp WZZ background pp ZZZ background M WZZ(ZZZ) (GeV) (Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

92 Symmetric vs Asymmetric TIMPs Can pngb TIMPs have a symmetric relic density? Φ complex composite scalar with uncharged components ~ λs motivated by achieving Minimality & Walking (Dynamical realization of scalar singlet DM models) Specific model example: 'Ultra Minimal TC' Yield and relic density in the presence of asymmetry: (Griest & Seckel 85) α=0 (Ryttov & Sannino 09) (Belyaev, M.T.F, Sarkar & Sannino 10)

93 Symmetric vs Asymmetric TIMPs TIMPs with charged constituents Symmetric relic density of T0 (Belyaev, M.T.F, Sarkar & Sannino 10) Higgs interactions of T0 identical to those of φ α=0 T may also have charge radius interaction : In addition T0 has contact interactions with SM gauge bosons, due to EW charges of U, D: (Preskill 81; Chadha and Peskin 81)

94 Back to light ADM Most nuclear recoil experiments optimized to heavy WIMPs with little sensitivity to low mass particles O(keV) recoil energies Recently several experiments have reported events close to threshold Region of interest for Solar neutrinos 10) ~ 5 GeV Dark Matter candidates with ~10-39 cm2 spin-independent cross-section remains viable. Spin-dependent cross-sections up to cm2

95 Signatures of light ADM Similar to TIMPs light ADM may be a composite scalar or fermion Higgs exchange can naturally provide cross-section up to ~10-41 cm2 Charge radius can provide ~10-39 cm2 SI cross-sections Large SI and SD cross-sections of fermionic ADM can be realized via magnetic moment interactions (Sigurdson et al 2006, Gardner 08, Heo 09, Masso et al 09, An et al 10, Banks et al 10, Barger et al 10...) MH=150 (Fit Courtesy of McCabe, McCabe 10) Interesting LHC signatures like for TIMPs incl 'monojets' (Goodman et al 10, Bai, Fox & Harnik 10)

96 Astrophysical aspects of light ADM Long range self-interactions are more tightly constrained by the 'Bullet cluster' (Feng, Kaplinghat and Yu 10)

97

98

99

100

101

102

103 Recent study of effects of DM on white dwarves and neutron stars, see e.g. (Fairbairn and McCullough 10; Kouvaris 10)

104 Summary Asymmetric Dark Matter motivated by the asymmetry of baryonic matter and the wish to explain why ΩDM / ΩB ~ O(1) Technicolor is a natural and dynamical model of EWSB ~ TeV scale ADM (Technibaryon) and ~ 100 GeV scale ADM (pseudo Goldstone Boson TIMPs) arise in (Minimal Walking) Technicolor models of DEWSB. ~ GeV scale ADM (Dark Baryons) arise from strong dynamics in Hidden/Mirror/Unbaryon sectors, and is motivated in addition by problems in structure formation and potentially in helioseismology. Variety of signatures can test the scenarios

105 DM Production mechanisms Illustrative and simple model: A complex composite scalar Symmetric vs. asymmetric relics (Griest & Seckel 85) Freeze out vs. freeze-in (Asaka, Ishiwata & Moroi 05) (Belyaev, M.T.F, Sarkar & Sannino 10) (Hall, Jedamzik, March-Russel and West 10)

Walking in Monte-Carlo

Walking in Monte-Carlo University of Oxford MC4BSM, April 15 th 2010 m.frandsen1@physics.ox.ac.uk Outline 1 Bright and dark mass from Technicolor 2 3 Work in collaboration with: Alexander Belyaev (Southampton U.), Roshan Foadi

More information

Technicolor Dark Matter. Chris Kouvaris Université Libre de Bruxelles

Technicolor Dark Matter. Chris Kouvaris Université Libre de Bruxelles Technicolor Dark Matter Chris Kouvaris Université Libre de Bruxelles Dynamical Symmetry breaking: The motivation for Technicolor Long time before QCD BCS showed that the Fermi surfaces are unstable to

