Extreme values: Maxima and minima. October 16, / 12

Size: px
Start display at page:

Download "Extreme values: Maxima and minima. October 16, / 12"

Transcription

1 Extreme values: Maxima and minima October 16, / 12

2 Motivation for Maxima and Minima Imagine you have some model which predicts profits / cost of doing something /.... Then you probably want to find a way of deciding what choices result in the largest (for profit) or smallest (for cost) result possible. Today s Goal: Can calculus help us here? October 16, / 12

3 Motivation for Maxima and Minima Imagine you have some model which predicts profits / cost of doing something /.... Then you probably want to find a way of deciding what choices result in the largest (for profit) or smallest (for cost) result possible. Today s Goal: Can calculus help us here? Today s outline: (1)Before we want to find best possible choices, we will want to have a reason to beleive that there is a best possible choice. (2) Then we will use calculus to reduce the finding of the best choice (or worst choice) to solving some equation involving the derivative! October 16, / 12

4 Hiking Imagine you are walking and your height as a function of time is given by h(t). Suppose that the graph is given by : October 16, / 12

5 Hiking Imagine you are walking and your height as a function of time is given by h(t). Suppose that the graph is given by : Where does it look like you are at a peak? Where does it look like you are in a valley? Where on your hike are you at the greatest elevation? Where are you at your lowest elevation? October 16, / 12

6 Hiking Imagine you are walking and your height as a function of time is given by h(t). Suppose that the graph is given by : Where does it look like you are at a peak? Where does it look like you are in a valley? Where on your hike are you at the greatest elevation? Where are you at your lowest elevation? If this were a graph of expected price of a doodad over time, then when is the best time to buy a Thneed? October 16, / 12

7 Definitions: Global maxima and minima For a function f, defined on an interval I containing a point c. c is called an Absolute Maximum (or Global Maximum) if f (c) is greater and or equal to f (x) for all values of x in I. For a function f, defined on an interval I containing a point c. c is called an Absolute Minimum (or Global Minimum) if f (c) is greater and or equal to f (x) for all values of x in I. October 16, / 12

8 Definitions: Global maxima and minima For a function f, defined on an interval I containing a point c. c is called an Absolute Maximum (or Global Maximum) if f (c) is greater and or equal to f (x) for all values of x in I. For a function f, defined on an interval I containing a point c. c is called an Absolute Minimum (or Global Minimum) if f (c) is greater and or equal to f (x) for all values of x in I. Where are the absolute maxima and minima for these functions. How many are there? cos(x) (x 1) 2 1/x This function on (0, 2π) on [0, 2] on (0, ) on [0, 2] October 16, / 12

9 Definitions: Global maxima and minima For a function f, defined on an interval I containing a point c. c is called an Absolute Maximum (or Global Maximum) if f (c) is greater and or equal to f (x) for all values of x in I. For a function f, defined on an interval I containing a point c. c is called an Absolute Minimum (or Global Minimum) if f (c) is greater and or equal to f (x) for all values of x in I. Where are the absolute maxima and minima for these functions. How many are there? cos(x) (x 1) 2 1/x This function on (0, 2π) on [0, 2] on (0, ) on [0, 2] That is weird. Not all functions have an absolute maximum / minimum. And some have many maxima / minima. October 16, / 12

10 The extreme value theorem What went wrong in these examples? October 16, / 12

11 The extreme value theorem What went wrong in these examples? Well some of the functions just weren t continuous. Discontinuous functions can do anything they want. October 16, / 12

12 The extreme value theorem What went wrong in these examples? Well some of the functions just weren t continuous. Discontinuous functions can do anything they want. In some examples the functions were defined on intervals that were lacking an endpoint (or the endpoint was infinite.) The function could keep increasing (or decreasing) as it approached that endpoint. October 16, / 12

13 The extreme value theorem What went wrong in these examples? Well some of the functions just weren t continuous. Discontinuous functions can do anything they want. In some examples the functions were defined on intervals that were lacking an endpoint (or the endpoint was infinite.) The function could keep increasing (or decreasing) as it approached that endpoint. If we rule out these problems then all functions have (possibly many) maxima / minima. Theorem (The extreme value theorem) If a function is continuous on some closed interval, then it has an absolute maximum and an absolute minimum on that closed interval. October 16, / 12

14 The extremal value theorem Theorem (The extremal value theorem) If a function is continuous on some closed, bounded interval [a, b], then it has an absolute maximum and an absolute minimum on that closed interval. What this theorem tells us is that looking for absolute maxima and minima is a reasonable thing to do, as long as we are working on closed intervals. If we are working on an open internal, then there are no guarantees. October 16, / 12

