Other aspects of conduction

Size: px
Start display at page:

Download "Other aspects of conduction"

Transcription

1 Other aspects of conduction The transport of electrons/ions/vibrations in a metal have a number of other important effects. Thermal conductivity (metals electrons, non-metals phonons) Ionic conduction Skin effect high speed signals, RF resistivity. Thin film effects Interconnect design RC delays, technology changes. Electro-migration reliability of interconnects Fig 2.19

2 Thermal conduction In a metal two types of heat transport Electron gas (which is dominant). Lattice vibrations (phonons) Heat flow can be described by a diffusion equation (hot flows to cold). The temperature of lattice is what we feel as heat, the electrons are usually in thermal equilibrium with the lattice and Te = Tl,, but not always the case. In non-metals with few conduction electrons, phonons (lattice vibrations) dominant. The balls on spring models is used to model the process of vibrational waves traveling through the material. Very useful to view heat transfer like current flow and define a thermal resistance.

3 H O T C O LD H E A T E le c tro n G a s V ib ra tin g C u + io n s Thermal conduction in a metal involves transferring energy from the hot region to the cold region by conduction electrons. More energetic electrons (shown with longer velocity vectors) from the hotter regions arrive at cooler regions and collide there with lattice vibrations and transfer their energy. Lengths of arrowed lines on atoms represent the magnitudes of atomic vibrations. Fig 2.19

4 δt H O T C O L D dq dt H E A T A δx Heat flow in a metal rod heated at one end. Consider the rate of heat flow, dq/dt, across a thin section δ x of the rod. The rate of heat flow is proportional to the temperature gradient δ T/δ x and the cross sectional area A. Fig 2.20

5 Fourier s Law of Thermal Conduction dq δt Q = = κa dt δx Q = rate of heat flow, Q = heat, t = time, κ = thermal conductivity, A = area through which heat flows, dt/dx = temperature gradient Ohm s Law of Electrical Conduction δv I = Aσ δx I = electric current, A = cross-sectional area, σ = electrical conductivity, dv/dx = potential gradient (represents an electric field), δv = change in voltage across δx, δx = thickness of a thin layer at x

6 Fourier s Law T T Q = A κ = L (L / κ A) Q = rate of heat flow or the heat current, A = cross-sectional area, κ = thermal conductivity (material-dependent constant), T = temperature difference between ends of component, L = length of component Ohm s Law V V I= = R ( L / σa) I = electric current, V = voltage difference across the conductor, R = resistance, L = length, σ = conductivity, A = cross-sectional area

7 Definition of Thermal Resistance T Q = θ Q = rate of heat flow, T = temperature difference, θ = thermal resistance Thermal Resistance L θ= Aκ θ = thermal resistance, L = length, A = cross-sectional area, κ = thermal conductivity

8 Thermal Diffusion Eq Go the diff.pdf!

9 A g 400 A g -3 C u C u T h e r m a l c o n d u c tiv ity, κ (W K -1 m -1 ) 450 A g -2 0 C u 300 κ σ = T C A u W FL A l 200 W N i 100 B e M g M o B ra ss (C u -3 0 Z n ) B ro n z e (9 5 C u -5 S n ) S te e l ( ) P d -4 0 A g H g E le c tr ic a l c o n d u c tiv ity, σ, Ω m 70-1 Thermal conductivity, κ vs. electrical conductivity σ for various metals (elements and alloys) at 20 C. The solid line represents the WFL law with CWFL W Ω K-2. Fig 2.21

10 Wiedemann-Franz-Lorenz Law κ 8 2 = CWFL = W Ω K σt κ = thermal conductivity σ = electrical conductivity T = temperature in Kelvins CWFL = Lorenz number 1/T dependence is due to the difference relationship of the two conductivities to the velocity distribution of the particles

11 T h e r m a l c o n d u c tiv ity, κ (W K -1 m -1 ) C opper A lu m in u m 1000 B ra s s (7 0 C u -3 0 Z n ) 100 A l-1 4 % M g T e m p e ra tu re (K ) 1000 Thermal conductivity vs. temperature for two pure metals (Cu and Al) and two alloys (brass and Al-14%Mg). Data extracted from Thermophysical Properties of Matter, Vol. 1: Thermal Conductivity, Metallic Elements and Alloys, Y.S. Touloukian et. al (Plenum, New York, 1970). Fig 2.22

12 Thermal conduction in non-metal is due to lattice vibrations E q u ilib riu m H ot C o ld E n e rg e tic a to m ic v ib ra tio n s Conduction of heat in insulators involves the generation and propogation of atomic vibrations through the bonds that couple the atoms. (An intuitive figure.) We shall find that the waves travel as packets that carry heat. (Phonons) Fig 2.23

