APPLIED OPTICS. Lecture-1: EVOLUTION of our UNDERSTANDING of LIGHT. Is it a stream of particles?

Size: px
Start display at page:

Download "APPLIED OPTICS. Lecture-1: EVOLUTION of our UNDERSTANDING of LIGHT. Is it a stream of particles?"

Transcription

1 A. La Rosa Lecture Notes APPLIED OPTICS Lecture-1: EVOLUTION of our UNDERSTANDING of LIGHT What is light? Is it a wave? Is it a stream of particles? A. Light as a particle NEWTON ( ) was the most prominent advocate of this theory Ray of light conceptualized as a stream of very small particles emitted from a source of light and traveling in straight lines. This view was based on the fact that light can cast sharp shadows. But cannot explain well what is now known as Newton s rings B. Light as a WAVE Fig.1 Fig. Newton s rings. 1 CHRISTIAN HUYGENS ( ) contemporary of Newton, championed this view When two beams of light intersect they emerge unmodified (different than the case when particles collide.) 1801 YOUNG s Double-Slit experiment The complex shadows formed by the two slits (in the form of seem to demand an interpretation of light as a wave. Fig.3 Two-slit experiment 1 We know that the contemporary interpretation of light is that it is constituted by photon particles. Can you envision a way to interpret these Newton s rings under this photon particles view?

2 181 FRESNEL Light is a transverse wave Light is polarized Explained the phenomenon of double refraction in calcite. Fig. 4 Independent of this progress in optics, the study of electricity and magnetism was also flourishing JAMES C. MAXWELL ( ) is a genius who condensed the phenomena of electromagnetism into a set of four equations 1 Predicts EM-waves travel at speed = It turns out 1 km 300,000!! S 0 0 Light must be an electromagnetic wave! HEINRICH HERTZ confirms experimentally the existence of electromagnetic waves 1887 A. MICHELSON and E. MORLEY if the speed of light is constant in the aether and the earth presumably moves in relation to the aether (at ~67,000 mi/h) then the speed of light with respect to the earth should be affected by the planet s motion. BUT no motion of the earth with respect to the aether was detected. A. EINSTEIN, special theory of relativity Rejected the aether hypothesis Light always propagates with a definite velocity c (in empty space) which is independent of the motion of the light source Light was then envisaged as a self-sustained electromagnetic wave The 19 th century: served to place the wave theory of light on a firm foundation.

3 C. Interpretation of Light as a WAVE is inconsistent with some experiments However, by the end of 19 th century - beginning of 0 th century: It became evident that the wave theory of light could not explain certain experiments (the blackbody radiation, the photoelectric effect for example.) Indeed, the wave theory of light began to crumble. The ultraviolet catastrophe Predicting the spectral density I() of light inside a cavity at a temperature T. Reflecting walls I() Incident radiation x o Scattered (re-emitted) light q e, m e Atom (modeled as an oscillator) x o is the electron s amplitude of oscillations. m e, q e : electron s mass and charge. : angular freq of oscillations (electron and light). Fig.5 Light intensity existent inside the cavity is absorbed by the atom and re-emitted in all directions. At equilibrium, the rate at which light energy is absorbed and the rate at which the atom re-emit the light must be equal, which requires a particular value of the spectral light intensity I() Classical prediction 6 c Number of modes of frequency : Average energy of each mode : kt ~ f Spectral density ( ) f kt (1) 6 c I However, the experimental results were quite different in the high frequency regime. Only at low frequencies there was an agreement between the classical prediction and the experimental results.

4 I() Classical prediction Experimental results Frequency Fig. The serious discrepancy between the experimental results and the theoretical prediction of the spectral light intensity at high frequencies is called the ultraviolet catastrophe. The photoelectric effect Fig.3 Einstein proposed an explanation based on quantized electromagnetic fields (1905), corroborated by Milikan in The Compton effect ' Scattered light Compton, 193 X-rays incident on a graphite target. Incident x-ray radiation electron Fig. 4 Scattered light contains frequencies different than the incident one.