15 The extremal value theorem Theorem (The extremal value theorem) If a function is continuous on some closed, bounded interval [a, b], then it has an absolute maximum and an absolute minimum on that closed interval. What this theorem tells us is that looking for absolute maxima and minima is a reasonable thing to do, as long as we are working on closed intervals. If we are working on an open internal, then there are no guarantees. Does f (x) = x + cos(x) have a absolute maximum on [ π, π]? How about an absolute minimum? October 16, / 12

16 The extremal value theorem Theorem (The extremal value theorem) If a function is continuous on some closed, bounded interval [a, b], then it has an absolute maximum and an absolute minimum on that closed interval. What this theorem tells us is that looking for absolute maxima and minima is a reasonable thing to do, as long as we are working on closed intervals. If we are working on an open internal, then there are no guarantees. Does f (x) = x + cos(x) have a absolute maximum on [ π, π]? How about an absolute minimum? Does is have an absolute maximum on (, )? What about an absolute Minimum? Try graphing October 16, / 12

17 Today s goal: Finding absolute maxima and minima, now that we know they exist. We know that continuous functions on closed intervals have global maxima. Can we find them? October 16, / 12

18 Today s goal: Finding absolute maxima and minima, now that we know they exist. We know that continuous functions on closed intervals have global maxima. Can we find them? Calculus studies things locally. Think about the definition of the derivative for example. Motivated by this we will localize the idea of a maximum. October 16, / 12

19 Today s goal: Finding absolute maxima and minima, now that we know they exist. We know that continuous functions on closed intervals have global maxima. Can we find them? Calculus studies things locally. Think about the definition of the derivative for example. Motivated by this we will localize the idea of a maximum. If c is a global maximum then f (c) is greater than or equal to f (x) for x in I. Then in particular f (c) is greater than or equal to f (x) for x close to c in I. October 16, / 12

20 Today s goal: Finding absolute maxima and minima, now that we know they exist. We know that continuous functions on closed intervals have global maxima. Can we find them? Calculus studies things locally. Think about the definition of the derivative for example. Motivated by this we will localize the idea of a maximum. If c is a global maximum then f (c) is greater than or equal to f (x) for x in I. Then in particular f (c) is greater than or equal to f (x) for x close to c in I. Definition For a function f, defined on an interval I containing a point c. c is called a local Maximum if f (c) is greater and or equal to f (x) for all x nearby c in I. If c is a global maximum, then it is a local maximum. So If you find a list containing every local maximum then that list contains the global maximum? We have some plots to look at on the notes. How can calculus help us here? October 16, / 12

21 Finding local maxima and minima Definition For a function f, defined on an interval I containing a point c. c is called a local Maximum if f (c) is greater and or equal to f (x) for all x nearby c in I. How can calculus help us here? October 16, / 12

22 Finding local maxima and minima Definition For a function f, defined on an interval I containing a point c. c is called a local Maximum if f (c) is greater and or equal to f (x) for all x nearby c in I. How can calculus help us here? Think about what the derivative means: October 16, / 12

23 Finding local maxima and minima Definition For a function f, defined on an interval I containing a point c. c is called a local Maximum if f (c) is greater and or equal to f (x) for all x nearby c in I. How can calculus help us here? Think about what the derivative means: If f (c) > 0 then you are still ascending at c. If you take one more step then you will be higher. c does not produce a local maximum October 16, / 12

24 Finding local maxima and minima Definition For a function f, defined on an interval I containing a point c. c is called a local Maximum if f (c) is greater and or equal to f (x) for all x nearby c in I. How can calculus help us here? Think about what the derivative means: If f (c) > 0 then you are still ascending at c. If you take one more step then you will be higher. c does not produce a local maximum Similarly if f (c) < 0 then c is not a local maximum. Taking a step backwards would produce greater height. October 16, / 12

25 Finding local maxima and minima Definition For a function f, defined on an interval I containing a point c. c is called a local Maximum if f (c) is greater and or equal to f (x) for all x nearby c in I. How can calculus help us here? Think about what the derivative means: If f (c) > 0 then you are still ascending at c. If you take one more step then you will be higher. c does not produce a local maximum Similarly if f (c) < 0 then c is not a local maximum. Taking a step backwards would produce greater height. Theorem If c is a local maximum of f then either or. Example: Find a list of candidates to be local maxima of x 3 3x + 2 on [ 1, 2] or October 16, / 12

26 Finding local maxima and minima Definition For a function f, defined on an interval I containing a point c. c is called a local Maximum if f (c) is greater and or equal to f (x) for all x nearby c in I. How can calculus help us here? Think about what the derivative means: If f (c) > 0 then you are still ascending at c. If you take one more step then you will be higher. c does not produce a local maximum Similarly if f (c) < 0 then c is not a local maximum. Taking a step backwards would produce greater height. Theorem If c is a local maximum of f then either f (c) = 0 or or. Example: Find a list of candidates to be local maxima of x 3 3x + 2 on [ 1, 2] October 16, / 12