13

14 Q = T /θ T H ot T C o ld Q Q Q A θ L (b ) (a ) Conduction of heat through a component in (a) can be modeled as a thermal resistance θ shown in (b) where Q = T/θ. Fig 2.24

15 Semiconductor As you know from 398 (and we shall look at in more depth) semi-conductors have two carriers Electrons negative charge, positive mass Holes positive charge, positive mass (virtual particle for accounting) Both are modeled as free gas with Boltzmann distribution. We define n and p as the concentrations of electrons and holes And the current flow is due to both particles Hall effect is modified due to the two different carriers Fig 2.25

16 E h o le a e - b c (a) Thermal vibrations of the atoms rupture a bond and release a free electron into the crystal. A hole is left in the broken bond which has an effective positive charge. (b) An electron in a neighbouring bond can jump and repair this bond and thereby create a hole in its original site; the hole has been displaced. (c) When a field is applied both holes and electrons contribute to electrical conduction. Fig 2.26

17 Conductivity of a Semiconductor σ = enµe + epµh σ = conductivity, e = electronic charge, n = electron concentration, µ e = electron drift mobility, p = hole concentration, µh = hole drift mobility Drift Velocity and Net Force µe ve = Fnet e ve = drift velocity of the electrons, µe = drift mobility of the electrons, e = electronic charge, Fnet = net force

18 B Jy = 0 y + + ee z E y x y Jx E vhx e v hxb x Jx z v ex ee z y e v exb z B z V Hall effect for ambipolar conduction as in a semiconductor where there are both electrons and holes. The magnetic field Bz is out from the plane of the paper. Both electrons and holes are deflected toward the bottom surface of the conductor and consequently the Hall voltage depends on the relative mobilities and concentrations of electrons and holes. Fig 2.27

19 Hall Effect for Ambipolar Conduction p µ h 2 nµ e 2 RH = e( pµh + nµe )2 RH = Hall coefficient, p = concentration of the holes, µh = hole drift mobility, n = concentration of the electrons, µe = electron drift mobility, e = electronic charge OR 2 p nb RH = e( p + nb)2 b = µe,/µh

20 Other types of conduction Non-metal also exhibit charge flow from other types of carriers Ionic crystals have charge atoms that can move through vacancies Impurities can be ionized Defects can bring about hole and electron transfer These processes are typically inhibited by potential barrier, thermal activated and characterized by and activation energy The total conduction is the sum of all the different processes.

21 E E V a c a n c y a id s th e d iff u s io n o f p o s itiv e io n O S i Na A n io n v a c a n c y + In te r s titia l c a tio n d iffu s e s a c ts a s a d o n o r (a ) (b ) Possible contributions to the conductivity of ceramic and glass insulators (a) Possible mobile charges in a ceramic (b) A Na+ ion in the glass structure diffuses and therefore drifts in the direction of the field. (E is the electric field.) Fig

22 General Conductivity σ = Σqi ni µi σ = conductivity qi = charge carried by the charge carrier species i (for electrons and holes qi = e) ni = concentration of the charge carrier µi = drift mobility of the charge carrier of species i

23 Temperature Dependence of Conductivity Eσ σ = σ o exp kt σ = conductivity σο = constant Εσ = activation energy for conductivity k = Boltzmann constant, T = temperature

24 % N a 2 O -7 6 % S io 2 A s 3.0 T e 3.0 S i 1.2 G e 1.0 g l a s s Conductivity 1/( m) P y rex % N a 2 O -8 8 % S io 2-9 PV A c S io P V C /T (1 /K ) Conductivity vs reciprocal temperature for various low conductivity solids. (PVC = Polyvinyl chloride; PVAc = Polyvinyl acetate.) Data selectively combined from numerous sources. Fig 2.29

25 Insulators Semiconductors Conductors Many ceramics Superconductors Alumina Diamond Inorganic Glasses Metals Mica Polypropylene PVDF Pure SnO2 Borosilicate PET SiO Soda silica glass Amorphous As2Se Degenerately Doped Si Te Intrinsic GaAs 10-6 Alloys Intrinsic Si Graphite NiCr Ag Conductivity (½ m)-1 Range of conductivites exhibited by various materials Fig

26 High frequency effects Electromagnetic effects can be a big factor in the resistance of a metal film or line. At high frequencies the current is push to the edge of the conductor by inductive effects. This called the skin effect and is very important for high speed electronics. At very high frequencies a solid conductor can not be used and waveguide is needed. Fig 2.29

27 ωl R δ = S k in d e p th 2a At high frequencies, the core region exhibits more inductive impedance than the surface region, and the current flows in the surface region of a conductor defined approximately by the skin depth, δ. Fig 2.31