5 D. Planck s Hypothesis of quantized energy In dealing with the ultraviolet catastrophe problem, it turns out, the difficulty brought by classical physics was that, in general, it assigned an average energy of the oscillator equal to kt, regardless of the natural frequency ( o ) of the oscillator. Planck (1900) realized that he could obtain an agreement with the experimental results if, rather than treating the energy of an oscillator (of natural frequency ) as a continuous variable, the energy states of the oscillator have only discrete values: 0,,, 3, the energy steps would be different for each frequency =( where the specific dependence of in terms of had to be determined.(notice we have dropped the use of the sun-index zero when indicating the natural frequency). Incident radiatio q Planck postulated nergy thao the oscillator (of natural fre ) is quantized Fig.5 An atom (of natural frequency w) takes up energy from the incident radiation in the form of lumps having energy values,, 3, Planck s calculation of average energy of the oscillator: W Planckl ( ω) E n0 E n0 n e e E E n n / k T B B / k T where E n = n(); n= 1, 3,

6 W Planckl ( ω) e 1 kt 1 average energy of an oscillator (atom) of natural frequency. (Notice, it is different than the classical prediction kt) Planck s prediction 6 c Number of modes of frequency : Average energy of each mode : W ~ f Planckl ( ω) e 1 kt 1 ssical diction Spectral density ( ) f W Planck () 6 c I I() Experimental results Particle s and wave s energy quantization Historically. Planck initially (1900) postulated only that the energy of the oscillating particle (electrons in the walls of the blackbody) is quantized. The electromagnetic energy, once radiated, would spread as a continuous. It was not until later that Plank accepted that the oscillating electromagnetic waves were themselves quantized. The latter hypothesis was introduced by Einstein

7 (1905) in the context of explaining the photoelectric effect, which was corroborated later by Millikan (1914). E. Quantum Mechanics Schrodinger Equation i t V ( x,t) m x This equation marked a historic moment constituting the birth of the quantum mechanical description of matter. The great historical moment marking the birth of the quantum mechanical description of matter occurred when Schrodinger first wrote down his equation in 196. For many years the internal atomic structure of the matter had been a great mystery. No one had been able to understand what held matter together, why there was chemical binding, and especially how it could be that atoms could be stable. (Although Bohr had been able to give a description of the internal motion of an electron in a hydrogen atom which seemed to explain the observed spectrum of light emitted by this atom, the reason that electrons moved this way remained a mystery.) Schrodinger s discovery of the proper equations of motion for electrons on an atomic scale provided a theory from which atomic phenomena could be calculated quantitatively, accurately and in detail. Feynman s Lectures, Vol III, page F. Quantum Electrodynamics (QED) Reference: The following description is taken from Feynman, QED, The strange theory of light and matter, Princeton University Press (1985). Quantum mechanics was a tremendous success (could explain chemistry). However, the description of light-matter interaction still faced difficulties. [Maxwell theory of electricity and magnetism had to be changed to be in accord with the new properties of quantum mechanics. The theory of light-matter interaction, called quantum electrodynamics was finally developed in 199]. But the theory was troubled.

8 Right after Schrodinger, Dirac developed a relativistic theory of the electron that did not take into account the effects of the electron s interaction with light. But it was expected to provide a good starting point. Quantum electrodynamics was straightened out by Julian Schwinger, Sin-Itiro Tomonaga and Feynman in This is the theory that Feynman describes in his QED, The strange theory of light and matter, Princeton University Press (1985). Such theory has been tested over a wide range on conditions. Aside from gravitation and nuclear physics, QED can explain every phenomenon accurately. QED is also the prototype for new theories that attempt to explain things going on inside the nuclei of atoms. It turns out, quarks, gluons,, etc. all behave in a certain style, the quantum style. F1. QED analysis of light phenomena Photons: Particles of Light QED considers light to be made of particles (as Newton originally thought), but the price of this great advancement of science is a retreat by physics to the position of being able to calculate only the probabilities that a photon will hit a detector. Event: Light travels from the source S, reflects from the surface at X, and arrives to the detector at D We assign an amplitude probability (a complex number) that such an event will occur. n=1 D S 1 m x X Fig. Light reflected from a mirror QED RULE-1 (Assignment of amplitude probability) How to do such an amplitude probability assignment? i) Pictorial view We assign to the amplitude probability an arrow. To obtain the arrow we do the following: Let s imagine that we have a stopwatch that can time a photon as it

9 moves. It has a handle that moves rapidly. When the photon leaves the source, we start the watch. As long as the photon moves, the handle turns. When the photon arrives at the detector we stop the watch. The handle ends up pointing in a certain direction. We then draw a corresponding arrow of magnitude 1 (blue arrow in the figure). ii) More formal view Amplitude probability (photon starts at S and arrives at D via the path S X P) A(SXP) = e i tx) where is the angular frequency of the light and t(x) is the time the light takes to travel via SXP. (1) That is, a phasor e i tx) probability A. (a complex number) is assigned to the amplitude QED RULE- (For events that have the same initial and final states) Since the photon has many optional paths available to go P from X, the total amplitude probability is given by, Total amplitude probability A (photon starts at S and arrives at P via any path joining S and P) all X A(SXP) = X e i tx) () where is the angular frequency of the light and t(x) is the time light takes to travel from S to P passing through X (the latter located at the interface). QED RULE-3 The probability for an event to occur is given by the square of the final amplitude: P = A (3) Consider the reflection of light coming from a surce S and reaching a detector via reflection from a mirror. We want to calculate the chance that the detector will make (4) a click after a photon has been emitted by the source