27 Finding local maxima and minima Definition For a function f, defined on an interval I containing a point c. c is called a local Maximum if f (c) is greater and or equal to f (x) for all x nearby c in I. How can calculus help us here? Think about what the derivative means: If f (c) > 0 then you are still ascending at c. If you take one more step then you will be higher. c does not produce a local maximum Similarly if f (c) < 0 then c is not a local maximum. Taking a step backwards would produce greater height. Theorem If c is a local maximum of f then either f (c) = 0 or f (c) does not exist or. Example: Find a list of candidates to be local maxima of x 3 3x + 2 on [ 1, 2] October 16, / 12

28 Finding local maxima and minima Definition For a function f, defined on an interval I containing a point c. c is called a local Maximum if f (c) is greater and or equal to f (x) for all x nearby c in I. How can calculus help us here? Think about what the derivative means: If f (c) > 0 then you are still ascending at c. If you take one more step then you will be higher. c does not produce a local maximum Similarly if f (c) < 0 then c is not a local maximum. Taking a step backwards would produce greater height. Theorem If c is a local maximum of f then either f (c) = 0 or f (c) does not exist or c is an endpoint of the interval. Example: Find a list of candidates to be local maxima of x 3 3x + 2 on [ 1, 2] October 16, / 12

29 Critical points Definition (Critical points) For a function f defined on an interval I c is a critical point if f (c) = 0 or f (c) does not exist or c is an endpoint of the interval Notice that the points on the boundary of the interval are automatically critical points. The theorem on the previous slide is Theorem If c is a local maximum of f then c is a critical point. Example: What are the critical points of x 3 x 2 x 1 on [ 1, 2]. Find the global maximum. Find the global minimum. October 16, / 12

30 A general strategy: An Algorithm to find the global maximum of f (x) on the interval I : (1) Compute f (x) (2) Find the critical points of f (INCLUDING THE BOUNDARY POINTS) (3) Evaluate the function at those points and see which one is the biggest. Example: Find the global maximum of f (x) = x 3 x on [ 10, 10]. Example: Find the global maximum of f (x) = x 4 x on [ 10, 10]. October 16, / 12

31 maximizing areas of rectangles Of all rectangles which have total perimeter 50, which one has the greatest area? Strategy: 1 In terms of length (l) and width (w), what does it mean to have perimeter 50? Solve for l in terms of w. (or w in terms of l.) 2 Express area in terms of l and w. Eliminate one of these variable. 3 Since the perimeter is 50, could l possible be greater than 50? Do negative numbers make sense for l and w? 4 Write down the closed interval which is the domain of interest. 5 Maximize. October 16, / 12

32 Group Work Maximize x 3 x + 1 on [ 10, 10] Maximize f (x) = x on [ 10, 10]. x + 1 Maximize x + cos 1 (x) on [ 1, 1] October 16, / 12

Maxima and Minima of Functions

Maxima and Minima of Functions Maxima and Minima of Functions Outline of Section 4.2 of Sullivan and Miranda Calculus Sean Ellermeyer Kennesaw State University October 21, 2015 Sean Ellermeyer (Kennesaw State University) Maxima and

More information

1 Lecture 25: Extreme values

1 Lecture 25: Extreme values 1 Lecture 25: Extreme values 1.1 Outline Absolute maximum and minimum. Existence on closed, bounded intervals. Local extrema, critical points, Fermat s theorem Extreme values on a closed interval Rolle

More information

MA 123 (Calculus I) Lecture 13: October 19, 2017 Section A2. Professor Jennifer Balakrishnan,

MA 123 (Calculus I) Lecture 13: October 19, 2017 Section A2. Professor Jennifer Balakrishnan, Professor Jennifer Balakrishnan, jbala@bu.edu What is on today 1 Maxima and minima 1 1.1 Applications.................................... 1 2 What derivatives tell us 2 2.1 Increasing and decreasing functions.......................

More information

MATH Max-min Theory Fall 2016

MATH Max-min Theory Fall 2016 MATH 20550 Max-min Theory Fall 2016 1. Definitions and main theorems Max-min theory starts with a function f of a vector variable x and a subset D of the domain of f. So far when we have worked with functions

More information

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013 Lecture 11: Extrema Nathan Pflueger 2 October 201 1 Introduction In this lecture we begin to consider the notion of extrema of functions on chosen intervals. This discussion will continue in the lectures

More information

14 Increasing and decreasing functions

14 Increasing and decreasing functions 14 Increasing and decreasing functions 14.1 Sketching derivatives READING Read Section 3.2 of Rogawski Reading Recall, f (a) is the gradient of the tangent line of f(x) at x = a. We can use this fact to

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B. Laval KSU Today Philippe B. Laval (KSU) Extreme Values Today 1 / 18 Introduction In Calculus I (differential calculus for functions of one variable),

