Information Theory and Statistics, Part I

Size: px
Start display at page:

Download "Information Theory and Statistics, Part I"

Transcription

1 Information Theory and Statistics, Part I Information Theory 2013 Lecture 6 George Mathai May 16, 2013

2 Outline This lecture will cover Method of Types. Law of Large Numbers. Universal Source Coding. Large Deviation Theory. Examples of Sanov s Theorem. All illustrations are borrowed from the book.

3 Method of Types Definition : The type P x of a sequence x 1, x 2... x n is the relative proportion of the occurrences of each symbol of X P n x (a) = N(a x n ) n Ex: X ={1,2,3}. Let x= then P x (1) = 3/5, P x (2) = 1/5, P x (3) = 1/5. Hence P x = {3/5, 1/5, 1/5} Let P n denotes the set of types with denominator n. Ex: P 5 ={(0/5, 0/5, 5/5), (0/5, 1/5, 4/5)..(0/5, 5/5, 0/5)..(5/5, 0/5, 0/5)} If P P n, then the set of sequences of length n and type P is called the type class of P, denoted by T (P) T (P) = {x X n : P x = P} Ex: T (P x ) = {11123, 11132, 11213, }

4 Method of Types Theorem: P n (n + 1) X This bound is very high. One can achieve much better than this

5 Method of Types Theorem: If X 1, X 2,... X n are drawn IID according to Q(x), the probability of x depends only on its type and is given by Proof: Q n (x n n(h(px )+D(Px Q)) ) = 2 n Q n (x n ) = Q(x i ) i=1 = Q(a) N(a x n ) a X = Q(a) np x n (a) a X = a X 2 np xn (a) log Q(a) n(h(px )+D(Px Q)) = 2 Corollary : If x n is in the type class of Q, then Q n (x) = 2 nh(q)

6 Method of Types Theorem: Size of a type class T (P) For any type P P 1 (n + 1) X 2nH(P) T (P) 2 nh(p) where the exact value of T (P) is given by ( ) n T (P) = np(a1), np(a2),... np(a X ) So we look for the bounds. Upper Bound 1 P n (T (P)) = P n (x n ) x n T (P) = 2 nh(p) = T (P) 2 nh(p) x n T (P)

7 Method of Types Theorem:(Probability of type class) for any P P n and any distribution Q, the probability of the type class T (P) under Q n is 2 nd(p Q) to first order in the exponent. More precisely, Proof: 1 (n + 1) X 2 nd(p Q) Q n (T (P)) 2 nd(p Q) Q n (T (P)) = x n T (P) = x n T (P) Q n (x n ) n(h(px )+D(Px Q)) 2 n(h(px )+D(Px Q)) = T (P) 2 Using the bounds we found on T (P) we get 1 (n + 1) X 2 nd(p Q) Q n (T (P)) 2 nd(p Q)

8 Law of Large Numbers Given ɛ > 0 we can define a typical set TQ ɛ distribution Q n as of sequences for the T ɛ Q = {x n : D(P x n Q) ɛ} Then the probability that x n is not typical is 1 Q n (T ɛ Q) = Q n (T (P)) P:D(P Q)>ɛ 2 nd(p Q) P:D(P Q)>ɛ 2 nɛ P:D(P Q)>ɛ (n + 1) X 2 nɛ log(n+1) n(ɛ X ) = 2 n As n, then 1 Q n (T ɛ Q ) 0 = Pr(T ɛ Q ) 1

9 Law of Large Numbers Theorem: LetX 1, X 2... X n be i.i.d. P(x). Then log(n+1) n(ɛ X ) Pr{D(P x n P) > ɛ} 2 n and consequently, D(P x n P) 0with probability 1

10 Law of Large Numbers Definition: Strongly typical set A ɛ(n) Aɛ (n) = x n X n : 1 ɛ N(a x) P(a) n X ifp(a) 0 N(a x) = 0 Typical sets consists of sequences whose types does not differ from the true probabilities by more than ɛ X

11 Universal Source Coding Definition: A fixed - rate block code of rate R for source X 1, X 2... X n which has an unknown distribution Qconsists of two mapping: the encoder, and the decoder f n : X n {1, 2,... 2 nr } φ n : {1, 2,... 2 nr } X n where R is called the rate of the code. Probability of error for the code wrt distribution P (n) e = Q n (X n : φ n (f n (X n )) X n )

12 Universal Source Coding Definition: A rate R block code for a source will be called universal if the functions f n and φ n don t depend on the distribution Q and if P e (n) 0 as n if R > H(Q) Theorem: There exists a sequence of (2 nr, n) universal source codes such that P e (n) 0 for every source Q such that H(Q) < R