More information

Delineating the conformal window

Delineating the conformal window University of Oxford STRONGBSM Kick-off Meeting, CP3-Origins Odense, August 19 th 2010 m.frandsen1@physics.ox.ac.uk Outline 1 Motivations for Technicolor and New Strong Dynamics BSM 2 Outline 1 Motivations

More information

Scenarios with Composite Higgs Bosons

Scenarios with Composite Higgs Bosons Scenarios with Composite Higgs Bosons 2013.2.15 Michio Hashimoto (Chubu U.) Introduction Let us consider scenarios that Some strong dynamics generate Composite particles, vectors, Pseudo-scalars, Scalars

More information

A Minimal Composite Goldstone Higgs model

A Minimal Composite Goldstone Higgs model A Minimal Composite Goldstone Higgs model Lattice for BSM Physics 2017, Boston University Plan of the talk Introduction to composite Goldstone Higgs models Lattice results for the SU(2) Goldstone Higgs

More information

Strongly Coupled Dark Matter at the LHC

Strongly Coupled Dark Matter at the LHC Strongly Coupled Dark Matter at the LHC Graham Kribs University of Oregon Appelquist et al (LSD Collaboration): 1402.6656; 1503.04203; 1503.04205 GK, Adam Martin, Ethan Neil, Bryan Ostdiek, Tom Tong [in

More information

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University Baryon-Dark Matter Coincidence Bhaskar Dutta Texas A&M University Based on work in Collaboration with Rouzbeh Allahverdi and Kuver Sinha Phys.Rev. D83 (2011) 083502, Phys.Rev. D82 (2010) 035004 Miami 2011

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group CP3 Origins, September 16 th, 2013 At this seminar I will touch upon... σ 2 Issues of the Standard Model Dramatically

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios Based on arxiv:1806.04689 with A Dasgupta, S K Kang (SeoulTech) Debasish Borah Indian Institute of Technology

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Asymmetric Sneutrino Dark Matter

Asymmetric Sneutrino Dark Matter Asymmetric Sneutrino Dark Matter Stephen West Oxford University Asymmetric Sneutrino Dark Matter and the Ω b /Ω dm Puzzle; hep-ph/0410114, PLB, Dan Hooper, John March- Russell, and SW from earlier work,

More information

Composite Higgs Overview

Composite Higgs Overview Composite Higgs Overview Tony Gherghetta Fundamental Composite Dynamics, IBS CTPU, Daejeon, Korea, December 6, 2017 1 IBS Daejeon - 6 December 2017 Composite Higgs New strong force with coupling, g s g

More information

Collider Searches for Dark Matter

Collider Searches for Dark Matter Collider Searches for Dark Matter AMELIA BRENNAN COEPP-CAASTRO WORKSHOP 1 ST MARCH 2013 Introduction Enough introductions to dark matter (see yesterday) Even though we don t know if DM interacts with SM,

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

Summary Introduction Description of the Resonances s-channel Processes Fusion Processes Drell-Yan Processes Conclusions

Summary Introduction Description of the Resonances s-channel Processes Fusion Processes Drell-Yan Processes Conclusions Prospective Study on Muon Colliders Strong Electroweak Symmetry Breaking at Muon Colliders Roberto Casalbuoni Firenze and Geneva Universities with A. Deandrea, S. De Curtis, D. Dominici, R. Gatto and J.F.