More information

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2 AB CALCULUS Page 1 of 6 NAME DATE 1. Evaluate each it: AB CALCULUS Show all work on separate paper. x 3 x 9 x 5x + 6 x 0 5x 3sin x x 7 x 3 x 3 5x (d) 5x 3 x +1 x x 4 (e) x x 9 3x 4 6x (f) h 0 sin( π 6

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 Absolute (or Global) Minima and Maxima Def.: Let x = c be a number in the domain of a function f. f has an absolute (or, global ) minimum

More information

Chapter 3: The Derivative in Graphing and Applications

Chapter 3: The Derivative in Graphing and Applications Chapter 3: The Derivative in Graphing and Applications Summary: The main purpose of this chapter is to use the derivative as a tool to assist in the graphing of functions and for solving optimization problems.

More information

More on infinite series Antiderivatives and area

More on infinite series Antiderivatives and area More on infinite series Antiderivatives and area September 28, 2017 The eighth breakfast was on Monday: There are still slots available for the October 4 breakfast (Wednesday, 8AM), and there s a pop-in

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B Laval KSU April 9, 2012 Philippe B Laval (KSU) Functions of Several Variables April 9, 2012 1 / 13 Introduction In Calculus I (differential calculus

More information

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test.

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test. Chapter 4: Applications of Differentiation In this chapter we will cover: 41 Maximum and minimum values The critical points method for finding extrema 43 How derivatives affect the shape of a graph The

More information

Solving related rates problems

Solving related rates problems Solving related rates problems 1 Draw a diagram 2 Assign symbols to all quantities that are functions of time 3 Express given information and the required rate in terms of derivatives 4 Write down a relation

More information

Calculus. Applications of Differentiations (II)

Calculus. Applications of Differentiations (II) Calculus Applications of Differentiations (II) Outline 1 Maximum and Minimum Values Absolute Extremum Local Extremum and Critical Number 2 Increasing and Decreasing First Derivative Test Outline 1 Maximum

More information

Answers for Calculus Review (Extrema and Concavity)

Answers for Calculus Review (Extrema and Concavity) Answers for Calculus Review 4.1-4.4 (Extrema and Concavity) 1. A critical number is a value of the independent variable (a/k/a x) in the domain of the function at which the derivative is zero or undefined.

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

4.1 - Maximum and Minimum Values

4.1 - Maximum and Minimum Values 4.1 - Maximum and Minimum Values Calculus I, Section 011 Zachary Cline Temple University October 27, 2017 Maximum and Minimum Values absolute max. of 5 occurs at 3 absolute min. of 2 occurs at 6 Maximum

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Copy anything you do not already have memorized into your notes.

Copy anything you do not already have memorized into your notes. Copy anything you do not already have memorized into your notes. A monomial is the product of non-negative integer powers of variables. ONLY ONE TERM. ( mono- means one) No negative exponents which means

More information

Calculus I 5. Applications of differentiation

Calculus I 5. Applications of differentiation 2301107 Calculus I 5. Applications of differentiation Chapter 5:Applications of differentiation C05-2 Outline 5.1. Extreme values 5.2. Curvature and Inflection point 5.3. Curve sketching 5.4. Related rate

More information

( ) = 0. ( ) does not exist. 4.1 Maximum and Minimum Values Assigned videos: , , , DEFINITION Critical number

( ) = 0. ( ) does not exist. 4.1 Maximum and Minimum Values Assigned videos: , , , DEFINITION Critical number 4.1 Maximum and Minimum Values Assigned videos: 4.1.001, 4.1.005, 4.1.035, 4.1.039 DEFINITION Critical number A critical number of a function f is a number c in the domain of f such that f c or f c ( )

More information

Calculus 221 worksheet

Calculus 221 worksheet Calculus 221 worksheet Graphing A function has a global maximum at some a in its domain if f(x) f(a) for all other x in the domain of f. Global maxima are sometimes also called absolute maxima. A function

More information

Applications of Derivatives

Applications of Derivatives Applications of Derivatives Related Rates General steps 1. Draw a picture!! (This may not be possible for every problem, but there s usually something you can draw.) 2. Label everything. If a quantity

More information

The total differential

The total differential The total differential The total differential of the function of two variables The total differential gives the full information about rates of change of the function in the -direction and in the -direction.

More information

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Essentials of Calculus by James Stewart Prepared by Jason Gaddis Chapter 3 - Applications of Differentiation 3.1 - Maximum and Minimum Values Note We continue our study of functions using derivatives.

More information

Functions. 1. Any set of ordered pairs is a relation. Graph each set of ordered pairs. A. B. C.