13 Universal Source Coding Proof: Let Consider the sequence log(n + 1) R n = R X n A = {x n X n : H(P x ) R n } Then A = T (P) P P n:h(p) R n 2 nh(p) P P n:h(p) R n 2 nrn P P n:h(p) R n (n + 1) X 2 nrn = 2 log(n+1) n(rn+ X n ) = 2 nr

14 Universal Source Coding Probability of decoding error P e (n) can be found by P (n) e = 1 Q n (A) = Q n (T (P)) P P n:h(p) R n (n + 1) X max P:H(P>R Qn (T (P)) n) (n + 1) X 2 n min P:H(P>Rn) D(P Q) As n, P (n) e 0

15 Large Deviation Theory Theory of large deviations concerns the asymptotic behaviour of remote tails of sequences of probability distributions. Let E be a subset of the set of probability mass functions. Q n (E) = Q n (E P n ) = x n :P x n E P n Q n (x n ) Q n (E) 1 If E contains relative entropy neighbourhood of Q Q n (E) 0 other wise

16 Large Deviation Theory Sanov s Theorem: Let X 1, X 2... X n be i.i.d. Q(x). Let E P be a set of probability distributions. Then where Q n (E) = Q n (E P n ) (n + 1) X 2 nd(p Q) P = arg min P E D(P Q) is the distribution E that is closest to Q in relative Entropy. If in addition, the set E is the closure of its interior, then Note: E is not in the typical set 1 n log Qn (E) D(P Q)

17 Large Deviation Theory Proof: Q n (E) = Q n (T (P)) P E P n 2 nd(p Q) P E P n max 2 nd(p Q) P E P n P E P n = 2 min P E Pn nd(p Q) P E P n 2 min P E nd(p Q) P E P n = P E P n 2 nd(p Q) (n + 1) X 2 nd(p Q)

18 Examples of Sanov s Theorem Task: Pr{ 1 n Set E is defined as n g j (X i ) α j, j = 1, 2,... k} i=1 E = {P : a P(a)g j (a) α j, j = 1, 2,..., k} To find te closest distribution in Eto Q. We minimize the D(P Q) subject tot he above constraint. The resulting functional J(P) = x P(x) log P(x) Q(x) + i Differentiating and we get P (x) = λ i P(x)g i (x) + ν x x Q(x)e i λ i g i (x) a X Q(a)e i λ i g i (x) P(x)

INFORMATION THEORY AND STATISTICS

INFORMATION THEORY AND STATISTICS CHAPTER INFORMATION THEORY AND STATISTICS We now explore the relationship between information theory and statistics. We begin by describing the method of types, which is a powerful technique in large deviation

More information

Chapter 11. Information Theory and Statistics

Chapter 11. Information Theory and Statistics Chapter 11 Information Theory and Statistics Peng-Hua Wang Graduate Inst. of Comm. Engineering National Taipei University Chapter Outline Chap. 11 Information Theory and Statistics 11.1 Method of Types

More information

National University of Singapore Department of Electrical & Computer Engineering. Examination for

National University of Singapore Department of Electrical & Computer Engineering. Examination for National University of Singapore Department of Electrical & Computer Engineering Examination for EE5139R Information Theory for Communication Systems (Semester I, 2014/15) November/December 2014 Time Allowed:

More information

Lecture 22: Error exponents in hypothesis testing, GLRT

Lecture 22: Error exponents in hypothesis testing, GLRT 10-704: Information Processing and Learning Spring 2012 Lecture 22: Error exponents in hypothesis testing, GLRT Lecturer: Aarti Singh Scribe: Aarti Singh Disclaimer: These notes have not been subjected

More information

IT and large deviation theory

IT and large deviation theory PhD short course Information Theory and Statistics Siena, 15-19 September, 2014 IT and large deviation theory Mauro Barni University of Siena Outline of the short course Part 1: Information theory in a

More information

Information Theory and Hypothesis Testing

Information Theory and Hypothesis Testing Summer School on Game Theory and Telecommunications Campione, 7-12 September, 2014 Information Theory and Hypothesis Testing Mauro Barni University of Siena September 8 Review of some basic results linking

More information

Network coding for multicast relation to compression and generalization of Slepian-Wolf

Network coding for multicast relation to compression and generalization of Slepian-Wolf Network coding for multicast relation to compression and generalization of Slepian-Wolf 1 Overview Review of Slepian-Wolf Distributed network compression Error exponents Source-channel separation issues

More information

Necessary and Sufficient Conditions for High-Dimensional Salient Feature Subset Recovery