28 Skin Depth for Conduction δ= 1 1 ωσµ 2 δ = skin depth, ω = angular frequency of current, σ = conductivity, µ = magnetic permeability of the medium HF Resistance per Unit Length Due to Skin Effect ρ ρ rac = A 2πaδ rac = ac resistance, ρ = resistivity, A = cross-sectional area, a = radius, δ = skin depth

29 Thin film effects Metals for electronics are usually deposited as thin films. Using vapor deposition techniques. These methods produce polycrystalline thin films that are far from perfect The resistivity of the film is dominated by: Grain boundary scattering Surface scattering (for very thin films or small lines) The characteristic parameter is the mean free path of the electron Small grains, thin film or small line will restrict the mean free path. Difficult due to specular and non-specular scattering at surfaces and grain boundaries. Fig 2.32

30 G r a in 1 G ra in 2 G r a in B o u n d a ry (a) (b) (a ) Gra in bounda rie s ca use sca tte ring of the e le ctron a nd the re fore a dd to the re sistivity by Ma tthie sse n's rule. (b) For a ve ry gra iny solid, the e le ctron is sca tte re d from gra in bounda ry to gra in bounda ry a nd the me a n fre e pa th is a pproxima te ly e qua l to the me a n gra in dia me te r. Fig 2.32

31 Jx D Conduction in thin films may be controlled by scattering from the surfaces. Fig 2.33

32 + y S c a tte r in g 2 = D θ = D /c o s θ x + x S c a tte r in g 1 y The mean free path of the electron depends on the angle θ after scattering. Fig 2.34

33

34 (b ) (a ) A s d e p o s ite d A n n e a le d a t C A n n e a le d a t C ρ b u lk = n m F ilm th ic k n e s s ( n m ) 1 /d (1 /n a n o m e te r) (a) ρfilm of the Cu polycrystalline films vs. reciprocal mean grain size (diameter), 1/d. Film thickness D = 250 nm nm does not affect the resistivity. The straight line is ρfilm = 17.8 n m + (595 n m nm)(1/d), (b) ρfilm of the Cu thin polycrystalline films vs. film thickness D. In this case, annealing (heat treating) the films to reduce the polycrystallinity does not significantly affect the resistivity because ρfilm is controlled mainly by surface scattering. SOURCE: Data extracted from (a) S. Riedel et al, Microelec. Engin. 33, 165, 1997 and (b). W. Lim et al, Appl. Surf. Sci., 217, 95, 2003) Fig 2.35

35 Interconnects Interconnects are metal lines that hook up the devices. Referred to as the backend. Need multiple levels (lines and vias) Used to be neglected, but of increasing importance. RC delays dominate chip speeds Reliability is almost all backend Many C s line-line, level-level, line-ground plane, etc. Sometimes need to create transmission lines. Reliability has many factors (electromigration, barriers, diffusion) Recently a move to Cu and low K to reduce delays. Fig 2.35

36 M7 M6 Low permittivity dielectric M5 M3 Cu interconnects M2 M4 M3 M2 M1 M1 Silicon Metal interconnects wiring devices on a silicon crystal. Three different metallization levels M1, M2, and M3 are used. The dielectric between the interconnects has been etched away to expose the interconnect structure. Cross section of a chip with 7 levels of metallization, M1 to M7. The image is obtained with a scanning electron microscope (SEM). SOURCE: Courtesy of IBM SOURCE: Courtesy of Mark Bohr, Intel. Fig 2.36

37 Three levels of interconnects in a flash memory chip. Different levels are connected through vias. SOURCE: Courtesy of Dr. Don Scansen, Semiconductor Insights, Kanata, Ontario, Canada

38 (a ) (b ) Void and failure H illo c k G ra in b o u n d a ry E le c tr o n Void H illo c k C u rre n t In terc o n n e c t In t erf ace Hot C o ld (c ) Hillocks C o ld G ra in b o u n d ary Current (a) Electrons bombard the metal ions and force them to slowly migrate (b) Formation of voids and hillocks in a polycrystalline metal interconnect by the electromigration of metal ions along grain boundaries and interfaces. (c) Accelerated tests on 3 mm CVD (chemical vapor deposited) Cu line. T = 200 oc, J = 6 MA cm-2: void formation and fatal failure (break), and hillock formation. SOURCE: Courtesy of L. Arnaud et al, Microelectronics Reliability, 40, 86, Fig 2.38

Other Aspects of Conduc1on. Thermal, thin films, semiconductors, etc.

