MAXWELL, A TREATISE ON ELECTRICITY AND MAGNETISM 1

Size: px
Start display at page:

Download "MAXWELL, A TREATISE ON ELECTRICITY AND MAGNETISM 1"

Transcription

1 1 Primary Source 12.6 MAXWELL, A TREATISE ON ELECTRICITY AND MAGNETISM 1 James Clerk Maxwell ( ) was a Scottish physicist perhaps the greatest physi- cist in history after Newton and Einstein who demonstrated theoretically in four mathematical equations that light, magnetism, and electricity all radiate as electromagnetic waves, similar to sound and ocean waves. He also predicted the existence of radio waves as part of a broader electro- magnetic spectrum. Maxwell believed that electricity and light travel in the luminiferous aether, a hypothetical light- diffusing medium that physicists of his day imagined necessary for the transmission of light waves through space. Later experiments proved that there is no such thing as aether but also confirmed Maxwell s hypothesis that the interplay of electric and magnetic fields creates electromagnetic waves of light. (In 1905, Albert Einstein argued that light comes in discrete packets of energy, called photons, which behave like both waves and particles and can travel through empty space. This is one aspect of quantum mechanics.) Even though Maxwell s equations are not considered laws of nature, they paved the way for the theories of quantum mechanics, special relativity, and quantum electrodynamics. His work had a significant practical impact, leading to such inventions as wireless telegraphy. The passages below, Maxwell works through a demonstration of the electromagnetic theory of light. Text in square brackets has been summarized and simplified from the original by the editor. For the excerpt online, click here. For the complete text from which the excerpt was taken, click here. ELECTROMAGNETIC THEORY OF LIGHT In several parts of this treatise an attempt has been made to explain electromagnetic phenomena by means of mechanical action transmitted from one body to another by means of a medium occupying the space between them. The undulatory 2 theory of light also assumes the existence of a medium. We have now to show that the properties of the electromagnetic medium are identical with those of the luminiferous medium. To fill all space with a new medium whenever any new phenomenon is to be explained is by no means philosophical, but if the study of two different branches of science has independently suggested the idea of a medium, and if the properties which must be attributed to the medium in order to account for electromagnetic phenomena are of the same kind as those which we attribute to the luminiferous medium in order to account for the phenomena of light, the evidence for the physical existence of the medium will be considerably strengthened. But the properties of bodies are capable of quantitative measurement. We 1 Oliver J. Thatcher (ed.), The Library of Original Sources, 10 vols. (Milwaukee, WI: University Research Extension Co., 1907), 10: Caused by or characterized by waves.

2 2 therefore obtain the numerical value of some property of the medium, such as the velocity with which a disturbance is propagated through it, which can be calculated from electromagnetic experiments, and also observed directly in the case of light. If it should be found that the velocity of propagation of electromagnetic disturbances is the same as the velocity of light, and this not only in air, but in other transparent media, we shall have strong reasons for believing that light is an electromagnetic phenomenon, and the combination of the optical 3 with the electrical evidence will produce a conviction of the reality of the medium similar to that which we obtain, in the case of other kinds of matter, from the combined evidence of the senses. When light is emitted, a certain amount of energy is expended by the luminous body, and if the light is absorbed by another body, this body becomes heated, showing that it has received energy from without. During the interval of time after the light left the first body and before it reached the second, it must have existed as energy in the intervening space. According to the theory of emission, the transmission of energy is effected by the actual transference of light- corpuscules 4 from the luminous to the illuminated body, carrying with them their kinetic energy, 5 together with any other kind of energy of which they may be the receptacles. According to the theory of undulation, there is a material medium which fills the space between the two bodies, and it is by the action of contiguous parts of this medium that the energy is passed on, from one portion to the next, until it reaches the illuminated body. The luminiferous medium is therefore, during the passage of light through it, a receptacle of energy. In the undulatory theory, as developed by Huygens, 6 Fresnel, 7 Young, 8 Green, 9 etc., this energy is supposed to be partly potential and partly kinetic. The potential energy is supposed to be due to the distortion of the elementary portions of the medium. We must therefore regard the medium as elastic. The kinetic energy is supposed to be due to the vibratory motion of the medium. We must therefore regard the medium as having a finite density. In the theory of electricity and magnetism adopted in this treatise, two forms of energy are recognised, the electrostatic 10 and the electrokinetic, 11 and these are supposed to have their seat, not merely in the electrified or magnetized bodies, but in every part of the surrounding space, where electric or magnetic force is observed to act. Hence our theory agrees with the undulatory theory in assuming the existence of a medium which is capable of becoming a receptacle of two forms of energy. 3 Operating in or employing the visible part of the electromagnetic spectrum. 4 Minute or elementary particles. 5 Energy expressed due to movement, as opposed to potential energy of resting objects. 6 Christiaan Huygens ( ) was a Dutch mathematician, scientist, and physicist. 7 Augustin- Jean Fresnel ( ), a French physicist, contributed much to the theory of wave optics. 8 Thomas Young ( ) was an English mathematician and scientist. 9 George Green ( ) was a British mathematical physicist. 10 A branch of physics dealing with stationary or slow- moving electrical charges. 11 Relating to the flow of electricity.

