Hypothesis Testing with Communication Constraints

Size: px
Start display at page:

Download "Hypothesis Testing with Communication Constraints"

Transcription

1 Hypothesis Testing with Communication Constraints Dinesh Krithivasan EECS 750 April 17, 2006 Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

2 Presentation Outline 1 Hypothesis Testing Stein s Lemma 2 Communication Constraints Problem Formulation General Bivariate Hypothesis Testing A Single-Letter Lower Bound Special Cases 3 Conclusions and References Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

3 Outline 1 Hypothesis Testing Stein s Lemma 2 Communication Constraints Problem Formulation General Bivariate Hypothesis Testing A Single-Letter Lower Bound Special Cases 3 Conclusions and References Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

4 Bivariate Hypothesis Testing Given sensor measurements x 1, x 2,..., x n, determine if an earthquake occurred or not? X 1, X 2,..., X n be i.i.d Hypothesis H 0 : Distribution is P(x) Hypothesis H 1 : Distribution is Q(x) Statistician s task : Decide on H 0 or H 1 based on x n = x 1, x 2,..., x n Decision rule : Declare H 0 if x n A X n, else declare H 1 Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

5 Error events Two kinds of errors False Alarm: Declare H 0 as H 1. Miss: Declare H 1 as H 0. Corresponding probabilities P(Error of type 1) α = P n (A c ) P(Error of type 2) β = Q n (A) Usually there is a trade-off between α and β Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

6 Stein s Lemma Let α go to 0 arbitrarily slowly with n What is the best we can do as regards the probability of type 2 error β? Answer given by Stein s lemma Stein s Lemma 1 lim n n log β n(ɛ) θ(ɛ) = D(P Q) ɛ (0, 1) Can be proved by using the typical set as the acceptance region Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

7 Outline 1 Hypothesis Testing Stein s Lemma 2 Communication Constraints Problem Formulation General Bivariate Hypothesis Testing A Single-Letter Lower Bound Special Cases 3 Conclusions and References Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

8 Problem Formulation Common assumption is that all data is known to the statistician in advance What if he/she can be informed about the data at a finite rate R? Not a significant constraint if data is collected at a single location or if only one random variable is present In the above case, transmission of one bit is sufficient to enable optimal decision Problem is interesting when different variables are measured at different locations Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

9 Problem formulation n X X Encoder n f( X ) Statistician H 0 n Y Y Encoder g( Y n ) H 1 This notion of encoding is more general than standard source coding Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

10 General Bivariate Hypothesis Testing Hypothesis testing with 2 arbitrary Hypothesis P XY (Hypothesis H 0 ) and P X Ȳ (Hypothesis H 1) Statistician observes X n and Y n via encoding functions of rate (R 1, R 2 ) We are interested in asymptotics of θ (R1,R 2 )(n, ɛ) Assume for simplicity that R 2 = Will derive an achievable lower bound θ L (R, ɛ) to θ(r, ɛ) Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

11 Key Ideas Choose acceptance region to be the typical set under hypothesis H 0 Decoder has access only to the types P u n, P y n and P u n,y n Decoder reproduces the largest family of random variables it can using available information Exponent will be the divergence between the families resulting from H 0 and H 1 Larger the family, larger the divergence since D(X 1 Y 1 X 2 Y 2 ) D(X 1 X 2 ) Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

12 Lemma We need the following lemma Let U,X,Y be finite random variables such that U X Y. Then there exists u 1,..., u M T n µ (U) (M = exp[n(i (U; X ) + η)]) and M disjoint subsets C 1,..., C M T n µ (X u i ) for which M {P(X n Y n C i Tµ n (Y u i ))} 1 δ i=1 for any fixed η > 0 and δ > 0 Proof using standard information-theoretic ideas Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

13 Hypothesis Testing Scheme Let M, u i, C i be as given in the lemma X -encoder defined as f (x n ) = { i if x n C i 0 else Statistician has access to i {1, 2,..., M} and y n Decision Rule : Declare H 0 if y n T n µ (Y u i ) Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

14 Acceptance Region Decision rule induces an acceptance region A n given by A n = M (C i Tµ n (Y u i )) i=1 No single module has all the information required to determine if (x n, y n ) A n Probability of type-1 error is bounded by the lemma α n = P(X n Y n A c n) δ Need to bound β n = (x n,y n ) A n P(( X n Ȳ n ) = (x n, y n )) Can be done using type-counting in A n Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

15 An Achievable Lower Bound Two sets of Auxiliary random variables S(R) = {U : I (U; X ) R, U X Y } Describes the X -Encoder. Rate constraint is automatically met Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

16 An Achievable Lower Bound Two sets of Auxiliary random variables S(R) = {U : I (U; X ) R, U X Y } L(U) = {Ũ X Ỹ : P(Ũ X ) = P(UX ), P(ŨỸ ) = P(UY )} Decoder can reproduce the set of joint types P (u n,y n ) and P (u n,x n ) Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