Other Aspects of Conduc1on. Thermal, thin films, semiconductors, etc. Other Aspects of Conduc1on Thermal, thin films, semiconductors, etc. Thermal conduc1on- metals In a metal two types of heat transport Electron gas (which is dominant). LaCce vibra1ons (phonons) Heat flow

More information

Conduction. Metals, Semiconductors and Interconnects. Fig 2.1

Conduction. Metals, Semiconductors and Interconnects. Fig 2.1 Conduction Metals, Semiconductors and Interconnects Fig 2.1 Metal interconnects are used in microelectronics to wire the devices within the chip, the intergraded circuit. Multilevel interconnects are used

More information

The Electromagnetic Properties of Materials

The Electromagnetic Properties of Materials The lectromagnetic Properties of Materials lectrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)

More information

Pauli Exclusion Principle

Pauli Exclusion Principle Pauli Exclusion Principle Electrons in a single atom occupy discrete levels of energy. No two energy levels or states in an atom can have the same energy. Each energy level can contain at most two electrons

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

Chapter 5. Carrier Transport Phenomena

Chapter 5. Carrier Transport Phenomena Chapter 5 Carrier Transport Phenomena 1 We now study the effect of external fields (electric field, magnetic field) on semiconducting material 2 Objective Discuss drift and diffusion current densities

More information

Semiconductor physics I. The Crystal Structure of Solids

Semiconductor physics I. The Crystal Structure of Solids Lecture 3 Semiconductor physics I The Crystal Structure of Solids 1 Semiconductor materials Types of solids Space lattices Atomic Bonding Imperfection and doping in SOLIDS 2 Semiconductor Semiconductors

More information

ISSUES TO ADDRESS...

ISSUES TO ADDRESS... Chapter 12: Electrical Properties School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin Chapter 12-1 ISSUES TO ADDRESS... How are electrical conductance and resistance

More information

Physics 156: Applications of Solid State Physics

Physics 156: Applications of Solid State Physics Physics 156: Applications of Solid State Physics Instructor: Sue Carter Office NSII 349 Office Hours: Wednesdays 11:30 to 1 pm or by appointment Email: sacarter@ucsc.edu Book: http://ece-www.colorado.edu/~bart/book/book/title.htm

More information

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation Session 5: Solid State Physics Charge Mobility Drift Diffusion Recombination-Generation 1 Outline A B C D E F G H I J 2 Mobile Charge Carriers in Semiconductors Three primary types of carrier action occur

More information

12/10/09. Chapter 18: Electrical Properties. View of an Integrated Circuit. Electrical Conduction ISSUES TO ADDRESS...

12/10/09. Chapter 18: Electrical Properties. View of an Integrated Circuit. Electrical Conduction ISSUES TO ADDRESS... Chapter 18: Electrical Properties ISSUES TO ADDRESS... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish? For metals, how is affected by and

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

Diffusion. Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion

Diffusion. Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion Diffusion Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion Fick s First Law Γ ΔN AΔt Γ = flux ΔN = number of particles crossing

More information

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1 Lecture 2 Semiconductor Physics Sunday 4/10/2015 Semiconductor Physics 1-1 Outline Intrinsic bond model: electrons and holes Charge carrier generation and recombination Intrinsic semiconductor Doping:

More information

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport The study of the transport of electrons & holes (in semiconductors) under various conditions. A broad & somewhat specialized

More information

Electrical Resistance

Electrical Resistance Electrical Resistance I + V _ W Material with resistivity ρ t L Resistance R V I = L ρ Wt (Unit: ohms) where ρ is the electrical resistivity 1 Adding parts/billion to parts/thousand of dopants to pure

More information

Chapter 12: Electrical Properties. RA l

Chapter 12: Electrical Properties. RA l Charge carriers and conduction: Chapter 12: Electrical Properties Charge carriers include all species capable of transporting electrical charge, including electrons, ions, and electron holes. The latter

More information

Electrical material properties

Electrical material properties Electrical material properties U = I R Ohm s law R = ρ (l/a) ρ resistivity l length σ = 1/ρ σ conductivity A area σ = n q μ n conc. of charge carriers q their charge μ their mobility μ depends on T, defects,

More information

SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013)

SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013) SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013) PART A UNIT-I Conducting Materials 1. What are the classifications

More information

Conducting surface - equipotential. Potential varies across the conducting surface. Lecture 9: Electrical Resistance.

