Introduction to Engineering Materials ENGR2000. Dr.Coates

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Introduction to Engineering Materials ENGR2000. Dr.Coates"

Transcription

1 Introduction to Engineering Materials ENGR2000 Chapter 18: Electrical Properties Dr.Coates

2 18.2 Ohm s Law V = IR where R is the resistance of the material, V is the voltage and I is the current. l R A l R = ρ A where ρ is the resistivity of the material, l is the length of the specimen and A is the area of cross - section. Measurement of Electrical Resistivity

3 Recall from Physics 2211 What are units for I, V, R? Does voltage flow through a material? Why/why not? Units of ρ? Does shape of cross-section affect ρ?

4 18.3 Electrical Conductivity The ease with which a material is capable of conducting an electrical current. 1 σ = ρ whereσ is the electrical conductivity of the material. Units of σ?

5 Ohm s law in a different form J = σε where J is the current density and Ε is the electric field intensity. J = Ε = I A V l Prove equivalence to V = IR for Class work!

6 Energy levels in atoms (Review) In a single isolated atom only certain discrete electron energy levels are allowed

7 18.5 Energy Band Structures in Solids As atoms are brought close together, the electrons are perturbed by the electrons and nuclei of adjacent atoms. Each atomic state is split into a series of closely spaced electron states in the solid electron energy band

8

9 Energy bands in solids The energy band structure as a function of the interatomic separation distance wider energy band wider energy band

10 Energy bands in solids For large separation distances the electrons associated with any atom are independent of those of the other atoms.

11 Energy bands in solids There is an energy gap E g known as a band gap when the energy levels do not overlap.

12 Energy bands in solids Energy levels overlap to form an extended energy band.

13 Four Types of Energy Bands Valence band the highest energy band that is at least partially occupied (eg. Fig 18.4c) Core bands all the bands below the valence band Conduction band the energy band above the valence band Band gap or energy gap forbidden energy range between the valence and conduction bands

14

15 Fermi energy The energy corresponding to the highest filled state at 0 K is called the Fermi energy, E f.

16 Classification of solid materials based on electrical conductivity Conductors Semiconductors Insulators What are conductivity ranges for each? See sec. 18.3!

17 18.6 Conduction in terms of band and atomic bonding models Free electrons For an electron to become free it must be excited or promoted into one of the empty and available electron states above E f Only electrons with energies >E f may be accelerated in the presence of an electric field and participate in the conduction process. Holes Electronic entity found in semiconductors and insulators, have energies < E f

18 Metals Band structures in Figs. 18.5a, 18.5b Very little energy is required to promote the Very little energy is required to promote the electrons into the empty states because?

19 For a metal, occupancy of electron states before and after an electron excitation Fermi energy Free electron

20

21 Insulators and Semiconductors Electrons must be promoted across the energy band gap into the empty states to become free Excitation energy is most often in the form of a non-electrical source such as heat or light

22 For an insulator or semiconductor, occupancy of electron states before and after an electron excitation from the valence band into the conduction band

23 Insulators and semiconductors Energy band gap > 2 ev Ionic or covalent bonding Valence electrons are tightly bound to individual atoms Energy band gap < 2 ev Covalent bonding Valence electrons are not as strongly bound to the atoms Electrons are easily made free by thermal excitation

24 Energy bands and charge carriers Electrical conduction requires the presence of empty energy levels that are not too different in energy levels currently occupied by the electrons.

25 Energy bands and charge carriers An electron jumping from a filled level into a nearby empty level An empty level or a hole is located near the bottom of the band.

26 Energy bands and charge carriers Transition can be viewed as either 13 electrons each moving up one energy level or the empty level moving down 13 levels.

27 18.7 Electron Mobility The ease with which the free electrons move through the solid in response to an electric field. Electric field => force on electron Why doesn t electron continually accelerate? Frictional forces-scattering of electrons due to imperfections in crystal lattice, impurity atoms,vacancies, interstitial atoms, dislocations, thermal vibrations

28 Drift velocity - Average electron velocity in the direction of the force imposed by the electric field. Drift velocity : v d = µ Ε and e e where µ is the electron mobility (frequency of scattering events). e Electrical conductivity : σ = n e µ e where n is the number of free electrons per unit volume = C is the electrical charge on an electron.