17 An Achievable Lower Bound Two sets of Auxiliary random variables S(R) = {U : I (U; X ) R, U X Y } L(U) = {Ũ X Ỹ : P(Ũ X ) = P(UX ), P(ŨỸ ) = P(UY )} Define Ū to satisfy Ū X Ȳ and P(Ū X ) = P(U X ) Same Encoder used in case of either hypothesis Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

18 An Achievable Lower Bound Two sets of Auxiliary random variables S(R) = {U : I (U; X ) R, U X Y } L(U) = {Ũ X Ỹ : P(Ũ X ) = P(UX ), P(ŨỸ ) = P(UY )} Define Ū to satisfy Ū X Ȳ and P(Ū X ) = P(U X ) For every R 0 and 0 < ɛ < 1, the exponent θ L (R, ɛ) = is achievable sup min U S(R) Ũ X Ỹ L(U) D(Ũ X Ỹ Ū X Ȳ ) Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

19 Special Case: Lower Bound of Ahlswede and Csisźar For any U S(R), we have θ L (R, ɛ) D(X X ) + D(UY UŶ ) where Ŷ is such that U X Ŷ and P(Ŷ X ) = P(Ȳ X ) Follows from simple algebraic manipulations This lower bound doesn t exploit P (un,x n ) and is consequently weaker Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

20 Special Case: Test against Independence Suppose P( X Ȳ ) = P(X )P(Y ). Then for any 0 < ɛ < 1, θ L (R, ɛ) max I (U; Y ) U S(R) Follows from simple algebraic manipulations This case was completely solved by Ahlswede and Csisźar who proved the converse as well Their proof used Divergence-Characterization techniques Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

21 Further Comments If R H(X ), then the lower bound becomes θ L (R, ɛ) = D(XY X Ȳ ) Extension to two sided compression is straight-forward Involves introduction of further auxiliary random variables V and Ṽ Approach seems best suited to get achievability results Divergence characterization techniques better suited for converses Lower bound can be significantly tightened Above encoding scheme for zero-error reconstruction of the joint types Can consider encoders that reconstructions with exponentially low error probability Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

22 Outline 1 Hypothesis Testing Stein s Lemma 2 Communication Constraints Problem Formulation General Bivariate Hypothesis Testing A Single-Letter Lower Bound Special Cases 3 Conclusions and References Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

23 Conclusions Bivariate hypothesis testing with one sided data compression was studied A single-letter lower bound to the power exponent was derived This bound subsumes other known bounds and achievability results Easily extendable to two-sided compression case Other statistical problems such as parameter estimation and pattern classification also studied under similar rate constraints Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

24 References R.Ahlswede and I.Csiszár, Hypothesis Testing with Communication constraints, IEEE trans. on info. theory, vol. IT-32, No.4 July 1986 Te Sun Han, Hypothesis Testing with Multiterminal Data Compression, IEEE trans. on info. theory, vol. IT-33, No.6 November 1987 Te Sun Han and Shun-ichi Amari, Statistical Inference Under Multiterminal Data Compression, IEEE trans. on info. theory, vol. 44, No.6 October 1998 R.Ahlswede and János Körner, Source coding with side information and a converse for degraded broadcast channels, IEEE trans. on info. theory, vol. IT-21, No.6 November 1975 Dinesh Krithivasan (EECS 750) Hyp. testing with comm. constraints April 17, / 21

EECS 750. Hypothesis Testing with Communication Constraints

EECS 750. Hypothesis Testing with Communication Constraints EECS 750 Hypothesis Testing with Communication Constraints Name: Dinesh Krithivasan Abstract In this report, we study a modification of the classical statistical problem of bivariate hypothesis testing.

More information

On the Necessity of Binning for the Distributed Hypothesis Testing Problem

On the Necessity of Binning for the Distributed Hypothesis Testing Problem On the Necessity of Binning for the Distributed Hypothesis Testing Problem Gil Katz, Pablo Piantanida, Romain Couillet, Merouane Debbah To cite this version: Gil Katz, Pablo Piantanida, Romain Couillet,

More information

SHARED INFORMATION. Prakash Narayan with. Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe

SHARED INFORMATION. Prakash Narayan with. Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe SHARED INFORMATION Prakash Narayan with Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe 2/40 Acknowledgement Praneeth Boda Himanshu Tyagi Shun Watanabe 3/40 Outline Two-terminal model: Mutual

More information

Network coding for multicast relation to compression and generalization of Slepian-Wolf

Network coding for multicast relation to compression and generalization of Slepian-Wolf Network coding for multicast relation to compression and generalization of Slepian-Wolf 1 Overview Review of Slepian-Wolf Distributed network compression Error exponents Source-channel separation issues

More information

Lattices for Distributed Source Coding: Jointly Gaussian Sources and Reconstruction of a Linear Function

Lattices for Distributed Source Coding: Jointly Gaussian Sources and Reconstruction of a Linear Function Lattices for Distributed Source Coding: Jointly Gaussian Sources and Reconstruction of a Linear Function Dinesh Krithivasan and S. Sandeep Pradhan Department of Electrical Engineering and Computer Science,