Conducting surface - equipotential. Potential varies across the conducting surface. Lecture 9: Electrical Resistance. Lecture 9: Electrical Resistance Electrostatics (time-independent E, I = 0) Stationary Currents (time-independent E and I 0) E inside = 0 Conducting surface - equipotential E inside 0 Potential varies

More information

Kinetics. Rate of change in response to thermodynamic forces

Kinetics. Rate of change in response to thermodynamic forces Kinetics Rate of change in response to thermodynamic forces Deviation from local equilibrium continuous change T heat flow temperature changes µ atom flow composition changes Deviation from global equilibrium

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 3 http://zitompul.wordpress.com 2 0 1 3 Semiconductor Device Physics 2 Three primary types of carrier action occur inside a semiconductor: Drift: charged particle

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

ECE 142: Electronic Circuits Lecture 3: Semiconductors

ECE 142: Electronic Circuits Lecture 3: Semiconductors Faculty of Engineering ECE 142: Electronic Circuits Lecture 3: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors A semiconductor

More information

3.225 Electrical,Optical, and Magnetic Properties of Materials

3.225 Electrical,Optical, and Magnetic Properties of Materials 3.5 Electrical,Optical, and Magnetic Properties of Materials Professor Eugene Fitzgerald Purpose: connect atoms and structure to properties Semi-historical context What was understood first from the micro

More information

ADVANCED UNDERGRADUATE LABORATORY EXPERIMENT 20. Semiconductor Resistance, Band Gap, and Hall Effect

ADVANCED UNDERGRADUATE LABORATORY EXPERIMENT 20. Semiconductor Resistance, Band Gap, and Hall Effect ADVANCED UNDERGRADUATE LABORATORY EXPERIMENT 20 Semiconductor Resistance, Band Gap, and Hall Effect Revised: November 1996 by David Bailey March 1990 by John Pitre & Taek-Soon Yoon Introduction Solid materials

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Chapter 27. Current and Resistance

Chapter 27. Current and Resistance Chapter 27 Current and Resistance Electric Current Most practical applications of electricity deal with electric currents. The electric charges move through some region of space. The resistor is a new

More information

Carrier transport: Drift and Diffusion

Carrier transport: Drift and Diffusion . Carrier transport: Drift and INEL 5209 - Solid State Devices - Spring 2012 Manuel Toledo April 10, 2012 Manuel Toledo Transport 1/ 32 Outline...1 Drift Drift current Mobility Resistivity Resistance Hall

More information

8.1 Drift diffusion model

8.1 Drift diffusion model 8.1 Drift diffusion model Advanced theory 1 Basic Semiconductor Equations The fundamentals of semiconductor physic are well described by tools of quantum mechanic. This point of view gives us a model of

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 130 Spring 2009 Professor Chenming Hu Midterm I Name: Closed book. One sheet of notes is

More information

Review of Semiconductor Fundamentals

Review of Semiconductor Fundamentals ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,

More information

6 Chapter. Current and Resistance

6 Chapter. Current and Resistance 6 Chapter Current and Resistance 6.1 Electric Current... 6-2 6.1.1 Current Density... 6-2 6.2 Ohm s Law... 6-5 6.3 Summary... 6-8 6.4 Solved Problems... 6-9 6.4.1 Resistivity of a Cable... 6-9 6.4.2 Charge

More information

Chapter 1 Semiconductor basics

Chapter 1 Semiconductor basics Chapter 1 Semiconductor basics ELEC-H402/CH1: Semiconductor basics 1 Basic semiconductor concepts Semiconductor basics Semiconductors, silicon and hole-electron pair Intrinsic silicon properties Doped

More information

Semiconductor Physics. Lecture 3

Semiconductor Physics. Lecture 3 Semiconductor Physics Lecture 3 Intrinsic carrier density Intrinsic carrier density Law of mass action Valid also if we add an impurity which either donates extra electrons or holes the number of carriers

More information

Ohm s Law. R = L ρ, (2)

Ohm s Law. R = L ρ, (2) Ohm s Law Ohm s Law which is perhaps the best known law in all of Physics applies to most conducting bodies regardless if they conduct electricity well or poorly, or even so poorly they are called insulators.

More information

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications.

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications. Semiconductors Semiconducting materials have electrical properties that fall between true conductors, (like metals) which are always highly conducting and insulators (like glass or plastic or common ceramics)

More information

Lecture 3 Semiconductor Physics (II) Carrier Transport

Lecture 3 Semiconductor Physics (II) Carrier Transport Lecture 3 Semiconductor Physics (II) Carrier Transport Thermal Motion Carrier Drift Carrier Diffusion Outline Reading Assignment: Howe and Sodini; Chapter 2, Sect. 2.4-2.6 6.012 Spring 2009 Lecture 3 1

More information

Carriers Concentration, Current & Hall Effect in Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carriers Concentration, Current & Hall Effect in Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carriers Concentration, Current & Hall Effect in Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Conductivity Charge

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature 1.9. Temperature Dependence of Semiconductor Conductivity Such dependence is one most important in semiconductor. In metals, Conductivity decreases by increasing temperature due to greater frequency of