3 3 Let us next determine the conditions of the propagation of an electromagnetic disturbance through a uniform medium, which we shall suppose to be at rest, that is, to have no motion except that which may be involved in electromagnetic disturbances. Let C be the specific conductivity 12 of the medium, K its specific capacity 13 for electrostatic induction, and u its magnetic "permeability." 14 The quantity V, in Art. 784, 15 which expresses the velocity of propagation of electromagnetic disturbances in a non- conducting medium is, by equation (10),! equal to!" If the medium is air, and if we adopt the electrostatic system of measurement, K=I and u=!, so that V=v, or the velocity of propagation is!! numerically equal to the number of electrostatic units of electricity in one electromagnetic unit. If we adopt the electromagnetic system, K=!!! and u=i, so that the equation V=v is still true. On the theory that light is an electromagnetic disturbance, propagated in the same medium through which other electromagnetic actions are transmitted, V must be the velocity of light, a quantity the value of which has been estimated by several methods. On the other hand, v is the number of electrostatic units of electricity in one electromagnetic unit, and the methods of determining this quantity have been described in the last chapter. Comparison of Units of Electricity [Since the ratio of the electromagnetic to the electrostatic unit of electricity is represented by a velocity, we shall in future denote it by the symbol v. The first numerical determination of this velocity was made by Weber 16 and Kohlrausch. 17 Their method was founded on the measurement of the same quantity of electricity, first in electrostatic and then in electromagnetic measure. The quantity of electricity measured was the charge of a Leyden jar. 18 It was measured in electrostatic measure as the product of the capacity of the jar into the difference of potential of its coatings. The capacity of the jar was determined by comparison with that of a sphere suspended in an open space at a distance from other bodies. The capacity of such a sphere is expressed in electrostatic measure by its radius. Thus the capacity of the jar may be found and expressed as a certain length. See Art The difference of the potentials of the coatings of the jar was measured by connecting the coatings with the electrodes of an electrometer, the constants of which were carefully determined, so that the difference of the potentials, E, became 12 The measure of an object s ability to transfer an electric current. 13 The ability of an object to store electric charge. 14 The degree in which an object response to a magnetic field. 15 The original publication is divided into sections the author calls articles ; click here. 16 Wilhelm Eduard Weber ( ) was a German physicist and co- inventor of the wireless telegraph. 17 Friedrich Kohlrausch ( ) was a German physicist. 18 An early form of capacitor consisting of a glass jar with layers of metal foil on the outside and inside.

4 4 known in electrostatic measure. By multiplying this by c, the capacity of the jar, the charge of the jar was expressed in electrostatic measure. To determine the value of the charge in electromagnetic measure, the jar was discharged through the coil of a galvanometer. 19 The effect of the transient current on the magnet of the galvanometer communicated to the magnet a certain angular velocity. The magnet then swung round to a certain deviation, at which its velocity was entirely destroyed by the opposing action of the earth's magnetism. By observing the extreme deviation of the magnet the quantity of electricity in the discharge may be determined in electromagnetic measure, as in Art. 748, by the formula Q=!!!! 2 sin!! 0, where Q is the quantity of electricity in electromagnetic measure. We have therefore to determine the following quantities: H, the intensity of the horizontal component of terrestrial magnetism; see Art G, the principal constant of the galvanometer; see Art T, the time of a single vibration of the magnet; and O, the deviation due to the transient current. The value of v obtained by MM. Weber and Kohlrausch was v = metres per second. The property of solid dielectrics, 20 to which the name of Electric Absorption has been given, renders it difficult to estimate correctly the capacity of a Leyden jar. The apparent capacity varies according to the time which elapses between the charging or discharging of the jar and the measurement of the potential, and the longer the time the greater is the value obtained for the capacity of the jar. Hence, since the time occupied in obtaining a reading of the electrometer is large in comparison with the time during which the discharge through the galvanometer takes place, it is probable that the estimate of the discharge in electrostatic measure is too high, and the value of v, derived from it, is probably also too high.] They are quite independent of the methods of finding the velocity of light. Hence the agreement or disagreement of the values of V and of v furnishes a test of the electromagnetic theory of light. In the following table, the principal results of direct observation of the velocity of light, either through the air or through the planetary spaces, are compared with the principal results of the comparison of the electric units: Velocity of Light (metres per second) Ratio of Electric Units (metres per second). Fizeau Weber Aberration, etc, and Maxwell Sun s Parallax A device used to detecting electric current. 20 Having the property of transmitting electric force without conduction. 21 Hippolyte Fizeau ( ) was a French physicist.