More information

SHARED INFORMATION. Prakash Narayan with. Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe

SHARED INFORMATION. Prakash Narayan with. Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe SHARED INFORMATION Prakash Narayan with Imre Csiszár, Sirin Nitinawarat, Himanshu Tyagi, Shun Watanabe 2/41 Outline Two-terminal model: Mutual information Operational meaning in: Channel coding: channel

More information

The Method of Types and Its Application to Information Hiding

The Method of Types and Its Application to Information Hiding The Method of Types and Its Application to Information Hiding Pierre Moulin University of Illinois at Urbana-Champaign www.ifp.uiuc.edu/ moulin/talks/eusipco05-slides.pdf EUSIPCO Antalya, September 7,

More information

Lecture 22: Error exponents in hypothesis testing, GLRT

Lecture 22: Error exponents in hypothesis testing, GLRT 10-704: Information Processing and Learning Spring 2012 Lecture 22: Error exponents in hypothesis testing, GLRT Lecturer: Aarti Singh Scribe: Aarti Singh Disclaimer: These notes have not been subjected

More information

Interactive Hypothesis Testing with Communication Constraints

Interactive Hypothesis Testing with Communication Constraints Fiftieth Annual Allerton Conference Allerton House, UIUC, Illinois, USA October - 5, 22 Interactive Hypothesis Testing with Communication Constraints Yu Xiang and Young-Han Kim Department of Electrical

More information

Representation of Correlated Sources into Graphs for Transmission over Broadcast Channels

Representation of Correlated Sources into Graphs for Transmission over Broadcast Channels Representation of Correlated s into Graphs for Transmission over Broadcast s Suhan Choi Department of Electrical Eng. and Computer Science University of Michigan, Ann Arbor, MI 80, USA Email: suhanc@eecs.umich.edu

More information

Reliable Computation over Multiple-Access Channels

Reliable Computation over Multiple-Access Channels Reliable Computation over Multiple-Access Channels Bobak Nazer and Michael Gastpar Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA, 94720-1770 {bobak,

More information

Frans M.J. Willems. Authentication Based on Secret-Key Generation. Frans M.J. Willems. (joint work w. Tanya Ignatenko)

Frans M.J. Willems. Authentication Based on Secret-Key Generation. Frans M.J. Willems. (joint work w. Tanya Ignatenko) Eindhoven University of Technology IEEE EURASIP Spain Seminar on Signal Processing, Communication and Information Theory, Universidad Carlos III de Madrid, December 11, 2014 : Secret-Based Authentication

More information

Katalin Marton. Abbas El Gamal. Stanford University. Withits A. El Gamal (Stanford University) Katalin Marton Withits / 9

Katalin Marton. Abbas El Gamal. Stanford University. Withits A. El Gamal (Stanford University) Katalin Marton Withits / 9 Katalin Marton Abbas El Gamal Stanford University Withits 2010 A. El Gamal (Stanford University) Katalin Marton Withits 2010 1 / 9 Brief Bio Born in 1941, Budapest Hungary PhD from Eötvös Loránd University

More information

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem LECTURE 15 Last time: Feedback channel: setting up the problem Perfect feedback Feedback capacity Data compression Lecture outline Joint source and channel coding theorem Converse Robustness Brain teaser

More information

Common Randomness Principles of Secrecy

Common Randomness Principles of Secrecy Common Randomness Principles of Secrecy Himanshu Tyagi Department of Electrical and Computer Engineering and Institute of Systems Research 1 Correlated Data, Distributed in Space and Time Sensor Networks

More information

Variable Length Codes for Degraded Broadcast Channels

Variable Length Codes for Degraded Broadcast Channels Variable Length Codes for Degraded Broadcast Channels Stéphane Musy School of Computer and Communication Sciences, EPFL CH-1015 Lausanne, Switzerland Email: stephane.musy@ep.ch Abstract This paper investigates

More information

On Large Deviation Analysis of Sampling from Typical Sets

On Large Deviation Analysis of Sampling from Typical Sets Communications and Signal Processing Laboratory (CSPL) Technical Report No. 374, University of Michigan at Ann Arbor, July 25, 2006. On Large Deviation Analysis of Sampling from Typical Sets Dinesh Krithivasan

More information

Quiz 2 Date: Monday, November 21, 2016

Quiz 2 Date: Monday, November 21, 2016 10-704 Information Processing and Learning Fall 2016 Quiz 2 Date: Monday, November 21, 2016 Name: Andrew ID: Department: Guidelines: 1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED. 2. Write your name,

More information

Shannon s noisy-channel theorem

Shannon s noisy-channel theorem Shannon s noisy-channel theorem Information theory Amon Elders Korteweg de Vries Institute for Mathematics University of Amsterdam. Tuesday, 26th of Januari Amon Elders (Korteweg de Vries Institute for