10 Classical view: The mirror will reflect light where the angle of incidence is equal to the angle of reflection Classical way: In the graph above, it would appear that the ends of the mirror contribute to nothing to the reflection phenomena. QED view: Every possible path contributes to the amplitude probability. Should the reflections path involving the center of the mirror have more weight than the once reflecting from the edges? Answer: No. All the path have equal chance. QED view: QED view assigns an equal amplitude probability to each possible path

11 For the analysis of a mirror, an infinite number of path would have to be considered. To simplify the problem, let s divide the mirror into a number of smaller discrete strips. S P Each amplitude will be represented by an arrow of a standard (arbitrary) size While the size of the arrow will be essentially the same, its orientation will be different for the different reflection point selected. This is because it takes a different time for as photon to go through a differente path that have different length.

12 C D A B E F G H I L J M K Top: Figure shows each possible path the photon could take to go from the source to that point in the mirror and then to the detector. Middle: A plot of the corresponding time for each possible path. Below the graph is the direction of each amplitude probability (arrow). Bottom: The result of adding all the arrows. Notice the major contribution to the total arrow comes from arrows E through I, whose directions are nearly the same because the timing of their path is nearly the same. This also happens to be where the total time is least. It is therefore approximately right to say that light goes where the time is least.

13 Why do the edges appear to make no contribution? We zoom in to see in more detail the contribution to the total amplitude probability from the edges of the mirror. Notice when the arrows are added, they go in a circle, hence adding up nearly to nothing. The above gives us a clue to engineer a way to get contribution from th e edges. As we move from left to right, we notice the arrows have a bias orientation to the right then to the left, and so on. If only the section with arrows biased to the right are kept (etching away the sections with arrows to the left), then a substantial amount of light will be reflected. Such a mirror with preferentially etched regions is called a diffraction grating.

14

15

I N T R O D U C T I O N T O

I N T R O D U C T I O N T O A. La Rosa Lecture Notes SU-hysics H 411/511 ECE 598 I N T R O D U C T I O N T O Q U A N T U M M E C H A N I C S How does light "really" decides which path to follow? An elementary Quantum Dynamics point

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics FI 3103 Quantum Physics Alexander A. Iskandar Physics of Magnetism and Photonics Research Group Institut Teknologi Bandung General Information Lecture schedule 17 18 9136 51 5 91 Tutorial Teaching Assistant

More information

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS

CHAPTER 2: POSTULATES OF QUANTUM MECHANICS CHAPTER 2: POSTULATES OF QUANTUM MECHANICS Basics of Quantum Mechanics - Why Quantum Physics? - Classical mechanics (Newton's mechanics) and Maxwell's equations (electromagnetics theory) can explain MACROSCOPIC

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

Modern Physics (Lec. 1)

Modern Physics (Lec. 1) Modern Physics (Lec. 1) Physics Fundamental Science Concerned with the fundamental principles of the Universe Foundation of other physical sciences Has simplicity of fundamental concepts Divided into five

More information

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms.

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms. Lecture 4 TITLE: Quantization of radiation and matter: Wave-Particle duality Objectives In this lecture, we will discuss the development of quantization of matter and light. We will understand the need

More information

Announcements. A test of General Relativity. Gravitational Radiation. Other Consequences of GR

Announcements. A test of General Relativity. Gravitational Radiation. Other Consequences of GR Announcements HW1: Ch.2-70, 75, 76, 87, 92, 97, 99, 104, 111 *** Lab start-up meeting with TA This Week *** Lab manual is posted on the course web *** Course Web Page *** http://highenergy.phys.ttu.edu/~slee/2402/

More information

Chapter. 3 Wave & Particles I

Chapter. 3 Wave & Particles I Announcement Course webpage http://www.phys.ttu.edu/~slee/3301/ Textbook PHYS-3301 Lecture 7 HW2 (due 9/21) Chapter 2 63, 65, 70, 75, 76, 87, 92, 97 Sep. 19, 2017 Outline: Chapter. 3 Wave & Particles I

More information

Announcements. Fast => v~c c= the velocity of light

Announcements. Fast => v~c c= the velocity of light Announcements 2402 Lab will be started this week Lab manual is available on the course web page HW: Chapter.2 70, 75, 76, 87, 92, 97*, 99, 104, 111 1 st Quiz: 9/18 (Ch.2) Nonclassical Physics *** Course