29

30

31 18.8 Electrical conductivity of metals Electron mobility (or the electrical conductivity) depends on the nature of the charge carriers (the smaller size of electrons permits them to move easily through the solid) temperature Defects in the crystal structure

32 Model of an electron moving through a crystal structure v d = at where v d is the drift velocity a is the acceleration & t is the mean time between collisions. constant acceleration

33 Influence of temperature As temperature is increased atoms gain thermal and kinetic energy mean time between collisions decreases decrease in electron mobility Decrease in electrical conductivity ρ = ρ + at ρ t 0, a 0 = cons. for particular metal

34 Influence of impurities In the presence of impurities mean time between collisions is decreased decrease in electron mobility Decrease in electrical conductivity ρ = c i i Ac i ( 1 c ) i = impurity concetration ( at% /100) A = composition independent cons.

35 For a two-phase alloy ρ V ρ i s s = = = ρ V α α + ρ V β β volume fraction individual res. For a metal, the total electrical resistivity equals the sum of thermal, impurity and deformation contributions See Figure 18.8 ρ = ρ + ρ + ρ total i Mattthiessen ' s rule t d

36 Semiconductors Intrinsic semiconductors Electrical behavior is based on the electronic structure inherent to the pure material. Elemental Si, Ge Extrinsic semiconductors Electrical behavior is dictated by impurity (external) atoms.

37 Intrinsic Characterized by band structure 18.4b At 0K, completely filled valence band Band gap < 2eV Groups III-V compounds, ex. Gallium Arsenide (GaA) Groups IIB-VIA ex. Cadmium Suplhide (Cds) For these compounds, how might wider separation in electronegativity influence the type of bond and band gap energy? Which of ZnS and CdSe will have a larger band gap energy, E g? why?

38 Concept of a hole For every electron excited into the conduction band, there is left behind a missing electron in one of the covalent bonds. This missing electron is treated as a positively charged particle called a hole. A hole has the same magnitude of charge as that of an electron.

39 18.10 Intrinsic Semiconduction

40 Electron bonding model of electrical conduction in intrinsic silicon - before excitation

41 Electron bonding model of electrical conduction in intrinsic silicon - after excitation

42 Intrinsic conductivity Electrical conductivity : σ = n e µ + e p e µ h where p is the number of holes per cubic meter and µ is the hole mobility. σ = n i h For intrinsic semiconductors : n = p = where n e n i i is the intrinsic carrier concentration. Hence, the electrical conductivity : ( µ + µ ) e h

43 Example 18.1 For intrinsic gallium arsenide, the room temperature electrical conductivity is 10-6 (Ωm) -1 ; the electron and hole mobilities are 0.85 and 0.04 m 2 /Vs respectively. Compute the intrinsic carrier concentration n i at room temperature.

44 Problem statement : σ = 10 µ µ n i e h =? 6 ( Ωm) = 0.85m = 0.04 m / Vs / Vs - intrinsic semiconductor Theory : σ = n = p = σ = n e µ + n i e e n i ( µ + µ ) e p e µ For intrinsic semiconductors : h h Hence, the electrical conductivity : Solution : n i = e σ ( µ + µ ) e = h m 3

45 18.11 Extrinsic Semiconductors - n-type extrinsic semiconduction The addition of a Group V atom, such as P into a Si crystal

46 n-type extrinsic semiconduction The addition of a Group V atom, such as P into a Si crystal donor level

47 Extrinsic n-type semiconduction using electron bonding model - before excitation

48 Extrinsic n-type semiconduction using electron bonding model - after excitation

49 Energy band for a donor impurity level

50 Extrinsic n-type conductivity Electrical conductivity : σ = n e µ + p e µ e h For extrinsic n - type semiconductors, # of electrons in the conduction band >> n >> p Hence, the electrical conductivity : # of holes in the valence band : σ n e µ e

51 18.11 Extrinsic Semiconductors - p-type extrinsic semiconduction The addition of a Group III atom, such as B into a Si crystal

52 p-type extrinsic semiconduction The addition of a Group III atom, such as B into a Si crystal acceptor level

53 Extrinsic p-type semiconduction using electron bonding model

54 Energy band for an acceptor impurity level

55 Extrinsic p-type conductivity Electrical conductivity : σ = n e µ + p e µ e h For extrinsic p - type semiconductors, # of electrons in the conduction band << n << p Hence, the electrical conductivity : # of holes in the valence band : σ p e µ h

56 Doping Extrinsic semiconductors are produced from materials that are initially extremely pure. Controlled concentrations of specific donors or acceptors are added.