Functions. 1. Any set of ordered pairs is a relation. Graph each set of ordered pairs. A. B. C. Functions 1. Any set of ordered pairs is a relation. Graph each set of ordered pairs. A. x y B. x y C. x y -3-6 -2-1 -3 6-1 -3-3 0-2 4 0-1 6 3-1 1 3 5-2 1 0 0 5 6-1 4 1 1 A. B. C. 2. A function is a special

More information

Section 3.3 Maximum and Minimum Values

Section 3.3 Maximum and Minimum Values Section 3.3 Maximum and Minimum Values Definition For a function f defined on a set S of real numbers and a number c in S. A) f(c) is called the absolute maximum of f on S if f(c) f(x) for all x in S.

More information

A Model Precalculus Curriculum: The Gateways to Advance Mathematical Thinking Project

A Model Precalculus Curriculum: The Gateways to Advance Mathematical Thinking Project Model Precalculus Curriculum: The Gateways to dvance Mathematical Thinking Project Michelle Manes Education Development Center, Inc. michelle@edc.org Education Development Center, Inc. is a private, non-profit

More information

Math 307 Lecture 6. Differences Between Linear and Nonlinear Equations. W.R. Casper. Department of Mathematics University of Washington

Math 307 Lecture 6. Differences Between Linear and Nonlinear Equations. W.R. Casper. Department of Mathematics University of Washington Math 307 Lecture 6 Differences Between Linear and Nonlinear Equations W.R. Casper Department of Mathematics University of Washington January 22, 2016 Today! Last time: Modeling first-order equations This

More information

Review Sheet 2 Solutions

Review Sheet 2 Solutions Review Sheet Solutions 1. If y x 3 x and dx dt 5, find dy dt when x. We have that dy dt 3 x dx dt dx dt 3 x 5 5, and this is equal to 3 5 10 70 when x.. A spherical balloon is being inflated so that its

More information

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table.

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table. MA 1125 Lecture 15 - The Standard Normal Distribution Friday, October 6, 2017. Objectives: Introduce the standard normal distribution and table. 1. The Standard Normal Distribution We ve been looking at

More information

Math 165 Final Exam worksheet solutions

Math 165 Final Exam worksheet solutions C Roettger, Fall 17 Math 165 Final Exam worksheet solutions Problem 1 Use the Fundamental Theorem of Calculus to compute f(4), where x f(t) dt = x cos(πx). Solution. From the FTC, the derivative of the

More information

Absolute and Local Extrema

Absolute and Local Extrema Extrema of Functions We can use the tools of calculus to help us understand and describe the shapes of curves. Here is some of the data that derivatives f (x) and f (x) can provide about the shape of the

More information

3: Linear Systems. Examples. [1.] Solve. The first equation is in blue; the second is in red. Here's the graph: The solution is ( 0.8,3.4 ).

3: Linear Systems. Examples. [1.] Solve. The first equation is in blue; the second is in red. Here's the graph: The solution is ( 0.8,3.4 ). 3: Linear Systems 3-1: Graphing Systems of Equations So far, you've dealt with a single equation at a time or, in the case of absolute value, one after the other. Now it's time to move to multiple equations

More information

Representation of Functions as Power Series

Representation of Functions as Power Series Representation of Functions as Power Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Functions as Power Series Today / Introduction In this section and the next, we develop several techniques

More information

Introduction to Calculus

Introduction to Calculus Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative

More information

Please do not start working until instructed to do so. You have 50 minutes. You must show your work to receive full credit. Calculators are OK.

Please do not start working until instructed to do so. You have 50 minutes. You must show your work to receive full credit. Calculators are OK. Loyola University Chicago Math 131, Section 009, Fall 2008 Midterm 2 Name (print): Signature: Please do not start working until instructed to do so. You have 50 minutes. You must show your work to receive

More information

Grade 6 Math Circles October 9 & Visual Vectors

Grade 6 Math Circles October 9 & Visual Vectors Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 9 & 10 2018 Visual Vectors Introduction What is a vector? How does it differ

More information

Line Integrals and Path Independence

Line Integrals and Path Independence Line Integrals and Path Independence We get to talk about integrals that are the areas under a line in three (or more) dimensional space. These are called, strangely enough, line integrals. Figure 11.1

More information

where u is the decision-maker s payoff function over her actions and S is the set of her feasible actions.

where u is the decision-maker s payoff function over her actions and S is the set of her feasible actions. Seminars on Mathematics for Economics and Finance Topic 3: Optimization - interior optima 1 Session: 11-12 Aug 2015 (Thu/Fri) 10:00am 1:00pm I. Optimization: introduction Decision-makers (e.g. consumers,

More information

12.1 The Extrema of a Function

12.1 The Extrema of a Function . The Etrema of a Function Question : What is the difference between a relative etremum and an absolute etremum? Question : What is a critical point of a function? Question : How do you find the relative

More information

It has neither a local maximum value nor an absolute maximum value

It has neither a local maximum value nor an absolute maximum value 1 Here, we learn how derivatives affect the shape of a graph of a function and, in particular, how they help us locate maximum and minimum values of functions. Some of the most important applications of