Necessary and Sufficient Conditions for High-Dimensional Salient Feature Subset Recovery Necessary and Sufficient Conditions for High-Dimensional Salient Feature Subset Recovery Vincent Tan, Matt Johnson, Alan S. Willsky Stochastic Systems Group, Laboratory for Information and Decision Systems,

More information

Subset Source Coding

Subset Source Coding Fifty-third Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 29 - October 2, 205 Subset Source Coding Ebrahim MolavianJazi and Aylin Yener Wireless Communications and Networking

More information

Homework Set #2 Data Compression, Huffman code and AEP

Homework Set #2 Data Compression, Huffman code and AEP Homework Set #2 Data Compression, Huffman code and AEP 1. Huffman coding. Consider the random variable ( x1 x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0.11 0.04 0.04 0.03 0.02 (a Find a binary Huffman code

More information

Information Theory in Intelligent Decision Making

Information Theory in Intelligent Decision Making Information Theory in Intelligent Decision Making Adaptive Systems and Algorithms Research Groups School of Computer Science University of Hertfordshire, United Kingdom June 7, 2015 Information Theory

More information

Communications Theory and Engineering

Communications Theory and Engineering Communications Theory and Engineering Master's Degree in Electronic Engineering Sapienza University of Rome A.A. 2018-2019 AEP Asymptotic Equipartition Property AEP In information theory, the analog of

More information

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16 EE539R: Problem Set 4 Assigned: 3/08/6, Due: 07/09/6. Cover and Thomas: Problem 3.5 Sets defined by probabilities: Define the set C n (t = {x n : P X n(x n 2 nt } (a We have = P X n(x n P X n(x n 2 nt

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Transmission of Information Spring 2006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Transmission of Information Spring 2006 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.44 Transmission of Information Spring 2006 Homework 2 Solution name username April 4, 2006 Reading: Chapter

More information

Universal Incremental Slepian-Wolf Coding

Universal Incremental Slepian-Wolf Coding Proceedings of the 43rd annual Allerton Conference, Monticello, IL, September 2004 Universal Incremental Slepian-Wolf Coding Stark C. Draper University of California, Berkeley Berkeley, CA, 94720 USA sdraper@eecs.berkeley.edu

More information

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16 EE539R: Problem Set 3 Assigned: 24/08/6, Due: 3/08/6. Cover and Thomas: Problem 2.30 (Maimum Entropy): Solution: We are required to maimize H(P X ) over all distributions P X on the non-negative integers

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and Estimation I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 22, 2015

More information

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria Source Coding Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Asymptotic Equipartition Property Optimal Codes (Huffman Coding) Universal

More information

EECS 750. Hypothesis Testing with Communication Constraints

EECS 750. Hypothesis Testing with Communication Constraints EECS 750 Hypothesis Testing with Communication Constraints Name: Dinesh Krithivasan Abstract In this report, we study a modification of the classical statistical problem of bivariate hypothesis testing.

More information

LECTURE 10. Last time: Lecture outline

LECTURE 10. Last time: Lecture outline LECTURE 10 Joint AEP Coding Theorem Last time: Error Exponents Lecture outline Strong Coding Theorem Reading: Gallager, Chapter 5. Review Joint AEP A ( ɛ n) (X) A ( ɛ n) (Y ) vs. A ( ɛ n) (X, Y ) 2 nh(x)

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST Information Theory Lecture 5 Entropy rate and Markov sources STEFAN HÖST Universal Source Coding Huffman coding is optimal, what is the problem? In the previous coding schemes (Huffman and Shannon-Fano)it

More information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information 4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

More information

Universal Loseless Compression: Context Tree Weighting(CTW)

Universal Loseless Compression: Context Tree Weighting(CTW) Universal Loseless Compression: Context Tree Weighting(CTW) Dept. Electrical Engineering, Stanford University Dec 9, 2014 Universal Coding with Model Classes Traditional Shannon theory assume a (probabilistic)

More information

10-704: Information Processing and Learning Fall Lecture 24: Dec 7

10-704: Information Processing and Learning Fall Lecture 24: Dec 7 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 24: Dec 7 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

Lecture 7 September 24

Lecture 7 September 24 EECS 11: Coding for Digital Communication and Beyond Fall 013 Lecture 7 September 4 Lecturer: Anant Sahai Scribe: Ankush Gupta 7.1 Overview This lecture introduces affine and linear codes. Orthogonal signalling

More information

(each row defines a probability distribution). Given n-strings x X n, y Y n we can use the absence of memory in the channel to compute