More information

Quantum Mysteries. Scott N. Walck. September 2, 2018

Quantum Mysteries. Scott N. Walck. September 2, 2018 Quantum Mysteries Scott N. Walck September 2, 2018 Key events in the development of Quantum Theory 1900 Planck proposes quanta of light 1905 Einstein explains photoelectric effect 1913 Bohr suggests special

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 27 Modern Physics Quantum Physics Blackbody radiation Plank s hypothesis http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 27 1 Quantum Physics 2 Introduction: Need

More information

Chapter. 3 Wave & Particles I

Chapter. 3 Wave & Particles I Announcement Course webpage http://highenergy.phys.ttu.edu/~slee/2402/ Textbook PHYS-2402 Lecture 3 Sep. 15, 2015 Quiz.1 Thursday [Ch.2] Lecture Notes, HW Assignments, Physics Colloquium, etc.. Chapter.

More information

Announcements. Some Examples. Lecture 6 Chapter. 2 Special Relativity. Relativistic Dynamics. Problems. Problems

Announcements. Some Examples. Lecture 6 Chapter. 2 Special Relativity. Relativistic Dynamics. Problems. Problems Announcements HW2: Ch.2-70, 75, 76, 87, 92, 97, 99, 104, 111 HW1 die: now, HW2 due: 2/9 (by class hour) How was your 1 st Lab? -- Any question? Lab manual is posted on the course web *** Course Web Page

More information

Democritus argued that all things in the universe, including light, are composed of indivisible sub components (light being some form of solar atom)

Democritus argued that all things in the universe, including light, are composed of indivisible sub components (light being some form of solar atom) Aristotle was one of the first to publicly hypothesize about the nature of light, proposing that light is a disturbance in the element air (that is, it is a wave like phenomenon) Democritus argued that

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 30 Physics, 4 th Edition James S. Walker Chapter 30 Quantum Physics Units of Chapter 30 Blackbody Radiation and Planck s Hypothesis of Quantized Energy Photons and the Photoelectric

More information

Light Quantum Hypothesis

Light Quantum Hypothesis 50 My God, He Plays Dice! Light Quantum Hypothesis Light Quantum Hypothesis 51 Light Quantum Hypothesis In his miracle year of 1905, Einstein wrote four extraordinary papers, one of which won him the 1921

More information

CHAPTER I Review of Modern Physics. A. Review of Important Experiments

CHAPTER I Review of Modern Physics. A. Review of Important Experiments CHAPTER I Review of Modern Physics A. Review of Important Experiments Quantum Mechanics is analogous to Newtonian Mechanics in that it is basically a system of rules which describe what happens at the

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

Einstein s Theory Relativistic 0 < v < c. No Absolute Time. Quantization, Zero point energy position & momentum obey Heisenberg uncertainity rule

Einstein s Theory Relativistic 0 < v < c. No Absolute Time. Quantization, Zero point energy position & momentum obey Heisenberg uncertainity rule Lecture: March 27, 2019 Classical Mechanics Particle is described by position & velocity Quantum Mechanics Particle is described by wave function Probabilistic description Newton s equation non-relativistic

More information

AQA Physics A-level Section 12: Turning Points in Physics

AQA Physics A-level Section 12: Turning Points in Physics AQA Physics A-level Section 12: Turning Points in Physics Key Points Discovery of electrons A discharge tube contains a low-pressure gas with a high potential difference across it. Electrons are pulled

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

Light was recognised as a wave phenomenon well before its electromagnetic character became known.

Light was recognised as a wave phenomenon well before its electromagnetic character became known. VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT WAVE or PARTICLE??? Light was recognised as a wave phenomenon well before its electromagnetic character became known. The problem of the nature of light is

More information

The Nature of Light. Early Greece to 20 th Century

The Nature of Light. Early Greece to 20 th Century The Nature of Light For centuries there has been debate about whether the properties of light could best be explained using a particle model of light or a wave model. This lesson will focus primarily on

More information

A Brief History of Quantum Mechanics

A Brief History of Quantum Mechanics A Brief History of Quantum Mechanics R. J. Renka Department of Computer Science & Engineering University of North Texas 01/31/2018 Wave and particle theories of light In 1630 René Descartes described light

More information

CHAPTER 3 The Experimental Basis of Quantum

CHAPTER 3 The Experimental Basis of Quantum CHAPTER 3 The Experimental Basis of Quantum 3.1 Discovery of the X Ray and the Electron 3.2 Determination of Electron Charge 3.3 Line Spectra 3.4 Quantization 3.5 Blackbody Radiation 3.6 Photoelectric

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Quantum Mechanics: Blackbody Radiation

Quantum Mechanics: Blackbody Radiation Blackbody Radiation Quantum Mechanics Origin of Quantum Mechanics Raleigh-Jeans law (derivation)-ultraviolet catastrophe, Wien s Distribution Law & Wein s Displacement law, Planck s radiation law (calculation

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Revision Guide for Chapter 7

Revision Guide for Chapter 7 Revision Guide for Chapter 7 Contents Student s Checklist Revision Notes Path of least time... 4 Interference of photons... 5 Quantum behaviour... 5 Photons... 6 Electron diffraction... 7 Probability...