More information

ECE Information theory Final (Fall 2008)

ECE Information theory Final (Fall 2008) ECE 776 - Information theory Final (Fall 2008) Q.1. (1 point) Consider the following bursty transmission scheme for a Gaussian channel with noise power N and average power constraint P (i.e., 1/n X n i=1

More information

Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels

Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels Superposition Encoding and Partial Decoding Is Optimal for a Class of Z-interference Channels Nan Liu and Andrea Goldsmith Department of Electrical Engineering Stanford University, Stanford CA 94305 Email:

More information

On Source-Channel Communication in Networks

On Source-Channel Communication in Networks On Source-Channel Communication in Networks Michael Gastpar Department of EECS University of California, Berkeley gastpar@eecs.berkeley.edu DIMACS: March 17, 2003. Outline 1. Source-Channel Communication

More information

Variable-Rate Universal Slepian-Wolf Coding with Feedback

Variable-Rate Universal Slepian-Wolf Coding with Feedback Variable-Rate Universal Slepian-Wolf Coding with Feedback Shriram Sarvotham, Dror Baron, and Richard G. Baraniuk Dept. of Electrical and Computer Engineering Rice University, Houston, TX 77005 Abstract

More information

The Gallager Converse

The Gallager Converse The Gallager Converse Abbas El Gamal Director, Information Systems Laboratory Department of Electrical Engineering Stanford University Gallager s 75th Birthday 1 Information Theoretic Limits Establishing

More information

Multiaccess Channels with State Known to One Encoder: A Case of Degraded Message Sets

Multiaccess Channels with State Known to One Encoder: A Case of Degraded Message Sets Multiaccess Channels with State Known to One Encoder: A Case of Degraded Message Sets Shivaprasad Kotagiri and J. Nicholas Laneman Department of Electrical Engineering University of Notre Dame Notre Dame,

More information

A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks

A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks Marco Tomamichel, Masahito Hayashi arxiv: 1208.1478 Also discussing results of: Second Order Asymptotics for Quantum

More information

Information Theory and Hypothesis Testing

Information Theory and Hypothesis Testing Summer School on Game Theory and Telecommunications Campione, 7-12 September, 2014 Information Theory and Hypothesis Testing Mauro Barni University of Siena September 8 Review of some basic results linking

More information

Information measures in simple coding problems

Information measures in simple coding problems Part I Information measures in simple coding problems in this web service in this web service Source coding and hypothesis testing; information measures A(discrete)source is a sequence {X i } i= of random

More information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information 4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

More information

Multiterminal Source Coding with an Entropy-Based Distortion Measure

Multiterminal Source Coding with an Entropy-Based Distortion Measure Multiterminal Source Coding with an Entropy-Based Distortion Measure Thomas Courtade and Rick Wesel Department of Electrical Engineering University of California, Los Angeles 4 August, 2011 IEEE International

More information

SOURCE CODING WITH SIDE INFORMATION AT THE DECODER (WYNER-ZIV CODING) FEB 13, 2003

SOURCE CODING WITH SIDE INFORMATION AT THE DECODER (WYNER-ZIV CODING) FEB 13, 2003 SOURCE CODING WITH SIDE INFORMATION AT THE DECODER (WYNER-ZIV CODING) FEB 13, 2003 SLEPIAN-WOLF RESULT { X i} RATE R x ENCODER 1 DECODER X i V i {, } { V i} ENCODER 0 RATE R v Problem: Determine R, the

More information

Capacity of a channel Shannon s second theorem. Information Theory 1/33

Capacity of a channel Shannon s second theorem. Information Theory 1/33 Capacity of a channel Shannon s second theorem Information Theory 1/33 Outline 1. Memoryless channels, examples ; 2. Capacity ; 3. Symmetric channels ; 4. Channel Coding ; 5. Shannon s second theorem,

More information

Secret Key and Private Key Constructions for Simple Multiterminal Source Models

Secret Key and Private Key Constructions for Simple Multiterminal Source Models Secret Key and Private Key Constructions for Simple Multiterminal Source Models arxiv:cs/05050v [csit] 3 Nov 005 Chunxuan Ye Department of Electrical and Computer Engineering and Institute for Systems

More information

Information Masking and Amplification: The Source Coding Setting

Information Masking and Amplification: The Source Coding Setting 202 IEEE International Symposium on Information Theory Proceedings Information Masking and Amplification: The Source Coding Setting Thomas A. Courtade Department of Electrical Engineering University of

More information

Universal Incremental Slepian-Wolf Coding

Universal Incremental Slepian-Wolf Coding Proceedings of the 43rd annual Allerton Conference, Monticello, IL, September 2004 Universal Incremental Slepian-Wolf Coding Stark C. Draper University of California, Berkeley Berkeley, CA, 94720 USA sdraper@eecs.berkeley.edu

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 7: Information Theory Cosma Shalizi 3 February 2009 Entropy and Information Measuring randomness and dependence in bits The connection to statistics Long-run