(each row defines a probability distribution). Given n-strings x X n, y Y n we can use the absence of memory in the channel to compute ENEE 739C: Advanced Topics in Signal Processing: Coding Theory Instructor: Alexander Barg Lecture 6 (draft; 9/6/03. Error exponents for Discrete Memoryless Channels http://www.enee.umd.edu/ abarg/enee739c/course.html

More information

SOURCE CODING WITH SIDE INFORMATION AT THE DECODER (WYNER-ZIV CODING) FEB 13, 2003

SOURCE CODING WITH SIDE INFORMATION AT THE DECODER (WYNER-ZIV CODING) FEB 13, 2003 SOURCE CODING WITH SIDE INFORMATION AT THE DECODER (WYNER-ZIV CODING) FEB 13, 2003 SLEPIAN-WOLF RESULT { X i} RATE R x ENCODER 1 DECODER X i V i {, } { V i} ENCODER 0 RATE R v Problem: Determine R, the

More information

Solutions to Homework Set #1 Sanov s Theorem, Rate distortion

Solutions to Homework Set #1 Sanov s Theorem, Rate distortion st Semester 00/ Solutions to Homework Set # Sanov s Theorem, Rate distortion. Sanov s theorem: Prove the simple version of Sanov s theorem for the binary random variables, i.e., let X,X,...,X n be a sequence

More information

Priors for the frequentist, consistency beyond Schwartz

Priors for the frequentist, consistency beyond Schwartz Victoria University, Wellington, New Zealand, 11 January 2016 Priors for the frequentist, consistency beyond Schwartz Bas Kleijn, KdV Institute for Mathematics Part I Introduction Bayesian and Frequentist

More information

10-704: Information Processing and Learning Fall Lecture 9: Sept 28

10-704: Information Processing and Learning Fall Lecture 9: Sept 28 10-704: Information Processing and Learning Fall 2016 Lecturer: Siheng Chen Lecture 9: Sept 28 Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy

More information

CSE 312 Final Review: Section AA

CSE 312 Final Review: Section AA CSE 312 TAs December 8, 2011 General Information General Information Comprehensive Midterm General Information Comprehensive Midterm Heavily weighted toward material after the midterm Pre-Midterm Material

More information

Hypothesis Testing with Communication Constraints

Hypothesis Testing with Communication Constraints Hypothesis Testing with Communication Constraints Dinesh Krithivasan EECS 750 April 17, 2006 Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, 2006 1 / 21 Presentation Outline

More information

Cases Where Finding the Minimum Entropy Coloring of a Characteristic Graph is a Polynomial Time Problem

Cases Where Finding the Minimum Entropy Coloring of a Characteristic Graph is a Polynomial Time Problem Cases Where Finding the Minimum Entropy Coloring of a Characteristic Graph is a Polynomial Time Problem Soheil Feizi, Muriel Médard RLE at MIT Emails: {sfeizi,medard}@mit.edu Abstract In this paper, we

More information

The method of types. PhD short course Information Theory and Statistics Siena, September, Mauro Barni University of Siena

The method of types. PhD short course Information Theory and Statistics Siena, September, Mauro Barni University of Siena PhD short course Iformatio Theory ad Statistics Siea, 15-19 September, 2014 The method of types Mauro Bari Uiversity of Siea Outlie of the course Part 1: Iformatio theory i a utshell Part 2: The method

More information

Frans M.J. Willems. Authentication Based on Secret-Key Generation. Frans M.J. Willems. (joint work w. Tanya Ignatenko)

Frans M.J. Willems. Authentication Based on Secret-Key Generation. Frans M.J. Willems. (joint work w. Tanya Ignatenko) Eindhoven University of Technology IEEE EURASIP Spain Seminar on Signal Processing, Communication and Information Theory, Universidad Carlos III de Madrid, December 11, 2014 : Secret-Based Authentication

More information

Lecture 2: August 31

Lecture 2: August 31 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: August 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy

More information

LECTURE 13. Last time: Lecture outline

LECTURE 13. Last time: Lecture outline LECTURE 13 Last time: Strong coding theorem Revisiting channel and codes Bound on probability of error Error exponent Lecture outline Fano s Lemma revisited Fano s inequality for codewords Converse to

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 7: Information Theory Cosma Shalizi 3 February 2009 Entropy and Information Measuring randomness and dependence in bits The connection to statistics Long-run

More information

Lecture 20: Quantization and Rate-Distortion

Lecture 20: Quantization and Rate-Distortion Lecture 20: Quantization and Rate-Distortion Quantization Introduction to rate-distortion theorem Dr. Yao Xie, ECE587, Information Theory, Duke University Approimating continuous signals... Dr. Yao Xie,