5 5 Foucault Thomson It is manifest that the velocity of light and the ratio of the units are quantities of the same order of magnitude. Neither of them can be said to be determined as yet with such a degree of accuracy as to enable us to assert that the one is greater or less than the other. It is to be hoped that, by further experiment, the relation between the magnitudes of the two quantities may be more accurately determined. In the meantime our theory, which asserts that these two quantities are equal, and assigns a physical reason for this equality, is certainly not contradicted by the comparisons of these results such as they are. In the following table, taken from a paper by E. B. Rosa, 23 Phil. Mag. 28, p. 315, 1889, the determinations of 'v corrected for the error in the B, A, unit are given: 1856 Weber and Kohlrausch x10!" 1868 Maxwell x10!" 1869 W. Thomson 24 and King x10!" 1872 McKichan x10!" 1879 Ayrton 25 and Perry x10!" 1880 Shida x10!" 1883 J. J. Thomson x10!" 1884 Klemencic x10!" 1888 Himstedt x10!" 1889 W. Thomson x10!" 1889 E.B. Rosa x10!" 1890 J. J. Thomson and Searle x10!" VELOCITY OF LIGHT IN AIR. Cornu 29 (1878) x10!" Michelson 30 (1879) x10!" Michelson (1882) x10!" Newcomb 31 ( 1885) x10!" x10!" 22 Jean Bernard Léon Foucault ( ), a French physicist known for demonstrating the effect of the Earth s rotation. 23 Edward Bennett Rosa ( ), an American physicist who was still a doctorate student when the paper mentioned above was written. 24 William Thomson, Lord Kelvin, ( ) was a Scottish mathematician and physicist and developer of the Kelvin temperature scale. 25 William Edward Ayrton ( ), an English physicist and electrical engineer. 26 Joseph John Thomson ( ), a British physicist who discovered the electron. 27 Ignacij Klemencic ( ), a Slovenian physicist. 28 George Frederick Charles Searle ( ), a British physicist. 29 Marie Alfred Cornu ( ) was a French physicist. 30 Albert Michelson ( ) was an American physicist known for his work on calculating the speed of light. 31 Simon Newcomb ( ) was a Canadian- American astronomer, mathematician, and economist.

6 x10!" In other media than air, the velocity V is inversely proportional to the square root of the product of the dielectric and the magnetic inductive capacities. According to the undulatory theory, the velocity of light in different media is inversely proportional to their indices of refraction. 32 There are no transparent media for which the magnetic capacity differs from that of air more than by a very small fraction. Hence the principal part of the difference between these media must depend on their dielectric capacity. According to our theory, therefore, the dielectric capacity of a transparent medium should be equal to the square of its index of refraction. But the value of the index of refraction is different for light of different kinds, being greater for light of more rapid vibrations. We must therefore select the index of refraction which corresponds to waves of the longest periods, because these are the only waves whose motion can be compared with the slow processes by which we determine the capacity of the dielectric. The only dielectric of which the capacity has been hitherto determined with sufficient accuracy is paraffin, for which in the solid form MM. Gibson and Barclay found: K= Dr. Gladstone has found the following values of the index of refraction of melted paraffin, sp. g , for the lines A, D and H: Temperature A D H 54 C C from which I find that the index of refraction for waves of infinite length would be about The square root of K is The difference between these numbers is greater than can be accounted for by errors of observation, and shows that our theories of the structure of bodies must be much improved before we can deduce their optical from their electrical properties. At the same time, I think that the agreement of the numbers is such that if no greater discrepancy were found between the numbers derived from the optical and the electrical properties of a considerable number of substances, we should be warranted in concluding that the square root of K, though it may not be the complete expression for the index of refraction, is at least the most important term in it. 32 The change in direction of a wave as it passes through a medium.

LIGHT and SPECIAL RELATIVITY FRAMES OF REFERENCE

LIGHT and SPECIAL RELATIVITY FRAMES OF REFERENCE VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT LIGHT and SPECIAL RELATIVITY FRAMES OF REFERENCE The location of an object and its velocity depends upon the frame of reference of an observer. Inertial frame

More information

ELECTROMAGNETIC WAVES WHAT IS LIGHT?

ELECTROMAGNETIC WAVES WHAT IS LIGHT? VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT ELECTROMAGNETIC WAVES WHAT IS LIGHT? James Clerk Maxwell (1831-1879), was a Scottish mathematician and theoretical physicist. He had an unquenchable curiosity

More information

Chapter 1. THE LIGHT General remarks Wave characteristics Frequency spectrum Dual nature of light...

Chapter 1. THE LIGHT General remarks Wave characteristics Frequency spectrum Dual nature of light... Chapter 1. THE LIGHT 1.1. General remarks......................................... 15 1.2. Wave characteristics....................................... 15 1.3. Frequency spectrum......................................

More information

CHAPTER 1 The Birth of Modern Physics

CHAPTER 1 The Birth of Modern Physics CHAPTER 1 The Birth of Modern Physics 1.1 Classical Physics of the 1890s 1.2 The Kinetic Theory of Gases 1.3 Waves and Particles 1.4 Conservation Laws and Fundamental Forces 1.5 The Atomic Theory of Matter

More information

Light was recognised as a wave phenomenon well before its electromagnetic character became known.

Light was recognised as a wave phenomenon well before its electromagnetic character became known. VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT WAVE or PARTICLE??? Light was recognised as a wave phenomenon well before its electromagnetic character became known. The problem of the nature of light is

More information

Democritus argued that all things in the universe, including light, are composed of indivisible sub components (light being some form of solar atom)

Democritus argued that all things in the universe, including light, are composed of indivisible sub components (light being some form of solar atom) Aristotle was one of the first to publicly hypothesize about the nature of light, proposing that light is a disturbance in the element air (that is, it is a wave like phenomenon) Democritus argued that

More information

The Nature of Light. Early Greece to 20 th Century

The Nature of Light. Early Greece to 20 th Century The Nature of Light For centuries there has been debate about whether the properties of light could best be explained using a particle model of light or a wave model. This lesson will focus primarily on