More information

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics Chemistry 4521 Time is flying by: only 15 lectures left!! Six quantum mechanics Four Spectroscopy Third Hour exam Three statistical mechanics Review Final Exam, Wednesday, May 4, 7:30 10 PM Quantum Mechanics

More information

Lecture 4 Introduction to Quantum Mechanical Way of Thinking.

Lecture 4 Introduction to Quantum Mechanical Way of Thinking. Lecture 4 Introduction to Quantum Mechanical Way of Thinking. Today s Program 1. Brief history of quantum mechanics (QM). 2. Wavefunctions in QM (First postulate) 3. Schrodinger s Equation Questions you

More information

UNIT 7 ATOMIC AND NUCLEAR PHYSICS

UNIT 7 ATOMIC AND NUCLEAR PHYSICS 1 UNIT 7 ATOMIC AND NUCLEAR PHYSICS PHYS:1200 LECTURE 33 ATOMIC AND NUCLEAR PHYSICS (1) The physics that we have presented thus far in this course is classified as Classical Physics. Classical physics

More information

Wave Motion and Electromagnetic Radiation. Introduction Jan. 18, Jie Zhang

Wave Motion and Electromagnetic Radiation. Introduction Jan. 18, Jie Zhang Wave Motion and Electromagnetic Radiation Introduction Jan. 18, 2010 Jie Zhang PHYS 306 Spring, 2010 Introduction This class is about the physics of LIGHT. Textbook: Optics by Ghatak (2010) Content What

More information

I N T R O D U C T I O N T O Q U A N T U M M E C H A N I C S

I N T R O D U C T I O N T O Q U A N T U M M E C H A N I C S A. La Rosa Lecture Notes PSU Physics P 4/5 ECE 598 I N T R O D U C T I O N T O Q U A N T U M M E C A N I C S CAPTER OVERVIEW: CONTRASTING CLASSICAL AND QUANTUM MECANICS FORMALISMS. INTRODUCTION.A Objective

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

- HH Photons. Compton effect. Hsiu-Hau Lin (May 8, 2014)

- HH Photons. Compton effect. Hsiu-Hau Lin (May 8, 2014) - HH0130 - Photons Hsiu-Hau Lin hsiuhau@phys.nthu.edu.tw (May 8, 014) In 1905, inspired by Planck s pioneering work on blackbody radiation, Einstein proposed that light exists as discrete quanta, now referred

More information

3.3 The Wave Nature of Light

3.3 The Wave Nature of Light 3.3 The Wave Nature of Light Much of the history of physics is concerned with the evolution of our ideas about the nature of light. The speed of light was first measured with some accuracy in 1675, by

More information

Particles and Waves Particles Waves

Particles and Waves Particles Waves Particles and Waves Particles Discrete and occupy space Exist in only one location at a time Position and velocity can be determined with infinite accuracy Interact by collisions, scattering. Waves Extended,

More information

Alan Mortimer PhD. Ideas of Modern Physics

Alan Mortimer PhD. Ideas of Modern Physics Alan Mortimer PhD Ideas of Modern Physics Electromagnetic Waves Last Week Special Relativity General Relativity The Quantum World Index Planck s Law Atomic Structure and emission lines Matter waves Uncertainty

More information

The Duality of Light. Electromagnetic Radiation. Light as a Wave

The Duality of Light. Electromagnetic Radiation. Light as a Wave In this unit, you will be introduced to the dual nature of light, the quantum theory and Bohr s planetary atomic model. The planetary model was an improvement on the nuclear model and attempted to answer

More information

Learning Objectives and Worksheet I. Chemistry 1B-AL Fall 2016

Learning Objectives and Worksheet I. Chemistry 1B-AL Fall 2016 Learning Objectives and Worksheet I Chemistry 1B-AL Fall 2016 Lectures (1 2) Nature of Light and Matter, Quantization of Energy, and the Wave Particle Duality Read: Chapter 12, Pages: 524 526 Supplementary

More information

Blackbody radiation The photoelectric effect Compton effect Line spectra Nuclear physics/bohr model Lasers Quantum mechanics