More information

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have EECS 229A Spring 2007 * * Solutions to Homework 3 1. Problem 4.11 on pg. 93 of the text. Stationary processes (a) By stationarity and the chain rule for entropy, we have H(X 0 ) + H(X n X 0 ) = H(X 0,

More information

EE5585 Data Compression May 2, Lecture 27

EE5585 Data Compression May 2, Lecture 27 EE5585 Data Compression May 2, 2013 Lecture 27 Instructor: Arya Mazumdar Scribe: Fangying Zhang Distributed Data Compression/Source Coding In the previous class we used a H-W table as a simple example,

More information

Large Deviations Performance of Interval Algorithm for Random Number Generation

Large Deviations Performance of Interval Algorithm for Random Number Generation Large Deviations Performance of Interval Algorithm for Random Number Generation Akisato KIMURA akisato@ss.titech.ac.jp Tomohiko UYEMATSU uematsu@ss.titech.ac.jp February 22, 999 No. AK-TR-999-0 Abstract

More information

Capacity of a channel Shannon s second theorem. Information Theory 1/33

Capacity of a channel Shannon s second theorem. Information Theory 1/33 Capacity of a channel Shannon s second theorem Information Theory 1/33 Outline 1. Memoryless channels, examples ; 2. Capacity ; 3. Symmetric channels ; 4. Channel Coding ; 5. Shannon s second theorem,

More information

Context tree models for source coding

Context tree models for source coding Context tree models for source coding Toward Non-parametric Information Theory Licence de droits d usage Outline Lossless Source Coding = density estimation with log-loss Source Coding and Universal Coding

More information

Second-Order Asymptotics in Information Theory

Second-Order Asymptotics in Information Theory Second-Order Asymptotics in Information Theory Vincent Y. F. Tan (vtan@nus.edu.sg) Dept. of ECE and Dept. of Mathematics National University of Singapore (NUS) National Taiwan University November 2015

More information

Solutions to Set #2 Data Compression, Huffman code and AEP

Solutions to Set #2 Data Compression, Huffman code and AEP Solutions to Set #2 Data Compression, Huffman code and AEP. Huffman coding. Consider the random variable ( ) x x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0. 0.04 0.04 0.03 0.02 (a) Find a binary Huffman code

More information

Targeted Maximum Likelihood Estimation for Adaptive Designs: Adaptive Randomization in Community Randomized Trial

Targeted Maximum Likelihood Estimation for Adaptive Designs: Adaptive Randomization in Community Randomized Trial Targeted Maximum Likelihood Estimation for Adaptive Designs: Adaptive Randomization in Community Randomized Trial Mark J. van der Laan 1 University of California, Berkeley School of Public Health laan@berkeley.edu

More information

Lecture 11: Continuous-valued signals and differential entropy

Lecture 11: Continuous-valued signals and differential entropy Lecture 11: Continuous-valued signals and differential entropy Biology 429 Carl Bergstrom September 20, 2008 Sources: Parts of today s lecture follow Chapter 8 from Cover and Thomas (2007). Some components

More information

A One-to-One Code and Its Anti-Redundancy

A One-to-One Code and Its Anti-Redundancy A One-to-One Code and Its Anti-Redundancy W. Szpankowski Department of Computer Science, Purdue University July 4, 2005 This research is supported by NSF, NSA and NIH. Outline of the Talk. Prefix Codes

More information

Lecture 4: September Reminder: convergence of sequences

Lecture 4: September Reminder: convergence of sequences 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 4: September 6 In this lecture we discuss the convergence of random variables. At a high-level, our first few lectures focused

More information

Refined Bounds on the Empirical Distribution of Good Channel Codes via Concentration Inequalities

Refined Bounds on the Empirical Distribution of Good Channel Codes via Concentration Inequalities Refined Bounds on the Empirical Distribution of Good Channel Codes via Concentration Inequalities Maxim Raginsky and Igal Sason ISIT 2013, Istanbul, Turkey Capacity-Achieving Channel Codes The set-up DMC

More information

2-4: The Use of Quantifiers

2-4: The Use of Quantifiers 2-4: The Use of Quantifiers The number x + 2 is an even integer is not a statement. When x is replaced by 1, 3 or 5 the resulting statement is false. However, when x is replaced by 2, 4 or 6 the resulting

More information

16.1 Bounding Capacity with Covering Number

16.1 Bounding Capacity with Covering Number ECE598: Information-theoretic methods in high-dimensional statistics Spring 206 Lecture 6: Upper Bounds for Density Estimation Lecturer: Yihong Wu Scribe: Yang Zhang, Apr, 206 So far we have been mostly

More information

Information Theory. M1 Informatique (parcours recherche et innovation) Aline Roumy. January INRIA Rennes 1/ 73