More information

INTERFERENCE 1.1 NATURE OF LIGHT

INTERFERENCE 1.1 NATURE OF LIGHT 1 INTERFERENCE 1.1 NATURE OF LIGHT In the year 1678, Christian Huygens proposed the wave theory of light. According to this, a Luminous body is a source of disturbance in hypothetical medium called ether

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #1 assigned, due Jan 24 No class Monday,

More information

Maxwell s Equations & Hertz Waves

Maxwell s Equations & Hertz Waves Maxwell s Equations & Hertz Waves XI. Maxwell & Electromagnetic Waves A. Maxwell s Equations Dr. Bill Pezzaglia B. Hertz Waves & Poynting C. Polarization Updated: 3Aug5 A. Maxwell s Equations 3. Hints

More information

Speed of light and Maxwell's constant (Relative Relativity)

Speed of light and Maxwell's constant (Relative Relativity) Speed of light and Maxwell's constant (Relative Relativity) Introduction The speed of light is the most famous natural constant. The value of many parameters, and also the validity of many theories and

More information

Technical English for Electrical Engineering. F.Bardak Manisa Celal Bayar University Fall 2015

Technical English for Electrical Engineering. F.Bardak Manisa Celal Bayar University Fall 2015 Technical English for Electrical Engineering F.Bardak Manisa Celal Bayar University Fall 2015 English to Turkish Translation from Fundamental Electrical Engineering Textbooks From Principles and Application

More information

PHYS 3313 Section 001. Lecture #3

PHYS 3313 Section 001. Lecture #3 PHYS 3313 Section 001 Classical Physics Lecture #3 Concept of Waves and Particles Conservation Laws and Fundamental Forces Atomic Theory of Matter Unsolved Questions of 1895 and the New Horizon 1 Reminder:

More information

PowerPoint lecture notes for Thornton/Rex s Modern Physics, 4e

PowerPoint lecture notes for Thornton/Rex s Modern Physics, 4e PowerPoint lecture notes for Thornton/Rex s Modern Physics, 4e Prepared by: Anthony Pitucco, Ph.D. Pima Community College Dept of Physics, Chair Tucson, Arizona CHAPTER 1 The Birth of Modern Physics 1.1

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves). Sometimes it behaves like billiard balls (particles).

More information

The Nature of Light. Chapter Five

The Nature of Light. Chapter Five The Nature of Light Chapter Five Guiding Questions 1. How fast does light travel? How can this speed be measured? 2. Why do we think light is a wave? What kind of wave is it? 3. How is the light from an

More information

A Brief History of Quantum Mechanics

A Brief History of Quantum Mechanics A Brief History of Quantum Mechanics R. J. Renka Department of Computer Science & Engineering University of North Texas 01/31/2018 Wave and particle theories of light In 1630 René Descartes described light

More information

General Physics I. Lecture 16: The Principles of the Theory of Relativity. Prof. WAN, Xin 万歆.

General Physics I. Lecture 16: The Principles of the Theory of Relativity. Prof. WAN, Xin 万歆. General Physics I Lecture 16: The Principles of the Theory of Relativity Prof. WAN, Xin 万歆 xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ The Train of Reasoning You have been in Afghanistan, I perceive.

More information

Is Dark Matter The Ether? Christiaan Huygens (1678) Treatise on Light

Is Dark Matter The Ether? Christiaan Huygens (1678) Treatise on Light Is Dark Matter The Ether? Christiaan Huygens (1678) Treatise on Light Huygens developed equations that predict diffraction patterns based on the following assumptions: A medium for light transfer is present

More information

The Duality of Light. Electromagnetic Radiation. Light as a Wave

The Duality of Light. Electromagnetic Radiation. Light as a Wave In this unit, you will be introduced to the dual nature of light, the quantum theory and Bohr s planetary atomic model. The planetary model was an improvement on the nuclear model and attempted to answer

More information

The Nature of Light Interaction of Light and Matter

The Nature of Light Interaction of Light and Matter The Nature of Light Interaction of Light and Matter Dariusz Stramski Scripps Institution of Oceanography University of California San Diego Email: dstramski@ucsd.edu IOCCG Summer Lecture Series 25 June

More information

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67

More information

Light. November 101 Lect 11 1

Light. November 101 Lect 11 1 Light What is light? To start, what are the observed properties of light? Describe the intrinsic properties of light light by itself. Later, what are the interactions of light? What happens when light

More information

High School Curriculum Standards: Physics

High School Curriculum Standards: Physics High School Curriculum Standards: Physics Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical

More information

Electromagnetic Theory PHYS 401/402

Electromagnetic Theory PHYS 401/402 Electromagnetic Theory PHYS 401/402 Fall 2017 Lalith Perera, lpperera@olemiss.edu Office: Kennon 1 Office hours: M,Tu Th 3:00-4:00 PM Web page: http://www.phy.olemiss.edu/~perera/em 1 Electromagnetic Theory

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

Light.notebook May 03, 2016

Light.notebook May 03, 2016 Unit 4 Light LIGHT.1 Describe the ray model of light. 16.1 LIGHT.2 Predict the effect of distance on light s illuminance. 16.1 LIGHT.3 Explain polarization and the Doppler effect. 16.2 LIGHT.4 Describe

More information

Light and Geometric Optics

Light and Geometric Optics By the end of this week I will be able to... label a diagram of a wave Solve word problems using the wave equation identify the types of radiation on the EM spectrum explain how light behaves like a wave

More information

Sinfonia. Professor Hong Guo 1

Sinfonia. Professor Hong Guo  1 Sinfonia Professor Hong Guo (hongguo@pku.edu.cn) IQE@EE.EECS.PKU CREAM@IQE.EE.EECS.PKU 1 CREAM@IQE.EE.EECS.PKU 2 CREAM@IQE.EE.EECS.PKU 3 CREAM@IQE.EE.EECS.PKU 4 CREAM@IQE.EE.EECS.PKU 5 CREAM@IQE.EE.EECS.PKU

More information

Heinrich Hertz, a German physicist, achieved the first experimental demonstration of EM waves in 1887.