More information

Searching for the Higgs at the LHC

Searching for the Higgs at the LHC Searching for the Higgs at the LHC Philip Lawson Boston University - PY 898 - Special Topics in LHC Physics 3/16/2009 1 Outline Theory & Background of Higgs Mechanism Production Modes Decay Modes - Discovery

More information

Physics at TeV Energy Scale

Physics at TeV Energy Scale Physics at TeV Energy Scale Yu-Ping Kuang (Tsinghua University) HEP Society Conference, April 26, 2008, Nanjing I. Why TeV Scale Is Specially Important? SM is SU(3) c SU(2) U(1) gauge theory. M g, M γ

More information

Composite gluino at the LHC

Composite gluino at the LHC Composite gluino at the LHC Thomas Grégoire University of Edinburgh work in progress with Ami Katz What will we see at the LHC? Natural theory of EWSB? Supersymmetry? Higgs as PGSB (LH, RS-like)? Extra-

More information

FERMION PORTAL DARK MATTER

FERMION PORTAL DARK MATTER FERMION PORTAL DARK MATTER Joshua Berger SLAC UC Davis Theory Seminar! w/ Yang Bai: 1308.0612, 1402.6696 March 10, 2014 1 A HOLE IN THE SM Van Albada et. al. Chandra + Hubble What else can we learn about

More information

Lattice studies of the conformal window

Lattice studies of the conformal window Lattice studies of the conformal window Luigi Del Debbio University of Edinburgh Zeuthen - November 2010 T H E U N I V E R S I T Y O F E D I N B U R G H Luigi Del Debbio (University of Edinburgh) Lattice

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis David McKeen and AEN, arxiv:1512.05359 Akshay Ghalsasi, David McKeen, AEN., arxiv:1508.05392 (Thursday: Kyle Aitken, David

More information

The Twin Higgs. with Zackaria Chacko and Hock-Seng Goh hep-ph/

The Twin Higgs. with Zackaria Chacko and Hock-Seng Goh hep-ph/ with Zackaria Chacko and Hock-Seng Goh hep-ph/0506256 Naturalness and LHC LHC is going to be exciting from the start (first 10 fb -1 ). t L +? = Natural SMt R NP Naturalness and LHC LHC is going to be

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information

Light Asymmetric Dark Matter

Light Asymmetric Dark Matter Light Asymmetric Dark Matter Mads T. Frandsen 1, Subir Sarkar 1 1 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK DOI: http://dx.doi.org/10.3204/desy-proc--03/frandsen

More information

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09 The first year of the LHC and Theory G.G.Ross, Krakow, December 09 The LHC a discovery machine The gauge sector : new gauge bosons? The maber sector : new quarks and leptons? The scalar sector : the hierarchy

More information

Baryogenesis and Particle Antiparticle Oscillations

Baryogenesis and Particle Antiparticle Oscillations Baryogenesis and Particle Antiparticle Oscillations Seyda Ipek UC Irvine SI, John March-Russell, arxiv:1604.00009 Sneak peek There is more matter than antimatter - baryogenesis SM cannot explain this There

More information

Nonthermal Dark Matter & Top polarization at Collider

Nonthermal Dark Matter & Top polarization at Collider Nonthermal Dark Matter & Top polarization at Collider Yu Gao Texas A&M University R.Allahverdi, M. Dalchenko, B.Dutta, YG, T. Kamon, in progress B. Dutta, YG, T. Kamon, arxiv: PRD 89 (2014) 9, 096009 R.

More information

arxiv:hep-ph/ v2 8 Nov 2005

arxiv:hep-ph/ v2 8 Nov 2005 Technifermion epresentations and Precision Electroweak Constraints Neil D. Christensen and obert Shrock C.N. Yang Institute for Theoretical Physics State University of New York Stony Brook, NY 11794 We

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

Exploring Universal Extra-Dimensions at the LHC

Exploring Universal Extra-Dimensions at the LHC Exploring Universal Extra-Dimensions at the LHC Southampton University & Rutherford Appleton Laboratory 1 Problems to be addressed by the underlying theory The Nature of Electroweak Symmetry Breaking The

More information

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Kalliopi Petraki University of Melbourne (in collaboration with: R. Volkas, N. Bell, I. Shoemaker) PACIFIC

More information

Asymmetric WIMP DM. Luca Vecchi. Aspen (CO) 2/2011. in collaboration with Michael Graesser and Ian Shoemaker (LANL)