Information Theory. M1 Informatique (parcours recherche et innovation) Aline Roumy. January INRIA Rennes 1/ 73 1/ 73 Information Theory M1 Informatique (parcours recherche et innovation) Aline Roumy INRIA Rennes January 2018 Outline 2/ 73 1 Non mathematical introduction 2 Mathematical introduction: definitions

More information

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13

Kousha Etessami. U. of Edinburgh, UK. Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 7) 1 / 13 Discrete Mathematics & Mathematical Reasoning Chapter 7 (continued): Markov and Chebyshev s Inequalities; and Examples in probability: the birthday problem Kousha Etessami U. of Edinburgh, UK Kousha Etessami

More information

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem LECTURE 15 Last time: Feedback channel: setting up the problem Perfect feedback Feedback capacity Data compression Lecture outline Joint source and channel coding theorem Converse Robustness Brain teaser

More information

Entropies & Information Theory

Entropies & Information Theory Entropies & Information Theory LECTURE I Nilanjana Datta University of Cambridge,U.K. See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223 Quantum Information Theory Born out of Classical Information

More information

Subset Typicality Lemmas and Improved Achievable Regions in Multiterminal Source Coding

Subset Typicality Lemmas and Improved Achievable Regions in Multiterminal Source Coding Subset Typicality Lemmas and Improved Achievable Regions in Multiterminal Source Coding Kumar Viswanatha, Emrah Akyol and Kenneth Rose ECE Department, University of California - Santa Barbara {kumar,eakyol,rose}@ece.ucsb.edu

More information

An Achievable Error Exponent for the Mismatched Multiple-Access Channel

An Achievable Error Exponent for the Mismatched Multiple-Access Channel An Achievable Error Exponent for the Mismatched Multiple-Access Channel Jonathan Scarlett University of Cambridge jms265@camacuk Albert Guillén i Fàbregas ICREA & Universitat Pompeu Fabra University of

More information

17 Advancement Operator Equations

17 Advancement Operator Equations November 14, 2017 17 Advancement Operator Equations William T. Trotter trotter@math.gatech.edu Review of Recurrence Equations (1) Problem Let r(n) denote the number of regions determined by n lines that

More information

Source Coding with Lists and Rényi Entropy or The Honey-Do Problem

Source Coding with Lists and Rényi Entropy or The Honey-Do Problem Source Coding with Lists and Rényi Entropy or The Honey-Do Problem Amos Lapidoth ETH Zurich October 8, 2013 Joint work with Christoph Bunte. A Task from your Spouse Using a fixed number of bits, your spouse

More information

CS 630 Basic Probability and Information Theory. Tim Campbell

CS 630 Basic Probability and Information Theory. Tim Campbell CS 630 Basic Probability and Information Theory Tim Campbell 21 January 2003 Probability Theory Probability Theory is the study of how best to predict outcomes of events. An experiment (or trial or event)

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

Lecture 14 October 13

Lecture 14 October 13 STAT 383C: Statistical Modeling I Fall 2015 Lecture 14 October 13 Lecturer: Purnamrita Sarkar Scribe: Some one Disclaimer: These scribe notes have been slightly proofread and may have typos etc. Note:

More information

The Method of Types and Its Application to Information Hiding

The Method of Types and Its Application to Information Hiding The Method of Types and Its Application to Information Hiding Pierre Moulin University of Illinois at Urbana-Champaign www.ifp.uiuc.edu/ moulin/talks/eusipco05-slides.pdf EUSIPCO Antalya, September 7,

More information

On asymmetric quantum hypothesis testing

On asymmetric quantum hypothesis testing On asymmetric quantum hypothesis testing JMP, Vol 57, 6, 10.1063/1.4953582 arxiv:1612.01464 Cambyse Rouzé (Cambridge) Joint with Nilanjana Datta (University of Cambridge) and Yan Pautrat (Paris-Saclay)

More information

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs 2.6 Limits Involving Infinity; Asymptotes of Graphs Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs Definition. Formal Definition of Limits at Infinity.. We say that

More information

Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Stratégies bayésiennes et fréquentistes dans un modèle de bandit Stratégies bayésiennes et fréquentistes dans un modèle de bandit thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos Journées MAS, Grenoble, 30 août 2016

More information

On the Reliability Function of Variable-Rate Slepian-Wolf Coding

On the Reliability Function of Variable-Rate Slepian-Wolf Coding entropy Article On the Reliability Function of Variable-Rate Slepian-Wolf Coding Jun Chen 1,2, *, Da-ke He 3, Ashish Jagmohan 4 and Luis A. Lastras-Montaño 4 1 College of Electronic Information and Automation,