57 Temperature Dependence of Carrier Concentration How would band gap affect carrier concentration? Ge vs Si? Why concentrations increase with temperature for intrinsic?

58 Temperature Dependence of Carrier Concentration Why concentrations constant with temperature in extrinsic region? As dopant level is increased would you expect the temperature at which a semiconductor becomes in trinsic to increase, to remain essentially the same, or to decrease? Why?

59 Temperature Dependence of Carrier Mobility

60 Example 18.2 Calculate the electrical conductivity of intrinsic silicon at 423 K.

61 Problem statement : σ =? T = 423 K - intrinsic silicon Theory : σ = n = p = σ = n e µ + n i e e n i ( µ + µ ) e p e µ For intrinsic semiconductors : h h Hence, the electrical conductivity :

62 Solution : n i 19 3 ( 423 K ) = 4 10 m

63 µ µ e h ( 423K ) ( 423 K ) Electrical conductivity of σ = n = i e 0.52 = 0.06 m ( µ e + µ h ) ( Ωm) 1 2 = m / Vs 2 / Vs intrinsic Si at 423 K :

64 Example 18.3 To high-purity silicon is added m -3 arsenic atoms. Is this material n-type or p-type semiconductor? Calculate the room temperature electrical conductivity of this material. Compute the conductivity at 100 C.

65 Arsenic is a Group V element - n-type semiconductor

66 Problem statement σ =? : n = m T = 298 K 3 ( room temperature) - n - type extrinsic semiconductor Theory : σ = n e µ + e p e µ h For n - type extrinsic semiconductors : n >> p Hence, the electrical conductivity : σ n e µ e

67 Solution : µ e ( m ) = 0.07 m σ = n e µ = 1120 e 2 / Vs ( Ωm) 1

68 Problem statement σ =? : n = m 3 T = 373 K - n - type extrinsic semiconductor Theory : σ = n e µ + e p e µ h For n - type extrinsic semiconductors : n >> p Hence, the electrical conductivity : σ n e µ e

69 Solution : µ e ( 373 K ) Electrical conductivity : σ = n e µ e = 0.04m = / Vs ( Ωm) 1

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors:

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors: Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. There are two types of semi conductors. 1. Intrinsic semiconductors 2. Extrinsic semiconductors Intrinsic

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

Electrical Properties

Electrical Properties Electrical Properties Electrical Conduction R Ohm s law V = IR I l Area, A V where I is current (Ampere), V is voltage (Volts) and R is the resistance (Ohms or ) of the conductor Resistivity Resistivity,

More information

Lecture 7: Extrinsic semiconductors - Fermi level

Lecture 7: Extrinsic semiconductors - Fermi level Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 E F in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < T

More information

12/10/09. Chapter 18: Electrical Properties. View of an Integrated Circuit. Electrical Conduction ISSUES TO ADDRESS...

12/10/09. Chapter 18: Electrical Properties. View of an Integrated Circuit. Electrical Conduction ISSUES TO ADDRESS... Chapter 18: Electrical Properties ISSUES TO ADDRESS... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish? For metals, how is affected by and

More information

Microscopic Ohm s Law

Microscopic Ohm s Law Microscopic Ohm s Law Outline Semiconductor Review Electron Scattering and Effective Mass Microscopic Derivation of Ohm s Law 1 TRUE / FALSE 1. Judging from the filled bands, material A is an insulator.