Asymmetric WIMP DM. Luca Vecchi. Aspen (CO) 2/2011. in collaboration with Michael Graesser and Ian Shoemaker (LANL) Asymmetric WIMP DM Luca Vecchi in collaboration with Michael Graesser and Ian Shoemaker (LANL) Aspen (CO) 2/2011 Outline 1 Motivations 2 The relic abundance of asymmetric species 3 Asymmetric WIMP Dark

More information

Electroweak Baryogenesis after LHC8

Electroweak Baryogenesis after LHC8 Electroweak Baryogenesis after LHC8 Gláuber Carvalho Dorsch with S. Huber and J. M. No University of Sussex arxiv:135.661 JHEP 131, 29(213) What NExT? Southampton November 27, 213 G. C. Dorsch EWBG after

More information

A Light Dilaton in Walking Gauge Theories. arxiv: , PRD Yang Bai, TA

A Light Dilaton in Walking Gauge Theories. arxiv: , PRD Yang Bai, TA A Light Dilaton in Walking Gauge Theories arxiv:1006.4375, PRD Yang Bai, TA Gauge Theories with N f Massless Fermions Conformal or Near-Conformal Behavior in the IR: Dynamical Electroweak Symmetry Breaking.

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

The inert doublet model in light of LHC and XENON

The inert doublet model in light of LHC and XENON The inert doublet model in light of LHC and XENON Sara Rydbeck 24 July 212 Identification of Dark Matter, IDM 212, Chicago 1 The CERN Large Hadron Collider Only discovery so far. If no new strongly interacting

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Lattice: Field theories beyond QCD

Lattice: Field theories beyond QCD Yale University 4 th Electron-Ion Collider Workshop Hampton University, Hampton, VA 22 May 2008 Outline Dynamical Electroweak Symmetry Breaking (DEWSB) Wasn t technicolor ruled out more than a decade ago?

More information

Mirror World and Improved Naturalness

Mirror World and Improved Naturalness Mirror World and Improved Naturalness Thomas Grégoire Boston University Based on hep-ph/0509242 R. Barbieri, T.G., L. Hall Mirror Worlds Motivations Originally introduced to restore parity Dark Matter

More information

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University Probing Light Nonthermal Dark Matter @ LHC Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University Outline Minimal extension to SM for baryogenesis & dark matter Current constraints

More information

A cancellation mechanism for dark matter-nucleon interaction: non-abelian case

A cancellation mechanism for dark matter-nucleon interaction: non-abelian case A cancellation mechanism for dark matter-nucleon interaction: non-abelian case University of Ioannina 31/3/2018 In collaboration with: Christian Gross, Alexandros Karam, Oleg Lebedev, Kyriakos Tamvakis

More information

Walking Technihadrons at the LHC

Walking Technihadrons at the LHC Walking Technihadrons at the LHC Shinya Matsuzaki Institute for Advanced Research & Department of Physics, Nagoya U. Collaborators: M.Kurachi, K.Yamawaki (KMI, Nagoya U) K.Terashi (Tokyo U) (involving

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

LHC resonance searches in tt Z final state

LHC resonance searches in tt Z final state LHC resonance searches in tt Z final state Bithika Jain Work in progress with Mihailo Backovic (CP3 Louvain), Thomas Flacke (IBS -CTPU), Seung Lee (Korea University) KIAS Workshop, 2016 1 The name of the

More information

MICROPHYSICS AND THE DARK UNIVERSE

MICROPHYSICS AND THE DARK UNIVERSE MICROPHYSICS AND THE DARK UNIVERSE Jonathan Feng University of California, Irvine CAP Congress 20 June 2007 20 June 07 Feng 1 WHAT IS THE UNIVERSE MADE OF? Recently there have been remarkable advances

More information

Kaluza-Klein Dark Matter

Kaluza-Klein Dark Matter Kaluza-Klein Dark Matter Hsin-Chia Cheng UC Davis Pre-SUSY06 Workshop Complementary between Dark Matter Searches and Collider Experiments Introduction Dark matter is the best evidence for physics beyond