More information

Distributed Hypothesis Testing Over Discrete Memoryless Channels

Distributed Hypothesis Testing Over Discrete Memoryless Channels 1 Distributed Hypothesis Testing Over Discrete Memoryless Channels Sreejith Sreekumar and Deniz Gündüz Imperial College London, UK Email: {s.sreekumar15, d.gunduz}@imperial.ac.uk Abstract A distributed

More information

Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing

Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing arxiv:uant-ph/9906090 v 24 Jun 999 Tomohiro Ogawa and Hiroshi Nagaoka Abstract The hypothesis testing problem of two uantum states is

More information

Large Deviations Performance of Knuth-Yao algorithm for Random Number Generation

Large Deviations Performance of Knuth-Yao algorithm for Random Number Generation Large Deviations Performance of Knuth-Yao algorithm for Random Number Generation Akisato KIMURA akisato@ss.titech.ac.jp Tomohiko UYEMATSU uematsu@ss.titech.ac.jp April 2, 999 No. AK-TR-999-02 Abstract

More information

Applications of Information Geometry to Hypothesis Testing and Signal Detection

Applications of Information Geometry to Hypothesis Testing and Signal Detection CMCAA 2016 Applications of Information Geometry to Hypothesis Testing and Signal Detection Yongqiang Cheng National University of Defense Technology July 2016 Outline 1. Principles of Information Geometry

More information

(each row defines a probability distribution). Given n-strings x X n, y Y n we can use the absence of memory in the channel to compute

(each row defines a probability distribution). Given n-strings x X n, y Y n we can use the absence of memory in the channel to compute ENEE 739C: Advanced Topics in Signal Processing: Coding Theory Instructor: Alexander Barg Lecture 6 (draft; 9/6/03. Error exponents for Discrete Memoryless Channels http://www.enee.umd.edu/ abarg/enee739c/course.html

More information

Lecture 2: August 31

Lecture 2: August 31 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: August 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy

More information

The Capacity Region for Multi-source Multi-sink Network Coding

The Capacity Region for Multi-source Multi-sink Network Coding The Capacity Region for Multi-source Multi-sink Network Coding Xijin Yan Dept. of Electrical Eng. - Systems University of Southern California Los Angeles, CA, U.S.A. xyan@usc.edu Raymond W. Yeung Dept.

More information

Intermittent Communication

Intermittent Communication Intermittent Communication Mostafa Khoshnevisan, Student Member, IEEE, and J. Nicholas Laneman, Senior Member, IEEE arxiv:32.42v2 [cs.it] 7 Mar 207 Abstract We formulate a model for intermittent communication

More information

A Novel Asynchronous Communication Paradigm: Detection, Isolation, and Coding

A Novel Asynchronous Communication Paradigm: Detection, Isolation, and Coding A Novel Asynchronous Communication Paradigm: Detection, Isolation, and Coding The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Distributed Functional Compression through Graph Coloring

Distributed Functional Compression through Graph Coloring Distributed Functional Compression through Graph Coloring Vishal Doshi, Devavrat Shah, Muriel Médard, and Sidharth Jaggi Laboratory for Information and Decision Systems Massachusetts Institute of Technology

More information

A Graph-based Framework for Transmission of Correlated Sources over Multiple Access Channels

A Graph-based Framework for Transmission of Correlated Sources over Multiple Access Channels A Graph-based Framework for Transmission of Correlated Sources over Multiple Access Channels S. Sandeep Pradhan a, Suhan Choi a and Kannan Ramchandran b, a {pradhanv,suhanc}@eecs.umich.edu, EECS Dept.,

More information

10-704: Information Processing and Learning Fall Lecture 24: Dec 7

10-704: Information Processing and Learning Fall Lecture 24: Dec 7 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 24: Dec 7 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 23, 2015 1 / 50 I-Hsiang

More information

Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory

Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory Two Applications of the Gaussian Poincaré Inequality in the Shannon Theory Vincent Y. F. Tan (Joint work with Silas L. Fong) National University of Singapore (NUS) 2016 International Zurich Seminar on

More information

A proof of the existence of good nested lattices

A proof of the existence of good nested lattices A proof of the existence of good nested lattices Dinesh Krithivasan and S. Sandeep Pradhan July 24, 2007 1 Introduction We show the existence of a sequence of nested lattices (Λ (n) 1, Λ(n) ) with Λ (n)

More information

Information Theory. Lecture 10. Network Information Theory (CT15); a focus on channel capacity results

Information Theory. Lecture 10. Network Information Theory (CT15); a focus on channel capacity results Information Theory Lecture 10 Network Information Theory (CT15); a focus on channel capacity results The (two-user) multiple access channel (15.3) The (two-user) broadcast channel (15.6) The relay channel

More information

Arimoto Channel Coding Converse and Rényi Divergence

Arimoto Channel Coding Converse and Rényi Divergence Arimoto Channel Coding Converse and Rényi Divergence Yury Polyanskiy and Sergio Verdú Abstract Arimoto proved a non-asymptotic upper bound on the probability of successful decoding achievable by any code

More information

Keyless authentication in the presence of a simultaneously transmitting adversary

Keyless authentication in the presence of a simultaneously transmitting adversary Keyless authentication in the presence of a simultaneously transmitting adversary Eric Graves Army Research Lab Adelphi MD 20783 U.S.A. ericsgra@ufl.edu Paul Yu Army Research Lab Adelphi MD 20783 U.S.A.