Blackbody radiation The photoelectric effect Compton effect Line spectra Nuclear physics/bohr model Lasers Quantum mechanics Blackbody radiation The photoelectric effect Compton effect Line spectra Nuclear physics/bohr model Lasers Quantum mechanics Phys 2435: Chap. 38, Pg 1 Blackbody radiation New Topic Phys 2435: Chap. 38,

More information

Announcements. Lecture 8 Chapter. 3 Wave & Particles I. EM- Waves behaving like Particles. The Compton effect (Arthur Compton 1927) Hypothesis:

Announcements. Lecture 8 Chapter. 3 Wave & Particles I. EM- Waves behaving like Particles. The Compton effect (Arthur Compton 1927) Hypothesis: Announcements HW3: Ch.3-13, 17, 23, 25, 28, 31, 37, 38, 41, 44 HW3 due: 2/16 ** Lab manual is posted on the course web *** Course Web Page *** http://highenergy.phys.ttu.edu/~slee/2402/ Lecture Notes,

More information

Reference Texts. Principles of Quantum Mechanics R Shanker Modern Quantum Mechanics J.J. Sakurai

Reference Texts. Principles of Quantum Mechanics R Shanker Modern Quantum Mechanics J.J. Sakurai EP-307 Introduction to Quantum Mechanics Reference Texts Principles of Quantum Mechanics R Shanker Modern Quantum Mechanics J.J. Sakurai Method of Assessment Four surprise quiz of 10 marks each Midsemester

More information

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge?

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge? Quantum Physics and Atomic Models Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently

More information

Chapter 1 Early Quantum Phenomena

Chapter 1 Early Quantum Phenomena Chapter Early Quantum Phenomena... 8 Early Quantum Phenomena... 8 Photo- electric effect... Emission Spectrum of Hydrogen... 3 Bohr s Model of the atom... 4 De Broglie Waves... 7 Double slit experiment...

More information

I N T R O D U C T I O N T O Q U A N T U M M E C H A N I C S

I N T R O D U C T I O N T O Q U A N T U M M E C H A N I C S A. La Rosa Lecture Notes PSU-Physics P 411/511 ECE 598 I N T R O D U C T I O N T O Q U A N T U M M E C A N I C S CAPTER-1 OVERVIEW: CONTRASTING the CLASSICAL and the QUANTUM MECANICS FORMALISMS 1.1 INTRODUCTION

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( ) Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron Modern physics special relativity quantum theory J. J. Thomson (1856-1940) measured e/m directly set-up was similar to mass spectrometer

More information

Complementi di Fisica Lectures 7-9

Complementi di Fisica Lectures 7-9 Complementi di Fisica Lectures 7-9 Livio Lanceri Università di Trieste Trieste, 07/09-10-2012 Course Outline - Reminder Quantum Mechanics: an introduction Waves as particles and particles as waves (the

More information

Physics Lecture 6

Physics Lecture 6 Physics 3313 - Lecture 6 Monday February 8, 2010 Dr. Andrew Brandt 1. HW1 Due today HW2 weds 2/10 2. Electron+X-rays 3. Black body radiation 4. Compton Effect 5. Pair Production 2/8/10 3313 Andrew Brandt

More information

Revision Guide. Chapter 7 Quantum Behaviour

Revision Guide. Chapter 7 Quantum Behaviour Revision Guide Chapter 7 Quantum Behaviour Contents CONTENTS... 2 REVISION CHECKLIST... 3 REVISION NOTES... 4 QUANTUM BEHAVIOUR... 4 Random arrival of photons... 4 Photoelectric effect... 5 PHASE AN PHASORS...

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Black Body any object that is a perfect emitter and a perfect absorber of radiation >> object does not have to appear "black"

Black Body any object that is a perfect emitter and a perfect absorber of radiation >> object does not have to appear black Light is a... particle 1700's Newton Wave 1800's Young, Fresnel, Foucault, Maxwell, Hertz But Michelson and Morley 1887 failed to find the medium that light travels in in space Maxwell, in 1864, gave the

More information

EA Notes (Scen 101), Tillery Chapter 7. Light

EA Notes (Scen 101), Tillery Chapter 7. Light EA Notes (Scen 101), Tillery Chapter 7 Light Introduction Light is hard to study because you can't see it, you only see it's effects. Newton tried to explain the energy in a light beam as the KE of a particle

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 12-1A: INTERACTIONS OF MATTER WITH RADIATION Questions From Reading Activity? Essential Idea: The microscopic quantum world offers a range of phenomena,

More information

Chapter 5. Past and Proposed Experiments Detecting Absolute Motion

Chapter 5. Past and Proposed Experiments Detecting Absolute Motion Chapter 5 Past and Proposed Experiments Detecting Absolute Motion In this Chapter I gave different interpretations for the results of some famous past experiments. My interpretations are based on the following