More information

Notes 3: Stochastic channels and noisy coding theorem bound. 1 Model of information communication and noisy channel

Notes 3: Stochastic channels and noisy coding theorem bound. 1 Model of information communication and noisy channel Introduction to Coding Theory CMU: Spring 2010 Notes 3: Stochastic channels and noisy coding theorem bound January 2010 Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami We now turn to the basic

More information

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions EE/Stat 376B Handout #5 Network Information Theory October, 14, 014 1. Problem.4 parts (b) and (c). Homework Set # Solutions (b) Consider h(x + Y ) h(x + Y Y ) = h(x Y ) = h(x). (c) Let ay = Y 1 + Y, where

More information

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1 Problem Sheet 1 1. Let Ω = {1, 2, 3}. Let F = {, {1}, {2, 3}, {1, 2, 3}}, F = {, {2}, {1, 3}, {1, 2, 3}}. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X :

More information

10-704: Information Processing and Learning Spring Lecture 8: Feb 5

10-704: Information Processing and Learning Spring Lecture 8: Feb 5 10-704: Information Processing and Learning Spring 2015 Lecture 8: Feb 5 Lecturer: Aarti Singh Scribe: Siheng Chen Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

More information

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity 5-859: Information Theory and Applications in TCS CMU: Spring 23 Lecture 8: Channel and source-channel coding theorems; BEC & linear codes February 7, 23 Lecturer: Venkatesan Guruswami Scribe: Dan Stahlke

More information

(Classical) Information Theory II: Source coding

(Classical) Information Theory II: Source coding (Classical) Information Theory II: Source coding Sibasish Ghosh The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. p. 1 Abstract The information content of a random variable

More information

Susceptible-Infective-Removed Epidemics and Erdős-Rényi random

Susceptible-Infective-Removed Epidemics and Erdős-Rényi random Susceptible-Infective-Removed Epidemics and Erdős-Rényi random graphs MSR-Inria Joint Centre October 13, 2015 SIR epidemics: the Reed-Frost model Individuals i [n] when infected, attempt to infect all

More information

APC486/ELE486: Transmission and Compression of Information. Bounds on the Expected Length of Code Words

APC486/ELE486: Transmission and Compression of Information. Bounds on the Expected Length of Code Words APC486/ELE486: Transmission and Compression of Information Bounds on the Expected Length of Code Words Scribe: Kiran Vodrahalli September 8, 204 Notations In these notes, denotes a finite set, called the

More information

The PAC Learning Framework -II

The PAC Learning Framework -II The PAC Learning Framework -II Prof. Dan A. Simovici UMB 1 / 1 Outline 1 Finite Hypothesis Space - The Inconsistent Case 2 Deterministic versus stochastic scenario 3 Bayes Error and Noise 2 / 1 Outline

More information

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye Chapter 8: Differential entropy Chapter 8 outline Motivation Definitions Relation to discrete entropy Joint and conditional differential entropy Relative entropy and mutual information Properties AEP for

More information

Information measures in simple coding problems

Information measures in simple coding problems Part I Information measures in simple coding problems in this web service in this web service Source coding and hypothesis testing; information measures A(discrete)source is a sequence {X i } i= of random

More information

Introduction to Probability

Introduction to Probability LECTURE NOTES Course 6.041-6.431 M.I.T. FALL 2000 Introduction to Probability Dimitri P. Bertsekas and John N. Tsitsiklis Professors of Electrical Engineering and Computer Science Massachusetts Institute

More information

Chapter 2: Entropy and Mutual Information. University of Illinois at Chicago ECE 534, Natasha Devroye

Chapter 2: Entropy and Mutual Information. University of Illinois at Chicago ECE 534, Natasha Devroye Chapter 2: Entropy and Mutual Information Chapter 2 outline Definitions Entropy Joint entropy, conditional entropy Relative entropy, mutual information Chain rules Jensen s inequality Log-sum inequality

More information

Large Deviations Performance of Knuth-Yao algorithm for Random Number Generation

Large Deviations Performance of Knuth-Yao algorithm for Random Number Generation Large Deviations Performance of Knuth-Yao algorithm for Random Number Generation Akisato KIMURA akisato@ss.titech.ac.jp Tomohiko UYEMATSU uematsu@ss.titech.ac.jp April 2, 999 No. AK-TR-999-02 Abstract

More information

Lecture 10: October 30, 2017

Lecture 10: October 30, 2017 Information an Coing Theory Autumn 2017 Lecturer: Mahur Tulsiani Lecture 10: October 30, 2017 1 I-Projections an applications In this lecture, we will talk more about fining the istribution in a set Π