More information

CS Algorithms and Complexity

CS Algorithms and Complexity CS 50 - Algorithms and Complexity Linear Programming, the Simplex Method, and Hard Problems Sean Anderson 2/15/18 Portland State University Table of contents 1. The Simplex Method 2. The Graph Problem

More information

= c, we say that f ( c ) is a local

= c, we say that f ( c ) is a local Section 3.4 Extreme Values Local Extreme Values Suppose that f is a function defined on open interval I and c is an interior point of I. The function f has a local minimum at x= c if f ( c) f ( x) for

More information

Extrema and the Extreme Value Theorem

Extrema and the Extreme Value Theorem Extrema and the Extreme Value Theorem Local and Absolute Extrema. Extrema are the points where we will find a maximum or minimum on the curve. If they are local or relative extrema, then they will be the

More information

Increasing or Decreasing Nature of a Function

Increasing or Decreasing Nature of a Function Öğr. Gör. Volkan ÖĞER FBA 1021 Calculus 1/ 46 Increasing or Decreasing Nature of a Function Examining the graphical behavior of functions is a basic part of mathematics and has applications to many areas

More information

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, there is a model solution (showing you the level of detail I expect on the exam) and then below

More information

Chapter 5 Simplifying Formulas and Solving Equations

Chapter 5 Simplifying Formulas and Solving Equations Chapter 5 Simplifying Formulas and Solving Equations Look at the geometry formula for Perimeter of a rectangle P = L W L W. Can this formula be written in a simpler way? If it is true, that we can simplify

More information

Math Practice Final - solutions

Math Practice Final - solutions Math 151 - Practice Final - solutions 2 1-2 -1 0 1 2 3 Problem 1 Indicate the following from looking at the graph of f(x) above. All answers are small integers, ±, or DNE for does not exist. a) lim x 1

More information

Precalculus idea: A picture is worth 1,000 words

Precalculus idea: A picture is worth 1,000 words Six Pillars of Calculus by Lorenzo Sadun Calculus is generally viewed as a difficult subject, with hundreds of formulas to memorize and many applications to the real world. However, almost all of calculus

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

Mathematical Economics: Lecture 3

Mathematical Economics: Lecture 3 Mathematical Economics: Lecture 3 Yu Ren WISE, Xiamen University October 7, 2012 Outline 1 Example of Graphing Example 3.1 Consider the cubic function f (x) = x 3 3x. Try to graph this function Example

More information

Calculus Example Exam Solutions

Calculus Example Exam Solutions Calculus Example Exam Solutions. Limits (8 points, 6 each) Evaluate the following limits: p x 2 (a) lim x 4 We compute as follows: lim p x 2 x 4 p p x 2 x +2 x 4 p x +2 x 4 (x 4)( p x + 2) p x +2 = p 4+2

More information

Section 5-1 First Derivatives and Graphs

Section 5-1 First Derivatives and Graphs Name Date Class Section 5-1 First Derivatives and Graphs Goal: To use the first derivative to analyze graphs Theorem 1: Increasing and Decreasing Functions For the interval (a,b), if f '( x ) > 0, then

More information

Chapter 4. Inequalities

Chapter 4. Inequalities Chapter 4 Inequalities Vannevar Bush, Internet Pioneer 4.1 Inequalities 4. Absolute Value 4.3 Graphing Inequalities with Two Variables Chapter Review Chapter Test 64 Section 4.1 Inequalities Unlike equations,

More information

Key Features of a Graph. Warm Up What do you think the key features are of a graph? Write them down.

Key Features of a Graph. Warm Up What do you think the key features are of a graph? Write them down. Warm Up What do you think the key features are of a graph? Write them down. 1 Domain and Range x intercepts and y intercepts Intervals of increasing, decreasing, and constant behavior Parent Equations

More information

Mon 3 Nov Tuesday 4 Nov: Quiz 8 ( ) Friday 7 Nov: Exam 2!!! Today: 4.5 Wednesday: REVIEW. In class Covers

Mon 3 Nov Tuesday 4 Nov: Quiz 8 ( ) Friday 7 Nov: Exam 2!!! Today: 4.5 Wednesday: REVIEW. In class Covers Mon 3 Nov 2014 Tuesday 4 Nov: Quiz 8 (4.2-4.4) Friday 7 Nov: Exam 2!!! In class Covers 3.9-4.5 Today: 4.5 Wednesday: REVIEW Linear Approximation and Differentials In section 4.5, you see the pictures on

More information

Major Ideas in Calc 3 / Exam Review Topics

Major Ideas in Calc 3 / Exam Review Topics Major Ideas in Calc 3 / Exam Review Topics Here are some highlights of the things you should know to succeed in this class. I can not guarantee that this list is exhaustive!!!! Please be sure you are able

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Matroids and Greedy Algorithms Date: 10/31/16

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Matroids and Greedy Algorithms Date: 10/31/16 60.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Matroids and Greedy Algorithms Date: 0/3/6 6. Introduction We talked a lot the last lecture about greedy algorithms. While both Prim

More information

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc.