More information

CHAPTER 3 The Experimental Basis of Quantum Theory

CHAPTER 3 The Experimental Basis of Quantum Theory CHAPTER 3 The Experimental Basis of Quantum Theory 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Discovery of the X Ray and the Electron Determination of Electron Charge Line Spectra Quantization As far as I can

More information

QUANTUM MECHANICS Chapter 12

QUANTUM MECHANICS Chapter 12 QUANTUM MECHANICS Chapter 12 Colours which appear through the Prism are to be derived from the Light of the white one Sir Issac Newton, 1704 Electromagnetic Radiation (prelude) FIG Electromagnetic Radiation

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Question from last week

Question from last week Announcements l Help room hours (1248 BPS) Ian La Valley(TA) Mon 4-6 PM Tues 12-3 PM Wed 6-9 PM Fri 10 AM-noon l LON-CAPA #8 due Nov. 1 l 2 nd hour exam on Tuesday Nov. 6 part of Thursday s lecture will

More information

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 More Quantum Physics We know now how to detect light (or photons) One possibility to detect

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21.

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21. Early and the Wave Nature of Matter Winter 2018 Press CTRL-L to view as a slide show. Last Time Last time we discussed: Optical systems Midterm 2 Today we will discuss: Quick of X-ray diffraction Compton

More information

Light Quanta. Particle-Wave History 11/2/2008. Particle-Wave Nature Continued s

Light Quanta. Particle-Wave History 11/2/2008. Particle-Wave Nature Continued s Light Quanta Particle-Wave History 1700 s Corpuscular Model -- Newton Wave Model Huygens 1801 Thomas Young s double slit experiment waves 1862 Maxwell s prediction that light carried energy as oscillating

More information

Light. November 101 Lect 11 1

Light. November 101 Lect 11 1 Light What is light? To start, what are the observed properties of light? Describe the intrinsic properties of light light by itself. Later, what are the interactions of light? What happens when light

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #1 assigned, due Jan 24 No class Monday,

More information

1. Historical perspective

1. Historical perspective Atomic and Molecular Physics/Lecture notes presented by Dr. Fouad Attia Majeed/Third year students/college of Education (Ibn Hayyan)/Department of Physics/University of Babylon. 1. Historical perspective

More information

CHAPTER 1 The Birth of Modern Physics

CHAPTER 1 The Birth of Modern Physics CHAPTER 1 The Birth of Modern Physics 1.1 Classical Physics of the 1890s 1.2 The Kinetic Theory of Gases 1.3 Waves and Particles 1.4 Conservation Laws and Fundamental Forces 1.5 The Atomic Theory of Matter

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering Dr. Jamie Sanchez-Fortún Stoker Department of Physics, University of Waterloo Fall 2005 1 Introduction to Modern Physics 1.1

More information

Cumulative Review 1 Use the following information to answer the next two questions.

Cumulative Review 1 Use the following information to answer the next two questions. Cumulative Review 1 Use the following information to answer the next two questions. 1. At what distance from the mirror is the image located? a. 0.10 m b. 0.20 m c. 0.30 m d. 0.40 m 2. At what distance

More information

Physics 1C. Lecture 27A

Physics 1C. Lecture 27A Physics 1C Lecture 27A "Any other situation in quantum mechanics, it turns out, can always be explained by saying, You remember the experiment with the two holes? It s the same thing. " --Richard Feynman

More information

ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 203 General Physics III Course Outline

ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 203 General Physics III Course Outline ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 203 General Physics III Course Outline Course Number & Name: PHY 203 General Physics III Credit Hours: 5.0 Contact Hours: 7.0 Lecture/Lab: 7.0

More information

Physics 11b Lecture #24. Quantum Mechanics

Physics 11b Lecture #24. Quantum Mechanics Physics 11b Lecture #4 Quantum Mechanics What We Did Last Time Theory of special relativity is based on two postulates: Laws of physics is the same in all reference frames Speed of light is the same in

More information

CHEM 115 Waves, Radiation, and Spectroscopy

CHEM 115 Waves, Radiation, and Spectroscopy CHEM 115 Waves, Radiation, and Spectroscopy Lecture 16 Prof. Sevian 1 Announcements (1) Challenge problem Due today at 2:00 promptly (late papers will not be accepted) - place in the box at the front of

More information

Chap. 3. Elementary Quantum Physics

Chap. 3. Elementary Quantum Physics Chap. 3. Elementary Quantum Physics 3.1 Photons - Light: e.m "waves" - interference, diffraction, refraction, reflection with y E y Velocity = c Direction of Propagation z B z Fig. 3.1: The classical view