Heinrich Hertz, a German physicist, achieved the first experimental demonstration of EM waves in 1887. 9.4.2-1(i) Hertz s first radio wave transmission demonstration Maxwell In 1865 James Clerk Maxwell predicted the existence of electromagnetic waves. He said that an accelerating charge would produce a

More information

Electromagnetism and the Æether

Electromagnetism and the Æether Electromagnetism and the Æether SC/NATS 1730, XXV Electromagnetism & the Aether 1 Light What is it? According to Newton, Light is a stream of particles (i.e., hard bodies), just as matter was composed

More information

Topics Covered in Chapter. Light and Other Electromagnetic Radiation. A Subatomic Interlude II. A Subatomic Interlude. A Subatomic Interlude III

Topics Covered in Chapter. Light and Other Electromagnetic Radiation. A Subatomic Interlude II. A Subatomic Interlude. A Subatomic Interlude III Light and Other Electromagnetic Radiation Topics Covered in Chapter 1.Structure of Atoms 2.Origins of Electromagnetic Radiation 3.Objects with Different Temperature and their Electromagnetic Radiation

More information

Light and Other Electromagnetic Radiation

Light and Other Electromagnetic Radiation Light and Other Electromagnetic Radiation 1 Topics Covered in Chapter 1.Structure of Atoms 2.Origins of Electromagnetic Radiation 3.Objects with Different Temperature and their Electromagnetic Radiation

More information

Light and Matter(LC)

Light and Matter(LC) Light and Matter(LC) Every astronomy book that I ve seen has at least one chapter dedicated to the physics of light. Why are astronomers so interested in light? Everything* that we know about Astronomical

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Nature of Light. What is light? Sources of light. an electromagnetic radiation capable of stimulating the retina of the eye.

Nature of Light. What is light? Sources of light. an electromagnetic radiation capable of stimulating the retina of the eye. Nature of Light What is light? an electromagnetic radiation capable of stimulating the retina of the eye. electrons Nucleus Electron gains energy When it moves to a higher level Photon bundle (quantum)

More information

The Theory of Electromagnetism

The Theory of Electromagnetism Notes: Light The Theory of Electromagnetism James Clerk Maxwell (1831-1879) Scottish physicist. Found that electricity and magnetism were interrelated. Moving electric charges created magnetism, changing

More information

Electric Current (Cable Telegraphy and Wireless Telegraphy)

Electric Current (Cable Telegraphy and Wireless Telegraphy) Electric Current (Cable Telegraphy and Wireless Telegraphy) Frederick David Tombe, Northern Ireland, United Kingdom, sirius184@hotmail.com 7th April 2012 Abstract. Poynting s theorem applies to wireless

More information

APPLIED OPTICS. Lecture-1: EVOLUTION of our UNDERSTANDING of LIGHT. Is it a stream of particles?

APPLIED OPTICS. Lecture-1: EVOLUTION of our UNDERSTANDING of LIGHT. Is it a stream of particles? A. La Rosa Lecture Notes APPLIED OPTICS Lecture-1: EVOLUTION of our UNDERSTANDING of LIGHT What is light? Is it a wave? Is it a stream of particles? A. Light as a particle NEWTON (164 177) was the most

More information

Physics The study of the energy, matter, and forces in the Universe Why do stars move in the sky? How can heat be changed into electricity? What is the difference between an atom of one substance and an

More information

Optics Definitions. The apparent movement of one object relative to another due to the motion of the observer is called parallax.

Optics Definitions. The apparent movement of one object relative to another due to the motion of the observer is called parallax. Optics Definitions Reflection is the bouncing of light off an object Laws of Reflection of Light: 1. The incident ray, the normal at the point of incidence and the reflected ray all lie in the same plane.

More information

Phys 2310 Wed. Sept. 20, 2017 Today s Topics

Phys 2310 Wed. Sept. 20, 2017 Today s Topics Phys 2310 Wed. Sept. 20, 2017 Today s Topics - Brief History of Light & Optics Electromagnetic Spectrum Electromagnetic Spectrum Visible, infrared & ultraviolet Wave/Particle Duality (waves vs. photons)

More information

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep

EP118 Optics. Content TOPIC 1 LIGHT. Department of Engineering Physics University of Gaziantep EP11 Optics TOPIC 1 LIGHT Department of Engineering Physics University of Gaziantep July 2011 Sayfa 1 Content 1. History of Light 2. Wave Nature of Light 3. Quantum Theory of Light 4. Elecromagnetic Wave

More information

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1 Early Atomic Theories and the Origins of Quantum Theory Chapter 3.1 What is Matter Made of? People have wondered about the answer to this question for thousands of years Philosophers Matter is composed

More information

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization Satellite Remote Sensing SIO 135/SIO 236 Electromagnetic Radiation and Polarization 1 Electromagnetic Radiation The first requirement for remote sensing is to have an energy source to illuminate the target.