More information

The Electromagnetic Properties of Materials

The Electromagnetic Properties of Materials The lectromagnetic Properties of Materials lectrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)

More information

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei

More information

Electrical material properties

Electrical material properties Electrical material properties U = I R Ohm s law R = ρ (l/a) ρ resistivity l length σ = 1/ρ σ conductivity A area σ = n q μ n conc. of charge carriers q their charge μ their mobility μ depends on T, defects,

More information

ELECTRICAL PROPERTIES

ELECTRICAL PROPERTIES ELECTRICAL PROPERTIES Introduction The objective of this chapter is to explore the electrical properties of materials, i.e. their responses to an applied electric field. We begin with the phenomenon of

More information

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

EE 446/646 Photovoltaic Devices I. Y. Baghzouz EE 446/646 Photovoltaic Devices I Y. Baghzouz What is Photovoltaics? First used in about 1890, the word has two parts: photo, derived from the Greek word for light, volt, relating to electricity pioneer

More information

Electrons in materials. (where are they, what is their energy)

Electrons in materials. (where are they, what is their energy) Electrons in materials (where are they, what is their energy) 1 Lone atoms A single atom has electrons in shells and sub shells. Each of these have a distinct energy level. The diagram shows an example

More information

Lecture 2. Unit Cells and Miller Indexes. Reading: (Cont d) Anderson 2 1.8,

Lecture 2. Unit Cells and Miller Indexes. Reading: (Cont d) Anderson 2 1.8, Lecture 2 Unit Cells and Miller Indexes Reading: (Cont d) Anderson 2 1.8, 2.1-2.7 Unit Cell Concept The crystal lattice consists of a periodic array of atoms. Unit Cell Concept A building block that can

More information

Unit IV Semiconductors Engineering Physics

Unit IV Semiconductors Engineering Physics Introduction A semiconductor is a material that has a resistivity lies between that of a conductor and an insulator. The conductivity of a semiconductor material can be varied under an external electrical

More information

ENERGY BANDS AND GAPS IN SEMICONDUCTOR. Muhammad Hafeez Javed

ENERGY BANDS AND GAPS IN SEMICONDUCTOR. Muhammad Hafeez Javed ENERGY BANDS AND GAPS IN SEMICONDUCTOR Muhammad Hafeez Javed www.rmhjaved.com rmhjaved@gmail.com Out Line Introduction Energy band Classification of materials Direct and indirect band gap of SC Classification

More information

Chem 241. Lecture 24. UMass Amherst Biochemistry... Teaching Initiative

Chem 241. Lecture 24. UMass Amherst Biochemistry... Teaching Initiative Chem 241 Lecture 24 UMass Amherst Biochemistry... Teaching Initiative Announcement Mistake we have class on the 3 rd not 4 th Exam 3 Originally scheduled April 23 rd (Friday) What about April 26 th (Next

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Advantages / Disadvantages of semiconductor detectors

Advantages / Disadvantages of semiconductor detectors Advantages / Disadvantages of semiconductor detectors Semiconductor detectors have a high density (compared to gas detector) large energy loss in a short distance diffusion effect is smaller than in gas

More information

Introduction to Semiconductor Devices

Introduction to Semiconductor Devices Physics 233 Experiment 48 Introduction to Semiconductor Devices References 1. G.W. Neudeck, The PN Junction Diode, Addison-Wesley MA 1989 2. Background notes (Appendix A) 3. Specification sheet for Diode

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 Being virtually killed by a virtual laser in a virtual space is just as effective as the real thing, because you are as dead as you think you are. -Douglas Adams, Mostly Harmless David J. Starling Penn

More information

Chapter Two. Energy Bands and Effective Mass

Chapter Two. Energy Bands and Effective Mass Chapter Two Energy Bands and Effective Mass Energy Bands Formation At Low Temperature At Room Temperature Valence Band Insulators Metals Effective Mass Energy-Momentum Diagrams Direct and Indirect Semiconduction

More information

The German University in Cairo. Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014

The German University in Cairo. Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014 The German University in Cairo th Electronics 5 Semester Faculty of Information Engineering & Technology Semiconductors (Elct 503) Electronics Department Fall 2014 Problem Set 3 1- a) Find the resistivity

More information

Calculating Band Structure

Calculating Band Structure Calculating Band Structure Nearly free electron Assume plane wave solution for electrons Weak potential V(x) Brillouin zone edge Tight binding method Electrons in local atomic states (bound states) Interatomic

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Semiconductors Figure 1-1 The Bohr model of an atom showing electrons in orbits

More information

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS 1. What is intrinsic If a semiconductor is sufficiently pure, then it is known as intrinsic semiconductor. ex:: pure Ge, pure Si 2. Mention the expression for intrinsic carrier concentration of intrinsic