More information

Motion and Recombination of Electrons and Holes

Motion and Recombination of Electrons and Holes Chater Motion and Recombination of Electrons and Holes OBJECTIVES. Understand how the electrons and holes resond to an electric field (drift).. Understand how the electrons and holes resond to a gradient

More information

Section 12: Intro to Devices

Section 12: Intro to Devices Section 12: Intro to Devices Extensive reading materials on reserve, including Robert F. Pierret, Semiconductor Device Fundamentals Bond Model of Electrons and Holes Si Si Si Si Si Si Si Si Si Silicon

More information

Carrier Mobility and Hall Effect. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carrier Mobility and Hall Effect. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carrier Mobility and Hall Effect 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 calculation Calculate the hole and electron densities

More information

7. FREE ELECTRON THEORY.

7. FREE ELECTRON THEORY. 7. FREE ELECTRON THEORY. Aim: To introduce the free electron model for the physical properties of metals. It is the simplest theory for these materials, but still gives a very good description of many

More information

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices EE143 Fall 2016 Microfabrication Technologies Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1-1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) 1-2 1 Why

More information

Thermoelectric effect

Thermoelectric effect Thermoelectric effect See Mizutani the temperature gradient can also induce an electrical current. linearized Boltzmann transport equation in combination with the relaxation time approximation. Relaxation

More information

1.9.5 Stoichiometry, Nonstoichiometry, and Defect Structures 75

1.9.5 Stoichiometry, Nonstoichiometry, and Defect Structures 75 Chapter 1 Elementary Materials Science Concepts 3 1.1 Atomic Structure and Atomic Number 3 1.2 Atomic Mass and Mole 8 1.3 Bonding and Types of Solids 9 1.3.1 Molecules and General Bonding Principles 9

More information

Chapter 26 Current and Resistance

Chapter 26 Current and Resistance Chapter 26 Current and Resistance Electric Current Although an electric current is a stream of moving charges, not all moving charges constitute an electric current. If there is to be an electric current

More information

CHAPTER 18: Electrical properties

CHAPTER 18: Electrical properties CHAPTER 18: Electrical properties ISSUES TO ADDRESS... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish conductors, semiconductors, and insulators?

More information

Introduction to Engineering Materials ENGR2000. Dr.Coates

Introduction to Engineering Materials ENGR2000. Dr.Coates Introduction to Engineering Materials ENGR2000 Chapter 18: Electrical Properties Dr.Coates 18.2 Ohm s Law V = IR where R is the resistance of the material, V is the voltage and I is the current. l R A

More information

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei

More information

EECS143 Microfabrication Technology

EECS143 Microfabrication Technology EECS143 Microfabrication Technology Professor Ali Javey Introduction to Materials Lecture 1 Evolution of Devices Yesterday s Transistor (1947) Today s Transistor (2006) Why Semiconductors? Conductors e.g

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 8/30/2007 Semiconductor Fundamentals Lecture 2 Read: Chapters 1 and 2 Last Lecture: Energy Band Diagram Conduction band E c E g Band gap E v Valence

More information

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A. V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar November 12, 2008 Resistivity Typical resistivity temperature

More information

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy Course overview Me: Dr Luke Wilson Office: E17 open door policy email: luke.wilson@sheffield.ac.uk The course: Physics and applications of semiconductors 10 lectures aim is to allow time for at least one

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester.

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. WS 20 Reg. No. : Question Paper Code : 27472 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Second Semester Civil Engineering PH 6251 ENGINEERING PHYSICS II (Common to all branches except Biotechnology

More information

Lecture 18: Semiconductors - continued (Kittel Ch. 8)

Lecture 18: Semiconductors - continued (Kittel Ch. 8) Lecture 18: Semiconductors - continued (Kittel Ch. 8) + a - Donors and acceptors J U,e e J q,e Transport of charge and energy h E J q,e J U,h Physics 460 F 2006 Lect 18 1 Outline More on concentrations

More information

Chapter 27 Current and resistance

Chapter 27 Current and resistance 27.1 Electric Current Chapter 27 Current and resistance 27.2 Resistance 27.3 A Model for Electrical Conduction 27.4 Resistance and Temperature 27.6 Electrical Power 2 27.1 Electric Current Consider a system

More information

In an electric field R and magnetic field B, the force on an electron (charge e) is given by:

In an electric field R and magnetic field B, the force on an electron (charge e) is given by: Lecture 17 Electric conduction Electrons motion in magnetic field Electrons thermal conductivity Brief review In solid state physics, we do not think about electrons zipping around randomly in real space.