More information

arxiv: v1 [hep-ph] 17 Oct 2011

arxiv: v1 [hep-ph] 17 Oct 2011 MSUHEP-111013 Technipion Limits from LHC Higgs Searches R. Sekhar Chivukula, Pawin Ittisamai, and Elizabeth H. Simmons Department of Physics and Astronomy, Michigan State University, East Lansing, MI 4884,

More information

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University Non-Thermal Dark Matter rom Moduli Decay Bhaskar Dutta Texas A&M University Allahverdi, Dutta, Sinha, PRD87 (2013) 075024, PRDD86 (2012) 095016, PRD83 (2011) 083502, PRD82 (2010) 035004 Allahverdi, Dutta,

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

BSM Higgs Searches at ATLAS

BSM Higgs Searches at ATLAS BSM Higgs Searches at ATLAS Martin zur Nedden Humboldt-Universität zu Berlin for the ATLAS Collaboration SUSY Conference 2014 Manchester July 20 th July 25 th, 2014 Introduction Discovery of a scalar Boson

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

Supersymmetric Origin of Matter (both the bright and the dark)

Supersymmetric Origin of Matter (both the bright and the dark) Supersymmetric Origin of Matter (both the bright and the dark) C.E.M. Wagner Argonne National Laboratory EFI, University of Chicago Based on following recent works: C. Balazs,, M. Carena and C.W.; Phys.

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Kalliopi Petraki University of Melbourne (in collaboration with: R. Volkas, N. Bell, I. Shoemaker) COSMO

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv: F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King S FLASY 2015 arxiv:1503.03306 Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y Standard Model Gauge theory SU(3)C X SU(2)L X U(1)Y SM:

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Composite Higgs, Quarks and Leptons, a contemporary view

Composite Higgs, Quarks and Leptons, a contemporary view Composite Higgs, Quarks and Leptons, a contemporary view 1 Thanks to Sid Drell Always be positive, curious, constructive Α others will think your questions are dumb 2 3 Brodsky-Drell anomalous magnetic

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector

Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector (University of Hong Kong) Topical Mini-Workshop of the New Physics at the TeraScale @ Tsung-Dao Lee Institute, SJTU Introduction

More information

Mono Vector-Quark Production at the LHC

Mono Vector-Quark Production at the LHC Mono Vector-Quark Production at the LHC Haiying Cai Department of Physics, Peking University arxiv: 1210.5200 Particle Physics and Cosmology KIAS, November 5-9, 2012 Introduction Vector-like quark exists

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology Subir Sarkar CERN Summer training Programme, 22-28 July 2008 Seeing the edge of the Universe: From speculation to science Constructing the Universe: The history of the Universe:

More information

The Origin of Matter

The Origin of Matter The Origin of Matter ---- Leptogenesis ---- Tsutomu T. Yanagida (IPMU, Tokyo) Shoichi Sakata Centennial Symposium Energy Content of the Universe いいい From Wikipedia F FF Galaxy and Cluster of galaxies No

More information

TeV Scale Seesaw with Loop Induced

TeV Scale Seesaw with Loop Induced TeV Scale Seesaw with Loop Induced Dirac Mass Term and Dark kmtt Matter from U(1) B L Gauge Symmetry Breaking Takehiro Nabeshima University of Toyama S. Kanemura, T.N., H. Sugiyama, Phys. Lett. B703:66-70

More information

Introducing SModelS - with an application to light neutralino DM

Introducing SModelS - with an application to light neutralino DM Hi! Introducing SModelS - with an application to light neutralino DM Suchita Kulkarni (LPSC, Grenoble) based on: 1) work in progress with W. Waltenberger, U. Laa, A. Lessa, D. Proschofsky, S. Kraml 2)