More information

SEMICONDUCTOR BEHAVIOR AND THE HALL EFFECT

SEMICONDUCTOR BEHAVIOR AND THE HALL EFFECT 5 Feb 14 Semi.1 SEMICONDUCTOR BEHAVIOR AND THE HALL EFFECT The object of this experiment is to study various properties of n- and p-doped germanium crystals. The temperature dependence of the electrical

More information

Qualitative Picture of the Ideal Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes

Qualitative Picture of the Ideal Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes Qualitative Picture of the Ideal Diode G.R. Tynan UC San Diego MAE 119 Lecture Notes Band Theory of Solids: From Single Attoms to Solid Crystals Isolated Li atom (conducting metal) Has well-defined, isolated

More information

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV EE495/695 Introduction to Semiconductors I Y. Baghzouz ECE Department UNLV Introduction Solar cells have always been aligned closely with other electronic devices. We will cover the basic aspects of semiconductor

More information

Conductivity and Semi-Conductors

Conductivity and Semi-Conductors Conductivity and Semi-Conductors J = current density = I/A E = Electric field intensity = V/l where l is the distance between two points Metals: Semiconductors: Many Polymers and Glasses 1 Electrical Conduction

More information

3. Semiconductor heterostructures and nanostructures

3. Semiconductor heterostructures and nanostructures 3. Semiconductor eterostructures and nanostructures We discussed before ow te periodicity of a crystal results in te formation of bands. or a 1D crystal, we obtained: a (x) x In 3D, te crystal lattices

More information

Lecture (02) PN Junctions and Diodes

Lecture (02) PN Junctions and Diodes Lecture (02) PN Junctions and Diodes By: Dr. Ahmed ElShafee ١ I Agenda N type, P type semiconductors N Type Semiconductor P Type Semiconductor PN junction Energy Diagrams of the PN Junction and Depletion

More information

The electronic structure of solids. Charge transport in solids

The electronic structure of solids. Charge transport in solids The electronic structure of solids We need a picture of the electronic structure of solid that we can use to explain experimental observations and make predictions Why is diamond an insulator? Why is sodium

More information

SEMICONDUCTORS. Conductivity lies between conductors and insulators. The flow of charge in a metal results from the

SEMICONDUCTORS. Conductivity lies between conductors and insulators. The flow of charge in a metal results from the SEMICONDUCTORS Conductivity lies between conductors and insulators The flow of charge in a metal results from the movement of electrons Electros are negatively charged particles (q=1.60x10-19 C ) The outermost

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

Determination of properties in semiconductor materials by applying Matlab

Determination of properties in semiconductor materials by applying Matlab Determination of properties in semiconductor materials by applying Matlab Carlos Figueroa. 1, Raúl Riera A. 2 1 Departamento de Ingeniería Industrial. Universidad de Sonora A.P. 5-088, Hermosillo, Sonora.

More information

Chapter 12: Electrical Properties. RA l

Chapter 12: Electrical Properties. RA l Charge carriers and conduction: Chapter 12: Electrical Properties Charge carriers include all species capable of transporting electrical charge, including electrons, ions, and electron holes. The latter

More information

Energy bands in solids. Some pictures are taken from Ashcroft and Mermin from Kittel from Mizutani and from several sources on the web.

Energy bands in solids. Some pictures are taken from Ashcroft and Mermin from Kittel from Mizutani and from several sources on the web. Energy bands in solids Some pictures are taken from Ashcroft and Mermin from Kittel from Mizutani and from several sources on the web. we are starting to remind p E = = mv 1 2 = k mv = 2 2 k 2m 2 Some

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR In an extrinsic semiconducting material, the charge carriers originate from impurity atoms added to the original material is called impurity [or] extrinsic semiconductor. This Semiconductor

More information

Semiconductor Detectors are Ionization Chambers. Detection volume with electric field Energy deposited positive and negative charge pairs

Semiconductor Detectors are Ionization Chambers. Detection volume with electric field Energy deposited positive and negative charge pairs 1 V. Semiconductor Detectors V.1. Principles Semiconductor Detectors are Ionization Chambers Detection volume with electric field Energy deposited positive and negative charge pairs Charges move in field