More information

EECS 117 Lecture 13: Method of Images / Steady Currents

EECS 117 Lecture 13: Method of Images / Steady Currents EECS 117 Lecture 13: Method of Images / Steady Currents Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 217 Lecture 13 p. 1/21 Point Charge Near Ground Plane Consider

More information

Appendix 1: List of symbols

Appendix 1: List of symbols Appendix 1: List of symbols Symbol Description MKS Units a Acceleration m/s 2 a 0 Bohr radius m A Area m 2 A* Richardson constant m/s A C Collector area m 2 A E Emitter area m 2 b Bimolecular recombination

More information

Chapter 27. Current And Resistance

Chapter 27. Current And Resistance Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric

More information

Unit IV Semiconductors Engineering Physics

Unit IV Semiconductors Engineering Physics Introduction A semiconductor is a material that has a resistivity lies between that of a conductor and an insulator. The conductivity of a semiconductor material can be varied under an external electrical

More information

1. Introduction of solid state 1.1. Elements of solid state physics:

1. Introduction of solid state 1.1. Elements of solid state physics: 1. Introduction of solid state 1.1. Elements of solid state physics: To understand the operation of many of the semiconductor devices we need, at least, an appreciation of the solid state physics of homogeneous

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

LECTURE 5 SUMMARY OF KEY IDEAS

LECTURE 5 SUMMARY OF KEY IDEAS LECTURE 5 SUMMARY OF KEY IDEAS Etching is a processing step following lithography: it transfers a circuit image from the photoresist to materials form which devices are made or to hard masking or sacrificial

More information

CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM. M.N.A. Halif & S.N. Sabki

CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM. M.N.A. Halif & S.N. Sabki CHAPTER 2: ENERGY BANDS & CARRIER CONCENTRATION IN THERMAL EQUILIBRIUM OUTLINE 2.1 INTRODUCTION: 2.1.1 Semiconductor Materials 2.1.2 Basic Crystal Structure 2.1.3 Basic Crystal Growth technique 2.1.4 Valence

More information

characterization in solids

characterization in solids Electrical methods for the defect characterization in solids 1. Electrical residual resistivity in metals 2. Hall effect in semiconductors 3. Deep Level Transient Spectroscopy - DLTS Electrical conductivity

More information

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar R measurements (resistivity, magnetoresistance, Hall). 590B Makariy A. Tanatar April 18, 2014 Resistivity Typical resistivity temperature dependence: metals, semiconductors Magnetic scattering Resistivities

More information

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

EE 446/646 Photovoltaic Devices I. Y. Baghzouz EE 446/646 Photovoltaic Devices I Y. Baghzouz What is Photovoltaics? First used in about 1890, the word has two parts: photo, derived from the Greek word for light, volt, relating to electricity pioneer

More information

Advantages / Disadvantages of semiconductor detectors

Advantages / Disadvantages of semiconductor detectors Advantages / Disadvantages of semiconductor detectors Semiconductor detectors have a high density (compared to gas detector) large energy loss in a short distance diffusion effect is smaller than in gas

More information

Chap. 11 Semiconductor Diodes

Chap. 11 Semiconductor Diodes Chap. 11 Semiconductor Diodes Semiconductor diodes provide the best resolution for energy measurements, silicon based devices are generally used for charged-particles, germanium for photons. Scintillators

More information

Electro - Principles I

Electro - Principles I Electro - Principles I Page 10-1 Atomic Theory It is necessary to know what goes on at the atomic level of a semiconductor so the characteristics of the semiconductor can be understood. In many cases a

More information

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors Slide 1 Electronic Sensors Electronic sensors can be designed to detect a variety of quantitative aspects of a given physical system. Such quantities include: Temperatures Light (Optoelectronics) Magnetic

More information

Chapter 3 Engineering Science for Microsystems Design and Fabrication

Chapter 3 Engineering Science for Microsystems Design and Fabrication Lectures on MEMS and MICROSYSTEMS DESIGN and MANUFACTURE Chapter 3 Engineering Science for Microsystems Design and Fabrication In this Chapter, we will present overviews of the principles of physical and

More information

Direct and Indirect Semiconductor

Direct and Indirect Semiconductor Direct and Indirect Semiconductor Allowed values of energy can be plotted vs. the propagation constant, k. Since the periodicity of most lattices is different in various direction, the E-k diagram must

More information

Carrier Action: Motion, Recombination and Generation. What happens after we figure out how many electrons and holes are in the semiconductor?

Carrier Action: Motion, Recombination and Generation. What happens after we figure out how many electrons and holes are in the semiconductor? Carrier Action: Motion, Recombination and Generation. What happens after we figure out how many electrons and holes are in the semiconductor? 1 Carrier Motion I Described by 2 concepts: Conductivity: σ

More information

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00 1 Name: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND Final Exam Physics 3000 December 11, 2012 Fall 2012 9:00-11:00 INSTRUCTIONS: 1. Answer all seven (7) questions.