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc. 1.2 Functions and Their Properties Copyright 2011 Pearson, Inc. What you ll learn about Function Definition and Notation Domain and Range Continuity Increasing and Decreasing Functions Boundedness Local

More information

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2 AP Physics C Calculus C.1 Name Trigonometric Functions 1. Consider the right triangle to the right. In terms of a, b, and c, write the expressions for the following: c a sin θ = cos θ = tan θ =. Using

More information

The Princeton Review AP Calculus BC Practice Test 1

The Princeton Review AP Calculus BC Practice Test 1 8 The Princeton Review AP Calculus BC Practice Test CALCULUS BC SECTION I, Part A Time 55 Minutes Number of questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each

More information

Topics for Review for Midterm II in Calculus 16A

Topics for Review for Midterm II in Calculus 16A Topics for Review for Midterm II in Calculus 16A Instructor: Zvezdelina Stankova Contents 1. Definitions 1. Theorems 3. Problem Solving Techniques 3 4. Useful Formulas and Miscallaneous Facts 9 5. Exercises

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture 0 8.0 Fall 2006 Lecture

More information

A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition:

A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition: 1.2 Functions and Their Properties A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition: Definition: Function, Domain,

More information

Going from graphic solutions to algebraic

Going from graphic solutions to algebraic Going from graphic solutions to algebraic 2 variables: Graph constraints Identify corner points of feasible area Find which corner point has best objective value More variables: Think about constraints

More information

Math 113 HW #10 Solutions

Math 113 HW #10 Solutions Math HW #0 Solutions 4.5 4. Use the guidelines of this section to sketch the curve Answer: Using the quotient rule, y = x x + 9. y = (x + 9)(x) x (x) (x + 9) = 8x (x + 9). Since the denominator is always

More information

Matroids. Start with a set of objects, for example: E={ 1, 2, 3, 4, 5 }

Matroids. Start with a set of objects, for example: E={ 1, 2, 3, 4, 5 } Start with a set of objects, for example: E={ 1, 2, 3, 4, 5 } Start with a set of objects, for example: E={ 1, 2, 3, 4, 5 } The power set of E is the set of all possible subsets of E: {}, {1}, {2}, {3},

More information

Chapter 6 Overview: Applications of Derivatives

Chapter 6 Overview: Applications of Derivatives Chapter 6 Overview: Applications of Derivatives There are two main contets for derivatives: graphing and motion. In this chapter, we will consider the graphical applications of the derivative. Much of

More information

Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur

Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 01 Introduction to Optimization Today, we will start the constrained

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION We have already investigated some applications of derivatives. However, now that we know the differentiation rules, we are in a better

More information

22: Applications of Differential Calculus

22: Applications of Differential Calculus 22: Applications of Differential Calculus A: Time Rate of Change The most common use of calculus (the one that motivated our discussions of the previous chapter) are those that involve change in some quantity

More information

ACTIVITY 3. Learning Targets: 38 Unit 1 Equations and Inequalities. Solving Inequalities. continued. My Notes

ACTIVITY 3. Learning Targets: 38 Unit 1 Equations and Inequalities. Solving Inequalities. continued. My Notes Learning Targets: Write inequalities to represent real-world situations. Solve multi-step inequalities. SUGGESTED LEARNING STRATEGIES: Create Representations, Guess and Check, Look for a Pattern, Think-Pair-Share,

More information

Area. A(2) = sin(0) π 2 + sin(π/2)π 2 = π For 3 subintervals we will find

Area. A(2) = sin(0) π 2 + sin(π/2)π 2 = π For 3 subintervals we will find Area In order to quantify the size of a -dimensional object, we use area. Since we measure area in square units, we can think of the area of an object as the number of such squares it fills up. Using this

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools Introduction to Calculus 50 Introduction to Calculus 50 BOE Approved 04/08/2014 1 INTRODUCTION TO CALCULUS 50 Critical Areas of Focus Introduction to Calculus 50 course

More information

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...}

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...} WORKSHEET ON NUMBERS, MATH 215 FALL 18(WHYTE) We start our study of numbers with the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } and their subset of natural numbers: N = {1, 2, 3,...} For now we will not

More information

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Module No. #05 Lecture No. #29 Non Isothermal Reactor Operation Let us continue

More information

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then 4 3A : Increasing and Decreasing Functions and the First Derivative Increasing and Decreasing! If the following conditions both occur! 1. f (x) is a continuous function on the closed interval [ a,b] and

More information

Foundations 5 Curriculum Guide

Foundations 5 Curriculum Guide 1. Review: Natural Numbers...3 2. Reading and Writing Natural Numbers...6 3. Lines, Rays, and Line Segments...8 4. Comparing Natural Numbers... 12 5. Rounding Numbers... 15 6. Adding Natural Numbers...