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 143 Fall 2008 Exam 1 Professor Ali Javey Answer Key Name: SID: 1337 Closed book. One sheet

More information

Introduction to Solid State

Introduction to Solid State http://en.wikipedia.org/wiki/bravais_lattice Introduction to Solid State Crystalline vs. non-crystalline solids: Lattice Unit cell No. of spheres in a unit cell : Bravais lattices In geometry and crystallography,

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

CEMTool Tutorial. Semiconductor physics

CEMTool Tutorial. Semiconductor physics EMTool Tutorial Semiconductor physics Overview This tutorial is part of the EMWARE series. Each tutorial in this series will teach you a specific topic of common applications by explaining theoretical

More information

HALL. Semiconductor Resistance, Band Gap, and Hall Effect

HALL. Semiconductor Resistance, Band Gap, and Hall Effect ADVANCED UNDERGRADUATE LABORATORY HALL Semiconductor Resistance, Band Gap, and Hall Effect Revisions: September 2016, January 2018: Young-June Kim November 2011, January 2016: David Bailey October 2010:

More information

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4,

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4, Lecture 1 Introduction to Electronic Materials Reading: Pierret 1.1, 1.2, 1.4, 2.1-2.6 Atoms to Operational Amplifiers The goal of this course is to teach the fundamentals of non-linear circuit elements

More information

Resistance (R) Temperature (T)

Resistance (R) Temperature (T) CHAPTER 1 Physical Properties of Elements and Semiconductors 1.1 Introduction Semiconductors constitute a large class of substances which have resistivities lying between those of insulators and conductors.

More information

EE 5211 Analog Integrated Circuit Design. Hua Tang Fall 2012

EE 5211 Analog Integrated Circuit Design. Hua Tang Fall 2012 EE 5211 Analog Integrated Circuit Design Hua Tang Fall 2012 Today s topic: 1. Introduction to Analog IC 2. IC Manufacturing (Chapter 2) Introduction What is Integrated Circuit (IC) vs discrete circuits?

More information

Recitation 2: Equilibrium Electron and Hole Concentration from Doping

Recitation 2: Equilibrium Electron and Hole Concentration from Doping Recitation : Equilibrium Electron and Hole Concentration from Doping Here is a list of new things we learned yesterday: 1. Electrons and Holes. Generation and Recombination 3. Thermal Equilibrium 4. Law

More information

Electronic Properties of Lead Telluride Quantum Wells

Electronic Properties of Lead Telluride Quantum Wells Electronic Properties of Lead Telluride Quantum Wells Liza Mulder Smith College 2013 NSF/REU Program Physics Department, University of Notre Dame Advisors: Profs. Jacek Furdyna, Malgorzata Dobrowolska,

More information

Solid State Device Fundamentals

Solid State Device Fundamentals 4. lectrons and Holes Solid State Device Fundamentals NS 45 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 4N101b 1 4. lectrons and Holes Free electrons and holes

More information

Surface physics, Bravais lattice

Surface physics, Bravais lattice Surface physics, Bravais lattice 1. Structure of the solid surface characterized by the (Bravais) lattice + space + point group lattice describes also the symmetry of the solid material vector directions

More information

Semiconductor device structures are traditionally divided into homojunction devices

Semiconductor device structures are traditionally divided into homojunction devices 0. Introduction: Semiconductor device structures are traditionally divided into homojunction devices (devices consisting of only one type of semiconductor material) and heterojunction devices (consisting

More information

Semiconductors and Optoelectronics. Today Semiconductors Acoustics. Tomorrow Come to CH325 Exercises Tours

Semiconductors and Optoelectronics. Today Semiconductors Acoustics. Tomorrow Come to CH325 Exercises Tours Semiconductors and Optoelectronics Advanced Physics Lab, PHYS 3600 Don Heiman, Northeastern University, 2017 Today Semiconductors Acoustics Tomorrow Come to CH325 Exercises Tours Semiconductors and Optoelectronics

More information

RADIATION EFFECTS AND DAMAGE

RADIATION EFFECTS AND DAMAGE RADIATION EFFECTS AND DAMAGE The detrimental consequences of radiation are referred to as radiation damage. To understand the effects of radiation, one must first be familiar with the radiations and their

More information

Pauli Exclusion Principle

Pauli Exclusion Principle Pauli Exclusion Principle Electrons in a single atom occupy discrete levels of energy. No two energy levels or states in an atom can have the same energy. Each energy level can contain at most two electrons

More information

Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction, and the transistors.

Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction, and the transistors. - 1-1/15/02C:\lec320.doc H.L.Kwok SEMICONDUCTOR MATERIALS AND DEVICES by H.L. Kwok Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction,

More information

Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction, and the transistors.

Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction, and the transistors. - 1-3/4/02C:\lec320.doc H.L.Kwok SEMICONDUCTOR MATERIALS AND DEVICES by H.L. Kwok Objective: The purpose of these notes is to familiarize students with semiconductors and devices including the P-N junction,

More information

Solid State Detectors

Solid State Detectors Solid State Detectors Most material is taken from lectures by Michael Moll/CERN and Daniela Bortoletto/Purdue and the book Semiconductor Radiation Detectors by Gerhard Lutz. In gaseous detectors, a charged

More information

3. Consider a semiconductor. The concentration of electrons, n, in the conduction band is given by

3. Consider a semiconductor. The concentration of electrons, n, in the conduction band is given by Colloqium problems to chapter 13 1. What is meant by an intrinsic semiconductor? n = p All the electrons are originating from thermal excitation from the valence band for an intrinsic semiconductor. Then

More information

Chapter 1 INTRODUCTION SEMICONDUCTORS MATERIAL

Chapter 1 INTRODUCTION SEMICONDUCTORS MATERIAL Chapter 1 INTRODUCTION TO SEMICONDUCTORS MATERIAL Objectives Discuss basic structures of atoms Discuss properties of insulators, conductors, and semiconductors Discuss covalent bonding Describe the conductions

More information

BASIC ELECTRONICS CONDUCTION IN SEMICONDUCTORS

BASIC ELECTRONICS CONDUCTION IN SEMICONDUCTORS BASIC ELECTRONICS Subject Code: ELN-15/5 IA marks: 5 Hours per week : 04 Exam Hours 03 Total Hrs: 5 Exam Marks: 100 CHAPTER 1 CONDUCTION IN SEMICONDUCTORS Electrons and holes in an intrinsic semiconductors,

More information

Basic Physics of Semiconductors

Basic Physics of Semiconductors Basic Physics of Semiconductors Semiconductor materials and their properties PN-junction diodes Reverse Breakdown EEM 205 Electronics I Dicle University, EEE Dr. Mehmet Siraç ÖZERDEM Semiconductor Physics

More information

Week 13 MO Theory, Solids, & metals

Week 13 MO Theory, Solids, & metals Week 13 MO Theory, Solids, & metals Q UEST IO N 1 Using the molecular orbital energy diagrams below, which one of the following diatomic molecules is LEAST likely to exist? A. Li2 B. Be2 C. B2 D. C2 E.

More information

Lecture 3 Semiconductor Physics (II) Carrier Transport

Lecture 3 Semiconductor Physics (II) Carrier Transport Lecture 3 Semiconductor Physics (II) Carrier Transport Thermal Motion Carrier Drift Carrier Diffusion Outline Reading Assignment: Howe and Sodini; Chapter 2, Sect. 2.4-2.6 6.012 Spring 2009 Lecture 3 1

More information

D DAVID PUBLISHING. Transport Properties of InAs-InP Solid Solutions. 2. Experiment. 1. Introduction. 3. Results and Discussion

D DAVID PUBLISHING. Transport Properties of InAs-InP Solid Solutions. 2. Experiment. 1. Introduction. 3. Results and Discussion Journal of Electrical Engineering 2 (2014) 207-212 doi: 10.17265/2328-2223/2014.05.002 D DAVID PUBLISHING Nodar Kekelidze 1, 2, 3, Elza Khutsishvili 1, 2, Bella Kvirkvelia 1, 2, 3, David Kekelidze 2, Vugar

More information

Last Revision: August,

Last Revision: August, A3-1 HALL EFFECT Last Revision: August, 21 2007 QUESTION TO BE INVESTIGATED How to individual charge carriers behave in an external magnetic field that is perpendicular to their motion? INTRODUCTION The