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

Electroweak Baryogenesis in the LHC era

Electroweak Baryogenesis in the LHC era Electroweak Baryogenesis in the LHC era Sean Tulin (Caltech) In collaboration with: Michael Ramsey-Musolf Dan Chung Christopher Lee Vincenzo Cirigliano Bjorn Gabrecht Shin ichiro ichiro Ando Stefano Profumo

More information

LHC searches for momentum dependent DM interactions

LHC searches for momentum dependent DM interactions LHC searches for momentum dependent interactions Daniele Barducci w/ A. Bharucha, Desai, Frigerio, Fuks, Goudelis, Kulkarni, Polesello and Sengupta arxiv:1609.07490 Daniele Barducci LHC searches for momentum

More information

Dark matter and collider signatures from extra dimensions

Dark matter and collider signatures from extra dimensions KAIST TF, A. Menon, Z. Sullivan, PRD 86 (2012) 093006 L. Edelhäuser, TF, M. Krämer, JHEP 1308 (2013) 091 TF, KC Kong, SC Park, JHEP 1305 (2013) 111, arxiv:1309.xxxx COSMO 2013, Cambridge Outline Universal

More information

Dark Matter and Gauged Baryon Number

Dark Matter and Gauged Baryon Number Dark Matter and Gauged Baryon Number Sebastian Ohmer Collaborators: Pavel Fileviez Pérez and Hiren H. Patel P. Fileviez Pérez, SO, H. H. Patel, Phys.Lett.B735(2014)[arXiv:1403.8029] P.Fileviez Pérez, SO,

More information

The Higgs boson mass in minimal technicolor models

The Higgs boson mass in minimal technicolor models The Higgs boson mass in minimal technicolor models A. Doff and A. A. Natale Universidade Tecnológica Federal do Paraná - UTFPR - COMAT Via do Conhecimento Km 01, 85503-390, Pato Branco - PR, Brazil Instituto

More information

Overview of Dark Matter models. Kai Schmidt-Hoberg

Overview of Dark Matter models. Kai Schmidt-Hoberg Overview of Dark Matter models. Kai Schmidt-Hoberg Evidence for dark matter. Compelling evidence for dark matter on all astrophysical scales: Galactic scales: Rotation curves of Galaxies Kai Schmidt-Hoberg

More information

Beyond Simplified Models

Beyond Simplified Models Pseudoscalar Portal to Dark Matter: Beyond Simplified Models Jose Miguel No King's College London J.M.N. PRD 93 (RC) 031701 (1509.01110) D. Goncalves, P. Machado, J.M.N. 1611.04593 M. Fairbairn, J.M.N.,

More information

Constraining minimal U(1) B L model from dark matter observations

Constraining minimal U(1) B L model from dark matter observations Constraining minimal U(1) B L model from dark matter observations Tanushree Basak Physical Research Laboratory, India 10th PATRAS Workshop on Axions, WIMPs and WISPs CERN Geneva, Switzerland July 3, 2014

More information

Light Stop Bound State Production at the LHC. Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim at Yonsei U.

Light Stop Bound State Production at the LHC. Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim at Yonsei U. Light Stop Bound State Production at the LHC Yeo Woong Yoon (KIAS) In collaboration with P. Ko, Chul Kim 0. 6. 8 at Yonsei U. Outline About stop Motivation for light stop Phenomenology Formalism Summary

More information

Cosmological Constraint on the Minimal Universal Extra Dimension Model

Cosmological Constraint on the Minimal Universal Extra Dimension Model Cosmological Constraint on the Minimal Universal Extra Dimension Model Mitsuru Kakizaki (Bonn University) September 7, 2007 @ KIAS In collaboration with Shigeki Matsumoto (Tohoku Univ.) Yoshio Sato (Saitama

More information

Feebly Interacting Massive Particles and their signatures

Feebly Interacting Massive Particles and their signatures Feebly Interacting Massive Particles and their signatures Geneviève Bélanger LAPTH Annecy-le-Vieux See : GB, Boudjema, Goudelis, Pukhov, Zaldivar, 1801.03509 GB, Desai, Goudelis, Harz, Lessa, No, Pukhov,

More information

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014 Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS4, 4/8/4 Introduc)on We discovered a Standard Model (SM) like Higgs boson at mh=5 GeV. This is not the end of the story.