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 3.1 to 3.3 Light: Wave? Particle? Both! Modern models of the atom were derived by studying the

More information

CHAPTER 3 The Experimental Basis of Quantum Theory

CHAPTER 3 The Experimental Basis of Quantum Theory CHAPTER 3 The Experimental Basis of Quantum Theory 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Discovery of the X Ray and the Electron Determination of Electron Charge Line Spectra Quantization As far as I can

More information

3.3 The Wave Nature of Light

3.3 The Wave Nature of Light 3.3 The Wave Nature of Light Much of the history of physics is concerned with the evolution of our ideas about the nature of light. The speed of light was first measured with some accuracy in 1675, by

More information

Einstein for Everyone Lecture 2: Background to Special Relativity

Einstein for Everyone Lecture 2: Background to Special Relativity Einstein for Everyone Lecture 2: Background to Special Relativity Dr. Erik Curiel Munich Center For Mathematical Philosophy Ludwig-Maximilians-Universität 1 Special Relativity 2 Principle of Relativity

More information

Toward Completing Classical Physics

Toward Completing Classical Physics Toward Completing Classical Physics Intro to waves Intro to electro-magnetism HW3 due on Thursday, Feb 8 th. Quiz next Thursday, Feb 15 th on relativity: short answers. 20 mins. Closed book. Materials

More information

CRHS Academic Chemistry Unit 4 Electrons. Notes. Key Dates

CRHS Academic Chemistry Unit 4 Electrons. Notes. Key Dates Name Period CRHS Academic Chemistry Unit 4 Electrons Notes Key Dates Quiz Date Exam Date Lab Dates Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

Unit 2 Particles and Waves

Unit 2 Particles and Waves North Berwick High School Department of Physics Higher Physics Unit 2 Particles and Waves Section 4 Wave Particle Duality 1 Section 4 Note Making Wave Particle Duality Make a dictionary with the meanings

More information

Introduction to Electromagnetic Theory

Introduction to Electromagnetic Theory Introduction to Electromagnetic Theory Lecture topics Laws of magnetism and electricity Meaning of Maxwell s equations Solution of Maxwell s equations Electromagnetic radiation: wave model James Clerk

More information

CHEMISTRY. Chapter 6 Electronic Structure of Atoms

CHEMISTRY. Chapter 6 Electronic Structure of Atoms CHEMISTRY The Central Science 8 th Edition Chapter 6 Electronic Structure of Atoms Kozet YAPSAKLI Who are these men? Ancient Philosophy Who: Aristotle, Democritus When: More than 2000 years ago Where:

More information

I. Light & Spectra. I. Light and Spectra. 1. The Speed of Light. A. The Nature of LIght. b). Olaf Roemer s Experiment. a) Galileo couldn t meaure it

I. Light & Spectra. I. Light and Spectra. 1. The Speed of Light. A. The Nature of LIght. b). Olaf Roemer s Experiment. a) Galileo couldn t meaure it Part II: Astrophysics 1 I. Light and Spectra 2 Dr. Bill Pezzaglia A. Nature of Light I. Light & Spectra B. Black Body Radiation C. Atomic Physics Updated: 2011Feb24 A. The Nature of LIght 3 1. The Speed

More information

Electromagnetic Theory, Photoelectric effect and Quantum Physics

Electromagnetic Theory, Photoelectric effect and Quantum Physics Electromagnetic Theory, Photoelectric effect and Quantum Physics Physicists John L. Emmett (left) and John H. Nuckolls were the key Lawrence Livermore National Laboratory pioneers in laser and fusion science

More information

Wave Particle Duality: From Newton to Einstein. Alan E. Shapiro

Wave Particle Duality: From Newton to Einstein. Alan E. Shapiro Wave Particle Duality: From Newton to Einstein Alan E. Shapiro Huygens. Light Waves Christiaan Huygens, c. 1671 The Little Balls of the Aether Huygens Principle Refraction of a Plane Wave Double Refraction

More information

Wave - Particle Duality of Light

Wave - Particle Duality of Light Properties of Light Objectives Explain wave-particle duality State the speed of light Describe electromagnetic waves and the electromagnetic spectrum Explain how light interacts with transparent and opaque

More information

Lightning is an electrostatic discharge that travels between two charged regions.