More information

ECE 335: Electronic Engineering Lecture 2: Semiconductors

ECE 335: Electronic Engineering Lecture 2: Semiconductors Faculty of Engineering ECE 335: Electronic Engineering Lecture 2: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors

More information

Microscopic Ohm s Law

Microscopic Ohm s Law Microscopic Ohm s Law Outline Semiconductor Review Electron Scattering and Effective Mass Microscopic Derivation of Ohm s Law 1 TRUE / FALSE 1. Judging from the filled bands, material A is an insulator.

More information

CHAPTER 6 DIELECTRIC AND CONDUCTIVITY STUDIES OF ZIRCONIUM TIN TITANATE (ZST)

CHAPTER 6 DIELECTRIC AND CONDUCTIVITY STUDIES OF ZIRCONIUM TIN TITANATE (ZST) 123 CHAPTER 6 DIELECTRIC AND CONDUCTIVITY STUDIES OF ZIRCONIUM TIN TITANATE (ZST) 6.1 INTRODUCTION We know that zirconium tin titanate ceramics are mostly used in microwave frequency applications. Previous

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

Lecture 7: Extrinsic semiconductors - Fermi level

Lecture 7: Extrinsic semiconductors - Fermi level Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 E F in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < T

More information

Lecture 3 Transport in Semiconductors

Lecture 3 Transport in Semiconductors EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 3 Transport in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken,

More information

Electrical Conduction in Ceramic Materials 1 Ref: Barsoum, Fundamentals of Ceramics, Ch7, McGraw-Hill, 2000

Electrical Conduction in Ceramic Materials 1 Ref: Barsoum, Fundamentals of Ceramics, Ch7, McGraw-Hill, 2000 MME 467 Ceramics for Advanced Applications Lecture 19 Electrical Conduction in Ceramic Materials 1 Ref: Barsoum, Fundamentals of Ceramics, Ch7, McGraw-Hill, 2000 Prof. A. K. M. B. Rashid Department of

More information

ECE 250 Electronic Devices 1. Electronic Device Modeling

ECE 250 Electronic Devices 1. Electronic Device Modeling ECE 250 Electronic Devices 1 ECE 250 Electronic Device Modeling ECE 250 Electronic Devices 2 Introduction to Semiconductor Physics You should really take a semiconductor device physics course. We can only

More information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Semiconductor A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Page 2 Semiconductor materials Page 3 Energy levels

More information

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition Metal Deposition Filament Evaporation E-beam Evaporation Sputter Deposition 1 Filament evaporation metals are raised to their melting point by resistive heating under vacuum metal pellets are placed on

More information

Electronics The basics of semiconductor physics

Electronics The basics of semiconductor physics Electronics The basics of semiconductor physics Prof. Márta Rencz, Gergely Nagy BME DED September 16, 2013 The basic properties of semiconductors Semiconductors conductance is between that of conductors

More information

Mat E 272 Lecture 25: Electrical properties of materials

Mat E 272 Lecture 25: Electrical properties of materials Mat E 272 Lecture 25: Electrical properties of materials December 6, 2001 Introduction: Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom) while Cu has a valence of +1 (1

More information

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1 Engineering 2000 Chapter 8 Semiconductors ENG2000: R.I. Hornsey Semi: 1 Overview We need to know the electrical properties of Si To do this, we must also draw on some of the physical properties and we

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices P-N Junctions (Diodes): Physical

More information

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors 5. Radiation Microsensors Radiation µ-sensors convert incident radiant signals into standard electrical out put signals. Radiant Signals Classification

More information

HALL. Semiconductor Resistance, Band Gap, and Hall Effect

HALL. Semiconductor Resistance, Band Gap, and Hall Effect ADVANCED UNDERGRADUATE LABORATORY HALL Semiconductor Resistance, Band Gap, and Hall Effect Revisions: September 2016, January 2018: Young-June Kim November 2011, January 2016: David Bailey October 2010:

More information

Materials and Devices in Electrical Engineering

Materials and Devices in Electrical Engineering Examination WS 02/03 Materials and Devices in Electrical Engineering Monday 17 th of March, 9:00 11:00, International Department, SR. 203 Notice 1. It is allowed to use any kind of aids (books, scripts,

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2004) Fabrication Technology, Part I Agenda: Microfabrication Overview Basic semiconductor devices Materials Key processes Oxidation Thin-film Deposition Reading:

More information

ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline:

ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: Effective Mass Intrinsic Material Extrinsic Material Things you should know when you leave Key Questions What is the physical meaning

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information