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration ATLAS Run II Exotics Results V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration What is the dark matter? Is the Higgs boson solely responsible for electroweak symmetry breaking

More information

Syddansk Universitet. Invisible Higgs and Dark Matter. Heikinheimo, Matti; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

Syddansk Universitet. Invisible Higgs and Dark Matter. Heikinheimo, Matti; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas Syddansk Universitet Invisible Higgs and Dark Matter Heikinheimo, Matti; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas Published in: Journal of High Energy Physics (JHEP) DOI: 10.1007/JHEP07(2012)117 Publication

More information

(Particle Data Group), Phys. Lett. B 592, 1 (2004) (URL: CITATION: S. Eidelman et al. June 7, :00

(Particle Data Group), Phys. Lett. B 592, 1 (2004) (URL:   CITATION: S. Eidelman et al. June 7, :00 1 DYNAMICAL ELECTROWEAK SYMMETRY BREAKING Revised August 2003 by R.S. Chivukula and M. Narain (Boston University) and J. Womersley (Fermilab). In theories of dynamical electroweak symmetry breaking, the

More information

Discovering Technicolor

Discovering Technicolor Discovering Technicolor Stefano Di Chiara Origin of Mass 2011, Odense Outline Standard Model (Extended) Technicolor Minimal Walking Technicolor Beyond MWT Outlook and Conclusions 2 Main References Discovering

More information

Natural Nightmares for the LHC

Natural Nightmares for the LHC Dirac Neutrinos and a vanishing Higgs at the LHC Athanasios Dedes with T. Underwood and D. Cerdeño, JHEP 09(2006)067, hep-ph/0607157 and in progress with F. Krauss, T. Figy and T. Underwood. Clarification

More information

Distinguishing Z' physics with early LHC data

Distinguishing Z' physics with early LHC data Distinguishing Z' physics with early LHC data Southampton University & Rutherford Appleton LAB Collaborators: E. Accomando, L.Fedeli, S. King, C. Shepherd Themistocleous http://arxiv.org/pdf/1010.6058

More information

Detecting H->hh in the Mirror Model at the LHC

Detecting H->hh in the Mirror Model at the LHC Detecting H->hh in the Mirror Model at the LHC Peng-fei Yin ITP, School of Physics, Peking University based on Wen-sheng Li, Peng fei Yin, Shou-hua Zhu, Phys.Rev.D76:095012,2007 Nanjing, April 27, 2008

More information

Astroparticle Physics at Colliders

Astroparticle Physics at Colliders Astroparticle Physics at Colliders Manuel Drees Bonn University Astroparticle Physics p. 1/29 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/29 Contents 1) Introduction:

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

Technicolored Strong Dynamics. Fermion masses ETC FCNC Walking Isospin Topcolor Other lurking challenges - Conclusions

Technicolored Strong Dynamics. Fermion masses ETC FCNC Walking Isospin Topcolor Other lurking challenges - Conclusions Technicolored Strong Dynamics Elizabeth H. Simmons Michigan State University - - - - Fermion masses ETC FCNC Walking Isospin Topcolor Other lurking challenges - Conclusions PASI (Buenos Aires) 7 March

More information

Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University

Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University Searches for C. Brust, AK, R. Sundrum, 126.2353 Z. Han, AK, M. Son, B. Tweedie, 121.XXXX Harvard University Frontiers Beyond the Standard Model III, Minneapolis, October 13, 212 (Harvard) October, 13 1

More information

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Golden SUSY, Boiling Plasma, and Big Colliders M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Outline Part I: Supersymmetric Golden Region and its Collider Signature (with Christian

More information