Lightning is an electrostatic discharge that travels between two charged regions. Electromagnetism From Wikipedia, the free encyclopedia Electromagnetism is a branch of physics which involves the study of the electromagnetic force, a type of physical interaction that occurs between

More information

AQA Physics A-level Section 12: Turning Points in Physics

AQA Physics A-level Section 12: Turning Points in Physics AQA Physics A-level Section 12: Turning Points in Physics Key Points Discovery of electrons A discharge tube contains a low-pressure gas with a high potential difference across it. Electrons are pulled

More information

Part I. Quantum Mechanics. 2. Is light a Wave or Particle. 3a. Electromagnetic Theory 1831 Michael Faraday proposes Electric and Magnetic Fields

Part I. Quantum Mechanics. 2. Is light a Wave or Particle. 3a. Electromagnetic Theory 1831 Michael Faraday proposes Electric and Magnetic Fields Quantized Radiation (Particle Theory of Light) Dr. Bill Pezzaglia Part I 1 Quantum Mechanics A. Classical vs Quantum Theory B. Black Body Radiation C. Photoelectric Effect 2 Updated: 2010Apr19 D. Atomic

More information

Astronomy The Nature of Light

Astronomy The Nature of Light Astronomy The Nature of Light A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Measuring the speed of light Light is an electromagnetic wave The relationship between Light and temperature

More information

Classical electromagnetism - Wikipedia, the free encyclopedia

Classical electromagnetism - Wikipedia, the free encyclopedia Page 1 of 6 Classical electromagnetism From Wikipedia, the free encyclopedia (Redirected from Classical electrodynamics) Classical electromagnetism (or classical electrodynamics) is a branch of theoretical

More information

Physics 205 Modern Physics for Engineers

Physics 205 Modern Physics for Engineers Physics 205 Modern Physics for Engineers Instructor Professor Duncan Carlsmith Department of Physics duncan@hep.wisc.edu 262-2485 4285 Chamberlin Physics 205 Course Information http:// www.physics.wisc.e

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation Producing EMR All EMR is produced by accelerating charges Consists of changing electric and magnetic fields Speed of all EMR in vacuum is 3.00 x 10 8 m/s EMR is made up electric

More information

Electromagnetic Waves

Electromagnetic Waves 4/15/12 Chapter 26: Properties of Light Field Induction Ok, so a changing magnetic field causes a current (Faraday s law) Why do we have currents in the first place? electric fields of the charges Changing

More information

The Michelson Morley experiment explained by means of a Higgs Field that rotates around the Solar System

The Michelson Morley experiment explained by means of a Higgs Field that rotates around the Solar System The Michelson Morley experiment explained by means of a Higgs Field that rotates around the Solar System Bart Leplae - bartleplae@hotmail.com 18-Aug-2013 This paper touches upon various topics covered

More information

Modern Physics (Lec. 1)

Modern Physics (Lec. 1) Modern Physics (Lec. 1) Physics Fundamental Science Concerned with the fundamental principles of the Universe Foundation of other physical sciences Has simplicity of fundamental concepts Divided into five

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves As the chart shows, the electromagnetic spectrum covers an extremely wide range of wavelengths and frequencies. Though the names indicate that these waves have a number of sources,

More information

Henok Tadesse, Electrical engineer, BSc., Debrezeit, Ethiopia Mobile: or

Henok Tadesse, Electrical engineer, BSc., Debrezeit, Ethiopia Mobile: or Connection Between Planck s Relation and Non-Existence of Medium for Light Propagation and Predetermination of Photon and Electron Interference Patterns in Double-Slit Experiments Henok Tadesse, Electrical

More information

THEORY ON THE MOTION RELATED TO THE EXPANDING SPACE

THEORY ON THE MOTION RELATED TO THE EXPANDING SPACE THEORY ON THE MOTION RELATED TO THE EXPANDING SPACE Dino Bruniera Treviso (Italy) e-mail: dino.bruniera@gmail.com ABSTRACT With this article I propose to demonstrate, through the CMBR, a theory for which

More information

History of Science School Program

History of Science School Program Library, Art Collections, and Botanical Gardens History of Science School Program Week 3 Three Laws of Motion Theory of Gravity Theory of light and color Calculus Solving the problem of comets Prediction

More information

38 The Atom and the Quantum. Material particles and light have both wave properties and particle properties.

38 The Atom and the Quantum. Material particles and light have both wave properties and particle properties. Material particles and light have both wave properties and particle properties. 38 The Atom and the Quantum Atomic structure is revealed by analyzing light. Light has a dual nature, which in turn radically

More information

Material particles and light have both wave properties and particle properties Models

Material particles and light have both wave properties and particle properties Models Material particles and light have both wave properties and particle properties. Atomic structure is revealed by analyzing light. Light has a dual nature, which in turn radically alters our understanding

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles Newton Used this particle model to explain reflection and refraction Huygens 1678 Explained

More information

Light as electromagnetic wave and as particle

Light as electromagnetic wave and as particle Light as electromagnetic wave and as particle Help to understand and learn exam question 5. (How the wave-particle duality can be applied to light?) and to measurements Microscopy II., Light emission and

More information

Historical Background of Quantum Mechanics

Historical Background of Quantum Mechanics Historical Background of Quantum Mechanics The Nature of Light The Structure of Matter Dr. Sabry El-Taher 1 The Nature of Light Dr. Sabry El-Taher 2 In 1801 Thomas Young: gave experimental evidence for

More information

The Structure of the Atom Review

The Structure of the Atom Review The Structure of the Atom Review Atoms are composed of PROTONS + positively charged mass = 1.6726 x 10 27 kg NEUTRONS neutral mass = 1.6750 x 10 27 kg ELECTRONS negatively charged mass = 9.1096 x 10 31

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

Einstein s Space and Time

Einstein s Space and Time Einstein s Space and Time Re-examining the Obvious Familiar things happen, and mankind does not bother about them. It requires a very unusual mind to make an analysis of the obvious." Alfred North Whitehead