More information

Functions. If x 2 D, then g(x) 2 T is the object that g assigns to x. Writing the symbols. g : D! T

Functions. If x 2 D, then g(x) 2 T is the object that g assigns to x. Writing the symbols. g : D! T Functions This is the second of three chapters that are meant primarily as a review of Math 1050. We will move quickly through this material. A function is a way of describing a relationship between two

More information

Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity

Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity Eckehard Olbrich MPI MiS Leipzig Potsdam WS 2007/08 Olbrich (Leipzig) 26.10.2007 1 / 18 Overview 1 Summary

More information

MA 1124 Solutions 14 th May 2012

MA 1124 Solutions 14 th May 2012 MA 1124 Solutions 14 th May 2012 1 (a) Use True/False Tables to prove (i) P = Q Q = P The definition of P = Q is given by P Q P = Q T T T T F F F T T F F T So Q P Q = P F F T T F F F T T T T T Since the

More information

Lecture 3 : Algorithms for source coding. September 30, 2016

Lecture 3 : Algorithms for source coding. September 30, 2016 Lecture 3 : Algorithms for source coding September 30, 2016 Outline 1. Huffman code ; proof of optimality ; 2. Coding with intervals : Shannon-Fano-Elias code and Shannon code ; 3. Arithmetic coding. 1/39

More information

Quantitative Biology II Lecture 4: Variational Methods

Quantitative Biology II Lecture 4: Variational Methods 10 th March 2015 Quantitative Biology II Lecture 4: Variational Methods Gurinder Singh Mickey Atwal Center for Quantitative Biology Cold Spring Harbor Laboratory Image credit: Mike West Summary Approximate

More information

Lecture 4 Channel Coding

Lecture 4 Channel Coding Capacity and the Weak Converse Lecture 4 Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 15, 2014 1 / 16 I-Hsiang Wang NIT Lecture 4 Capacity

More information

COMP2610/COMP Information Theory

COMP2610/COMP Information Theory COMP2610/COMP6261 - Information Theory Lecture 9: Probabilistic Inequalities Mark Reid and Aditya Menon Research School of Computer Science The Australian National University August 19th, 2014 Mark Reid

More information

Maximization of the information divergence from the multinomial distributions 1

Maximization of the information divergence from the multinomial distributions 1 aximization of the information divergence from the multinomial distributions Jozef Juríček Charles University in Prague Faculty of athematics and Physics Department of Probability and athematical Statistics

More information

Decoding Reed-Muller codes over product sets

Decoding Reed-Muller codes over product sets Rutgers University May 30, 2016 Overview Error-correcting codes 1 Error-correcting codes Motivation 2 Reed-Solomon codes Reed-Muller codes 3 Error-correcting codes Motivation Goal: Send a message Don t

More information

Lecture 8. October 22, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University.

Lecture 8. October 22, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University. Lecture 8 Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University October 22, 2007 1 2 3 4 5 6 1 Define convergent series 2 Define the Law of Large Numbers

More information

Coding on Countably Infinite Alphabets

Coding on Countably Infinite Alphabets Coding on Countably Infinite Alphabets Non-parametric Information Theory Licence de droits d usage Outline Lossless Coding on infinite alphabets Source Coding Universal Coding Infinite Alphabets Enveloppe

More information

Shannon s Noisy-Channel Coding Theorem

Shannon s Noisy-Channel Coding Theorem Shannon s Noisy-Channel Coding Theorem Lucas Slot Sebastian Zur February 13, 2015 Lucas Slot, Sebastian Zur Shannon s Noisy-Channel Coding Theorem February 13, 2015 1 / 29 Outline 1 Definitions and Terminology

More information

On the Complexity of Best Arm Identification with Fixed Confidence

On the Complexity of Best Arm Identification with Fixed Confidence On the Complexity of Best Arm Identification with Fixed Confidence Discrete Optimization with Noise Aurélien Garivier, Emilie Kaufmann COLT, June 23 th 2016, New York Institut de Mathématiques de Toulouse

More information

Distributed Source Coding Using LDPC Codes

Distributed Source Coding Using LDPC Codes Distributed Source Coding Using LDPC Codes Telecommunications Laboratory Alex Balatsoukas-Stimming Technical University of Crete May 29, 2010 Telecommunications Laboratory (TUC) Distributed Source Coding

More information

A Novel Asynchronous Communication Paradigm: Detection, Isolation, and Coding

A Novel Asynchronous Communication Paradigm: Detection, Isolation, and Coding A Novel Asynchronous Communication Paradigm: Detection, Isolation, and Coding The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information