More information

Light and Relativity

Light and Relativity PHY1033C Fall 2017 Lecture W11 Light and Relativity 1. Light, a Special Wave For more than 200 years, Newton s theory of mechanics, condensed into the three laws of motion, have been accepted as the correct

More information

CHE3935. Lecture 2. Introduction to Quantum Mechanics

CHE3935. Lecture 2. Introduction to Quantum Mechanics CHE3935 Lecture 2 Introduction to Quantum Mechanics 1 The History Quantum mechanics is strange to us because it deals with phenomena that are, for the most part, unobservable at the macroscopic level i.e.,

More information

Chemistry is in the electrons

Chemistry is in the electrons Chemistry is in the electrons Electronic structure arrangement of electrons in atom Two parameters: Energy Position The popular image of the atom is incorrect: electrons are not miniature planets orbiting

More information

Notes on Huygens Principle 2000 Lawrence Rees

Notes on Huygens Principle 2000 Lawrence Rees Notes on Huygens Principle 2000 Lawrence Rees In the 17 th Century, Christiaan Huygens (1629 1695) proposed what we now know as Huygens Principle. We often invoke Huygens Principle as one of the fundamental

More information

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS REVOLUTIONS IN MODERN PHYSICS:... L Photons & the Quantum Theory of... (P.620-623) The Work Function Around 1800, Thomas Young performed his double-slit interference experiment

More information

Heinrich Hertz, a German physicist, achieved the first experimental demonstration of EM waves in 1887.

Heinrich Hertz, a German physicist, achieved the first experimental demonstration of EM waves in 1887. 9.4.2-1(i) Hertz s first radio wave transmission demonstration Maxwell In 1865 James Clerk Maxwell predicted the existence of electromagnetic waves. He said that an accelerating charge would produce a

More information

Blackbody Radiation. Rayleigh-Jeans law was an attempt to explain blackbody radiation based on classical ideas:

Blackbody Radiation. Rayleigh-Jeans law was an attempt to explain blackbody radiation based on classical ideas: Blackbody Radiation A Blackbody is an ideal system that absorbs all radiation incident on it. Emission of radiation by a blackbody is independent of the properties of its wall, but depends only on its

More information

Class Notes Introduction to Modern Physics Physics 321 Plan II Under Construction

Class Notes Introduction to Modern Physics Physics 321 Plan II Under Construction Class Notes Introduction to Modern Physics Physics 321 Plan II Under Construction Austin M. Gleeson 1 Department of Physics University of Texas at Austin Austin, TX 78712 January 15, 2010 1 gleeson@physics.utexas.edu

More information

Engage Education Foundation

Engage Education Foundation B Free Exam for 2013-16 VCE study design Engage Education Foundation Units 3 and 4 Physics Practice Exam Solutions Stop! Don t look at these solutions until you have attempted the exam. Any questions?

More information

Unit 2 Particles and Waves

Unit 2 Particles and Waves North Berwick High School Department of Physics Higher Physics Unit 2 Particles and Waves Section 4 Wave Particle Duality 1 Section 4 Note Making Wave Particle Duality Make a dictionary with the meanings

More information

Chapter 7. The Quantum Mechanical Model of the Atom

Chapter 7. The Quantum Mechanical Model of the Atom Chapter 7 The Quantum Mechanical Model of the Atom The Nature of Light:Its Wave Nature Light is a form of electromagnetic radiation composed of perpendicular oscillating waves, one for the electric field

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

Lecture 15 Notes: 07 / 26. The photoelectric effect and the particle nature of light

Lecture 15 Notes: 07 / 26. The photoelectric effect and the particle nature of light Lecture 15 Notes: 07 / 26 The photoelectric effect and the particle nature of light When diffraction of light was discovered, it was assumed that light was purely a wave phenomenon, since waves, but not

More information

STSF2223 Quantum Mechanics I

STSF2223 Quantum Mechanics I STSF2223 Quantum Mechanics I What is quantum mechanics? Why study quantum mechanics? How does quantum mechanics get started? What is the relation between quantum physics with classical physics? Where is

More information

Lecture 8. > Blackbody Radiation. > Photoelectric Effect

Lecture 8. > Blackbody Radiation. > Photoelectric Effect Lecture 8 > Blackbody Radiation > Photoelectric Effect *Beiser, Mahajan & Choudhury, Concepts of Modern Physics 7/e French, Special Relativity *Nolan, Fundamentals of Modern Physics 1/e Serway, Moses &

More information

College Physics 10th edition

College Physics 10th edition College Physics 10th edition Raymond A. Serway and Chris Vuille Publisher: Cengage Learning Table of Contents PHY101 covers chapters 1-8 PHY102 covers chapters 9-25 Chapter 1: Introduction 1.1: Standards

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information