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives correlated to the College Board AP Physics 2 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring Understanding 1.A:

More information

Chapter 26. Properties of Light

Chapter 26. Properties of Light Chapter 26 Properties of Light James Clerk Maxwell discovered that light is composed of a. electromagnetic waves. b. ultrasonic waves. c. infrasonic waves. d. electron vibrations. James Clerk Maxwell discovered

More information

Wave Motion and Electromagnetic Radiation. Introduction Jan. 18, Jie Zhang

Wave Motion and Electromagnetic Radiation. Introduction Jan. 18, Jie Zhang Wave Motion and Electromagnetic Radiation Introduction Jan. 18, 2010 Jie Zhang PHYS 306 Spring, 2010 Introduction This class is about the physics of LIGHT. Textbook: Optics by Ghatak (2010) Content What

More information

Light and Matter. Slide 1 / 62. Slide 2 / 62. Slide 3 / 62. Light and Sound. New Jersey Center for Teaching and Learning

Light and Matter. Slide 1 / 62. Slide 2 / 62. Slide 3 / 62. Light and Sound. New Jersey Center for Teaching and Learning New Jersey Center for Teaching and Learning Slide 1 / 62 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect Lecture 5: Greenhouse Effect S/4 * (1-A) T A 4 T S 4 T A 4 Wien s Law Shortwave and Longwave Radiation Selected Absorption Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation

More information

Michelson and Morley expected the wrong result from their experiment Cyrus Master-Khodabakhsh

Michelson and Morley expected the wrong result from their experiment Cyrus Master-Khodabakhsh Michelson and Morley expected the wrong result from their experiment Cyrus Master-Khodabakhsh School of Computing, Engineering and Mathematics Western Sydney University cyrs.master@westernsydney.edu.au;

More information

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used?

Name Class Date. What two models do scientists use to describe light? What is the electromagnetic spectrum? How can electromagnetic waves be used? CHAPTER 16 12 SECTION Sound and Light The Nature of Light KEY IDEAS As you read this section, keep these questions in mind: What two models do scientists use to describe light? What is the electromagnetic

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Light Quantum Hypothesis

Light Quantum Hypothesis 50 My God, He Plays Dice! Light Quantum Hypothesis Light Quantum Hypothesis 51 Light Quantum Hypothesis In his miracle year of 1905, Einstein wrote four extraordinary papers, one of which won him the 1921

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics FI 3103 Quantum Physics Alexander A. Iskandar Physics of Magnetism and Photonics Research Group Institut Teknologi Bandung General Information Lecture schedule 17 18 9136 51 5 91 Tutorial Teaching Assistant

More information

Albert Einstein THE COLLECTED PAPERS OF. The Principal Ideas of the Theory of Relativity REPRINTED FROM: VOLUME 7

Albert Einstein THE COLLECTED PAPERS OF. The Principal Ideas of the Theory of Relativity REPRINTED FROM: VOLUME 7 REPRINTED FROM: THE COLLECTED PAPERS OF Albert Einstein VOLUME 7 THE BERLIN YEARS: WRITINGS, 1918 1921 Michel Janssen, Robert Schulmann, József Illy, Christoph Lehner, and Diana Kormos Buchwald EDITORS

More information

The nature of light. Speed of light. Nature of light. Light - a wave. EM radiation. Beyond the visible. The EM spectrum.

The nature of light. Speed of light. Nature of light. Light - a wave. EM radiation. Beyond the visible. The EM spectrum. The nature of light (13/10/2009) PHAS 1511 1 / 28 The speed of light Light travels very fast. Early scientists realised during thunderstorms that it travels much much faster than sound. Galileo made an

More information

PREAMBLE (Revised) Why Einstein was Mistaken About the Velocity of Light.

PREAMBLE (Revised) Why Einstein was Mistaken About the Velocity of Light. PREAMBLE (Revised) Why Einstein was Mistaken About the Velocity of Light. Einstein s 1905 Special Theory of Relativity is primarily about the velocity of a ray of light after it is emitted from a material

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

MOCK cet paper II 2012 (PHYSICS)

MOCK cet paper II 2012 (PHYSICS) MOCK cet paper II 2012 (PHYSICS) 1. The equations of two sound waves are given by Y 1 = 3 sin 100πt and Y 2 = 4 Sin 150 πt. The ratio of the intensities of sound produced in the medium is 1)1:2 2) 1:4

More information

Chapter 4. Development of a New Model

Chapter 4. Development of a New Model Chapter 4 Development of a New Model Electrons behave like particles in some experiments, and like waves in others. The electron's 'wave/particle duality' has no real analogy in the everyday world. The

More information

Note on Posted Slides. History of Light. History of Light

Note on Posted Slides. History of Light. History of Light Note on Posted Slides These are the slides that I intended to show in class on Wed. Mar. 27, 2013. They contain important ideas and questions from your reading. Due to time constraints, I was probably

More information

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1

Relativity. Physics April 2002 Lecture 8. Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1 Relativity Physics 102 11 April 2002 Lecture 8 Einstein at 112 Mercer St. 11 Apr 02 Physics 102 Lecture 8 1 Physics around 1900 Newtonian Mechanics Kinetic theory and thermodynamics Maxwell s equations

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information