More information

On Multiple User Channels with State Information at the Transmitters

On Multiple User Channels with State Information at the Transmitters On Multiple User Channels with State Information at the Transmitters Styrmir Sigurjónsson and Young-Han Kim* Information Systems Laboratory Stanford University Stanford, CA 94305, USA Email: {styrmir,yhk}@stanford.edu

More information

Lecture 22: Final Review

Lecture 22: Final Review Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University Basics Dr Yao Xie, ECE587, Information

More information

Secret Key Agreement: General Capacity and Second-Order Asymptotics. Masahito Hayashi Himanshu Tyagi Shun Watanabe

Secret Key Agreement: General Capacity and Second-Order Asymptotics. Masahito Hayashi Himanshu Tyagi Shun Watanabe Secret Key Agreement: General Capacity and Second-Order Asymptotics Masahito Hayashi Himanshu Tyagi Shun Watanabe Two party secret key agreement Maurer 93, Ahlswede-Csiszár 93 X F Y K x K y ArandomvariableK

More information

Distributed Detection With Vector Quantizer Wenwen Zhao, Student Member, IEEE, and Lifeng Lai, Member, IEEE

Distributed Detection With Vector Quantizer Wenwen Zhao, Student Member, IEEE, and Lifeng Lai, Member, IEEE IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL 2, NO 2, JUNE 206 05 Distributed Detection With Vector Quantizer Wenwen Zhao, Student Member, IEEE, and Lifeng Lai, Member, IEEE

More information

Second-Order Asymptotics in Information Theory

Second-Order Asymptotics in Information Theory Second-Order Asymptotics in Information Theory Vincent Y. F. Tan (vtan@nus.edu.sg) Dept. of ECE and Dept. of Mathematics National University of Singapore (NUS) National Taiwan University November 2015

More information

On Scalable Source Coding for Multiple Decoders with Side Information

On Scalable Source Coding for Multiple Decoders with Side Information On Scalable Source Coding for Multiple Decoders with Side Information Chao Tian School of Computer and Communication Sciences Laboratory for Information and Communication Systems (LICOS), EPFL, Lausanne,

More information

INFORMATION PROCESSING ABILITY OF BINARY DETECTORS AND BLOCK DECODERS. Michael A. Lexa and Don H. Johnson

INFORMATION PROCESSING ABILITY OF BINARY DETECTORS AND BLOCK DECODERS. Michael A. Lexa and Don H. Johnson INFORMATION PROCESSING ABILITY OF BINARY DETECTORS AND BLOCK DECODERS Michael A. Lexa and Don H. Johnson Rice University Department of Electrical and Computer Engineering Houston, TX 775-892 amlexa@rice.edu,

More information

ProblemsWeCanSolveWithaHelper

ProblemsWeCanSolveWithaHelper ITW 2009, Volos, Greece, June 10-12, 2009 ProblemsWeCanSolveWitha Haim Permuter Ben-Gurion University of the Negev haimp@bgu.ac.il Yossef Steinberg Technion - IIT ysteinbe@ee.technion.ac.il Tsachy Weissman

More information

Advanced Topics in Information Theory

Advanced Topics in Information Theory Advanced Topics in Information Theory Lecture Notes Stefan M. Moser c Copyright Stefan M. Moser Signal and Information Processing Lab ETH Zürich Zurich, Switzerland Institute of Communications Engineering

More information

On Common Information and the Encoding of Sources that are Not Successively Refinable

On Common Information and the Encoding of Sources that are Not Successively Refinable On Common Information and the Encoding of Sources that are Not Successively Refinable Kumar Viswanatha, Emrah Akyol, Tejaswi Nanjundaswamy and Kenneth Rose ECE Department, University of California - Santa

More information

Computing sum of sources over an arbitrary multiple access channel

Computing sum of sources over an arbitrary multiple access channel Computing sum of sources over an arbitrary multiple access channel Arun Padakandla University of Michigan Ann Arbor, MI 48109, USA Email: arunpr@umich.edu S. Sandeep Pradhan University of Michigan Ann

More information

Entropies & Information Theory

Entropies & Information Theory Entropies & Information Theory LECTURE I Nilanjana Datta University of Cambridge,U.K. See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223 Quantum Information Theory Born out of Classical Information