More information

CLEP Precalculus - Problem Drill 15: Systems of Equations and Inequalities

CLEP Precalculus - Problem Drill 15: Systems of Equations and Inequalities CLEP Precalculus - Problem Drill 15: Systems of Equations and Inequalities No. 1 of 10 1. What are the methods to solve a system of equations? (A) Graphing, replacing, substitution and matrix techniques.

More information

Pre-Calc 2nd Semester Review Packet - #2

Pre-Calc 2nd Semester Review Packet - #2 Pre-Calc 2nd Semester Review Packet - #2 Use the graph to determine the function's domain and range. 1) 2) Find the domain of the rational function. 3) h(x) = x + 8 x2-36 A) {x x -6, x 6, x -8} B) all

More information

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables We learned to find the maxima and minima of a function of a single variable earlier in the course We had a second derivative test

More information

Part 1: You are given the following system of two equations: x + 2y = 16 3x 4y = 2

Part 1: You are given the following system of two equations: x + 2y = 16 3x 4y = 2 Solving Systems of Equations Algebraically Teacher Notes Comment: As students solve equations throughout this task, have them continue to explain each step using properties of operations or properties

More information

Math Lecture 4 Limit Laws

Math Lecture 4 Limit Laws Math 1060 Lecture 4 Limit Laws Outline Summary of last lecture Limit laws Motivation Limits of constants and the identity function Limits of sums and differences Limits of products Limits of polynomials

More information

Chapter 2 Linear Equations and Inequalities in One Variable

Chapter 2 Linear Equations and Inequalities in One Variable Chapter 2 Linear Equations and Inequalities in One Variable Section 2.1: Linear Equations in One Variable Section 2.3: Solving Formulas Section 2.5: Linear Inequalities in One Variable Section 2.6: Compound

More information

TAYLOR POLYNOMIALS DARYL DEFORD

TAYLOR POLYNOMIALS DARYL DEFORD TAYLOR POLYNOMIALS DARYL DEFORD 1. Introduction We have seen in class that Taylor polynomials provide us with a valuable tool for approximating many different types of functions. However, in order to really

More information

Section 2.1. Increasing, Decreasing, and Piecewise Functions; Applications

Section 2.1. Increasing, Decreasing, and Piecewise Functions; Applications Section 2.1 Increasing, Decreasing, and Piecewise Functions; Applications Features of Graphs Intervals of Increase and Decrease A function is increasing when the graph goes up as you travel along it from

More information

Grade 6 Math Circles October 9 & Visual Vectors

Grade 6 Math Circles October 9 & Visual Vectors Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 9 & 10 2018 Visual Vectors Introduction What is a vector? How does it differ

More information

The definition, and some continuity laws. Types of discontinuities. The Squeeze Theorem. Two special limits. The IVT and EVT.

The definition, and some continuity laws. Types of discontinuities. The Squeeze Theorem. Two special limits. The IVT and EVT. MAT137 - Week 5 The deadline to drop to MAT135 is tomorrow. (Details on course website.) The deadline to let us know you have a scheduling conflict with Test 1 is also tomorrow. (Details on the course

More information

Section 20: Arrow Diagrams on the Integers

Section 20: Arrow Diagrams on the Integers Section 0: Arrow Diagrams on the Integers Most of the material we have discussed so far concerns the idea and representations of functions. A function is a relationship between a set of inputs (the leave

More information

Section 4.1 Relative Extrema 3 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.1 Relative Extrema 3 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.1 Relative Extrema 3 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) Extrema 1 / 16 Application of Differentiation One of the most important applications of differential

More information

AB Calculus Diagnostic Test

AB Calculus Diagnostic Test AB Calculus Diagnostic Test The Exam AP Calculus AB Exam SECTION I: Multiple-Choice Questions DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO. At a Glance Total Time hour and 5 minutes Number of Questions

More information

1 5 π 2. 5 π 3. 5 π π x. 5 π 4. Figure 1: We need calculus to find the area of the shaded region.

1 5 π 2. 5 π 3. 5 π π x. 5 π 4. Figure 1: We need calculus to find the area of the shaded region. . Area In order to quantify the size of a 2-dimensional object, we use area. Since we measure area in square units, we can think of the area of an object as the number of such squares it fills up. Using

More information

Skylines. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

Skylines. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland Yufei Tao ITEE University of Queensland Today we will discuss problems closely related to the topic of multi-criteria optimization, where one aims to identify objects that strike a good balance often optimal

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Lecture 1 Real Numbers In these lectures, we are going to study a branch of mathematics called

More information