More information

Distributed Hypothesis Testing Over Discrete Memoryless Channels

Distributed Hypothesis Testing Over Discrete Memoryless Channels 1 Distributed Hypothesis Testing Over Discrete Memoryless Channels Sreejith Sreekumar and Deniz Gündüz Imperial College London, UK Email: {s.sreekumar15, d.gunduz}@imperial.ac.uk arxiv:1802.07665v6 [cs.it]

More information

6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 On the Structure of Real-Time Encoding and Decoding Functions in a Multiterminal Communication System Ashutosh Nayyar, Student

More information

Lecture 8: Information Theory and Statistics

Lecture 8: Information Theory and Statistics Lecture 8: Information Theory and Statistics Part II: Hypothesis Testing and Estimation I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 22, 2015

More information

Lecture 1: Introduction, Entropy and ML estimation

Lecture 1: Introduction, Entropy and ML estimation 0-704: Information Processing and Learning Spring 202 Lecture : Introduction, Entropy and ML estimation Lecturer: Aarti Singh Scribes: Min Xu Disclaimer: These notes have not been subjected to the usual

More information

Coding into a source: a direct inverse Rate-Distortion theorem

Coding into a source: a direct inverse Rate-Distortion theorem Coding into a source: a direct inverse Rate-Distortion theorem Mukul Agarwal, Anant Sahai, and Sanjoy Mitter Abstract Shannon proved that if we can transmit bits reliably at rates larger than the rate

More information

Chain Independence and Common Information

Chain Independence and Common Information 1 Chain Independence and Common Information Konstantin Makarychev and Yury Makarychev Abstract We present a new proof of a celebrated result of Gács and Körner that the common information is far less than

More information

Polar Write Once Memory Codes

Polar Write Once Memory Codes Polar Write Once Memory Codes David Burshtein, Senior Member, IEEE and Alona Strugatski Abstract arxiv:1207.0782v2 [cs.it] 7 Oct 2012 A coding scheme for write once memory (WOM) using polar codes is presented.

More information

Information Theory and Coding Techniques: Chapter 1.1. What is Information Theory? Why you should take this course?

Information Theory and Coding Techniques: Chapter 1.1. What is Information Theory? Why you should take this course? Information Theory and Coding Techniques: Chapter 1.1 What is Information Theory? Why you should take this course? 1 What is Information Theory? Information Theory answers two fundamental questions in

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process

Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process Applied Mathematical Sciences, Vol. 4, 2010, no. 62, 3083-3093 Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process Julia Bondarenko Helmut-Schmidt University Hamburg University

More information

EE5585 Data Compression May 2, Lecture 27

EE5585 Data Compression May 2, Lecture 27 EE5585 Data Compression May 2, 2013 Lecture 27 Instructor: Arya Mazumdar Scribe: Fangying Zhang Distributed Data Compression/Source Coding In the previous class we used a H-W table as a simple example,

More information

Exact Random Coding Error Exponents of Optimal Bin Index Decoding

Exact Random Coding Error Exponents of Optimal Bin Index Decoding Exact Random Coding Error Exponents of Optimal Bin Index Decoding Neri Merhav Department of Electrical Engineering Technion - Israel Institute of Technology Technion City, Haifa 32000, ISRAEL E mail: merhav@ee.technion.ac.il

More information

EE5139R: Problem Set 7 Assigned: 30/09/15, Due: 07/10/15

EE5139R: Problem Set 7 Assigned: 30/09/15, Due: 07/10/15 EE5139R: Problem Set 7 Assigned: 30/09/15, Due: 07/10/15 1. Cascade of Binary Symmetric Channels The conditional probability distribution py x for each of the BSCs may be expressed by the transition probability

More information

Improved Spectrum Utilization in Cognitive Radio Systems

Improved Spectrum Utilization in Cognitive Radio Systems Improved Spectrum Utilization in Cognitive Radio Systems Lei Cao and Ramanarayanan Viswanathan Department of Electrical Engineering The University of Mississippi Jan. 15, 2014 Lei Cao and Ramanarayanan

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

Covert Communication with Channel-State Information at the Transmitter

Covert Communication with Channel-State Information at the Transmitter Covert Communication with Channel-State Information at the Transmitter Si-Hyeon Lee Joint Work with Ligong Wang, Ashish Khisti, and Gregory W. Wornell July 27, 2017 1 / 21 Covert Communication Transmitter

More information

Large Deviations Performance of Interval Algorithm for Random Number Generation

Large Deviations Performance of Interval Algorithm for Random Number Generation Large Deviations Performance of Interval Algorithm for Random Number Generation Akisato KIMURA akisato@ss.titech.ac.jp Tomohiko UYEMATSU uematsu@ss.titech.ac.jp February 22, 999 No. AK-TR-999-0 Abstract

More information

On Scalable Coding in the Presence of Decoder Side Information

On Scalable Coding in the Presence of Decoder Side Information On Scalable Coding in the Presence of Decoder Side Information Emrah Akyol, Urbashi Mitra Dep. of Electrical Eng. USC, CA, US Email: {eakyol, ubli}@usc.edu Ertem Tuncel Dep. of Electrical Eng. UC Riverside,

More information

Achievable Error Exponents for the Private Fingerprinting Game

Achievable Error Exponents for the Private Fingerprinting Game Achievable Error Exponents for the Private Fingerprinting Game Anelia Somekh-Baruch and Neri Merhav Department of Electrical Engineering Technion - IIT, Haifa 32000, Israel anelia@tx, merhav@eetechnionacil

More information

Multimedia Communications. Scalar Quantization

Multimedia Communications. Scalar Quantization Multimedia Communications Scalar Quantization Scalar Quantization In many lossy compression applications we want to represent source outputs using a small number of code words. Process of representing

More information

National University of Singapore Department of Electrical & Computer Engineering. Examination for

National University of Singapore Department of Electrical & Computer Engineering. Examination for National University of Singapore Department of Electrical & Computer Engineering Examination for EE5139R Information Theory for Communication Systems (Semester I, 2014/15) November/December 2014 Time Allowed:

More information

Lecture 15: Conditional and Joint Typicaility

Lecture 15: Conditional and Joint Typicaility EE376A Information Theory Lecture 1-02/26/2015 Lecture 15: Conditional and Joint Typicaility Lecturer: Kartik Venkat Scribe: Max Zimet, Brian Wai, Sepehr Nezami 1 Notation We always write a sequence of

More information

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University Chapter 4 Data Transmission and Channel Capacity Po-Ning Chen, Professor Department of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 30050, R.O.C. Principle of Data Transmission

More information

Amobile satellite communication system, like Motorola s

Amobile satellite communication system, like Motorola s I TRANSACTIONS ON INFORMATION THORY, VOL. 45, NO. 4, MAY 1999 1111 Distributed Source Coding for Satellite Communications Raymond W. Yeung, Senior Member, I, Zhen Zhang, Senior Member, I Abstract Inspired

More information

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions EE/Stat 376B Handout #5 Network Information Theory October, 14, 014 1. Problem.4 parts (b) and (c). Homework Set # Solutions (b) Consider h(x + Y ) h(x + Y Y ) = h(x Y ) = h(x). (c) Let ay = Y 1 + Y, where

More information

High-dimensional graphical model selection: Practical and information-theoretic limits

High-dimensional graphical model selection: Practical and information-theoretic limits 1 High-dimensional graphical model selection: Practical and information-theoretic limits Martin Wainwright Departments of Statistics, and EECS UC Berkeley, California, USA Based on joint work with: John

More information

Shannon s A Mathematical Theory of Communication

Shannon s A Mathematical Theory of Communication Shannon s A Mathematical Theory of Communication Emre Telatar EPFL Kanpur October 19, 2016 First published in two parts in the July and October 1948 issues of BSTJ. First published in two parts in the

More information

Capacity Region of Reversely Degraded Gaussian MIMO Broadcast Channel

Capacity Region of Reversely Degraded Gaussian MIMO Broadcast Channel Capacity Region of Reversely Degraded Gaussian MIMO Broadcast Channel Jun Chen Dept. of Electrical and Computer Engr. McMaster University Hamilton, Ontario, Canada Chao Tian AT&T Labs-Research 80 Park

More information

Source Coding and Function Computation: Optimal Rate in Zero-Error and Vanishing Zero-Error Regime

Source Coding and Function Computation: Optimal Rate in Zero-Error and Vanishing Zero-Error Regime Source Coding and Function Computation: Optimal Rate in Zero-Error and Vanishing Zero-Error Regime Solmaz Torabi Dept. of Electrical and Computer Engineering Drexel University st669@drexel.edu Advisor:

More information

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16 EE539R: Problem Set 4 Assigned: 3/08/6, Due: 07/09/6. Cover and Thomas: Problem 3.5 Sets defined by probabilities: Define the set C n (t = {x n : P X n(x n 2 nt } (a We have = P X n(x n P X n(x n 2 nt

More information

Performance-based Security for Encoding of Information Signals. FA ( ) Paul Cuff (Princeton University)

Performance-based Security for Encoding of Information Signals. FA ( ) Paul Cuff (Princeton University) Performance-based Security for Encoding of Information Signals FA9550-15-1-0180 (2015-2018) Paul Cuff (Princeton University) Contributors Two students finished PhD Tiance Wang (Goldman Sachs) Eva Song

More information

Capacity of a Class of Semi-Deterministic Primitive Relay Channels

Capacity of a Class of Semi-Deterministic Primitive Relay Channels Capacity of a Class of Semi-Deterministic Primitive Relay Channels Ravi Tandon Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 2742 ravit@umd.edu

More information

AN INTRODUCTION TO SECRECY CAPACITY. 1. Overview

AN INTRODUCTION TO SECRECY CAPACITY. 1. Overview AN INTRODUCTION TO SECRECY CAPACITY BRIAN DUNN. Overview This paper introduces the reader to several information theoretic aspects of covert communications. In particular, it discusses fundamental limits

More information