More information

Micron School of Materials Science and Engineering. Problem Set 9 Solutions

Micron School of Materials Science and Engineering. Problem Set 9 Solutions Problem Set 9 Solutions 1. Mobility in extrinsic semiconductors is affected by phonon scattering and impurity scattering. Thoroughly explain the mobility plots for the following figures from your textbook

More information

5. Semiconductors and P-N junction

5. Semiconductors and P-N junction 5. Semiconductors and P-N junction Thomas Zimmer, University of Bordeaux, France Summary Learning Outcomes... 2 Physical background of semiconductors... 2 The silicon crystal... 2 The energy bands... 3

More information

Physics of Semiconductors. Exercises. The Evaluation of the Fermi Level in Semiconductors.

Physics of Semiconductors. Exercises. The Evaluation of the Fermi Level in Semiconductors. Physics of Semiconductors. Exercises. The Evaluation of the Fermi Level in Semiconductors. B.I.Lembrikov Department of Communication Engineering Holon Academic Institute of Technology I. Problem 8. The

More information

Uniform excitation: applied field and optical generation. Non-uniform doping/excitation: diffusion, continuity

Uniform excitation: applied field and optical generation. Non-uniform doping/excitation: diffusion, continuity 6.012 - Electronic Devices and Circuits Lecture 2 - Uniform Excitation; Non-uniform conditions Announcements Review Carrier concentrations in TE given the doping level What happens above and below room

More information

HALL EFFECT. In a Ga!ium Arsenide Semiconductor. Jason Robin Fall 07 Phy Adv Lab. Ha! Effect 1

HALL EFFECT. In a Ga!ium Arsenide Semiconductor. Jason Robin Fall 07 Phy Adv Lab. Ha! Effect 1 HALL EFFECT In a Ga!ium Arsenide Semiconductor Jason Robin Fall 07 Phy Adv Lab Ha! Effect 1 HALL EFFECT In a Ga!ium Arsenide Semiconductor Jason Robin University of Rochester Fall 07 PHY ADV LAB Introduction

More information

Cathkin High School Physics Department. CfE Higher Unit 3 Electricity. Summary Notes

Cathkin High School Physics Department. CfE Higher Unit 3 Electricity. Summary Notes Cathkin High School Physics Department CfE Higher Unit 3 Electricity Summary Notes Name Class 3.1 Electrons and Energy Monitoring and measuring alternating current Alternating current Previously, you learned

More information

Introduction into defect studies. in ceramic materials(iii) Structure, Defects and Defect Chemistry. Z. Wang. January 18, 2002

Introduction into defect studies. in ceramic materials(iii) Structure, Defects and Defect Chemistry. Z. Wang. January 18, 2002 Introduction into defect studies in ceramic materials(iii) Structure, Defects and Defect Chemistry Z. Wang January 18, 2002 1. Mass, Charge and Site Balance The Schottky reactions for NaCl and MgO, respectively,

More information

Lecture 9: Metal-semiconductor junctions

Lecture 9: Metal-semiconductor junctions Lecture 9: Metal-semiconductor junctions Contents 1 Introduction 1 2 Metal-metal junction 1 2.1 Thermocouples.......................... 2 3 Schottky junctions 4 3.1 Forward bias............................

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Interface between a crystal and vacuum

More information

Chapter 3 Engineering Science for Microsystems Design and Fabrication

Chapter 3 Engineering Science for Microsystems Design and Fabrication Lectures on MEMS and MICROSYSTEMS DESIGN and MANUFACTURE Chapter 3 Engineering Science for Microsystems Design and Fabrication In this Chapter, we will present overviews of the principles of physical and

More information

Band Gap Engineering. Reading the Periodic Table and Understanding Optical and Electrical Properties in Semiconductors

Band Gap Engineering. Reading the Periodic Table and Understanding Optical and Electrical Properties in Semiconductors The Birnie Group solar class and website were created with much-appreciated support from the NSF CRCD Program under grants 0203504 and 0509886. Continuing Support from the McLaren Endowment is also greatly

More information

Surfaces, Interfaces, and Layered Devices

Surfaces, Interfaces, and Layered Devices Surfaces, Interfaces, and Layered Devices Building blocks for nanodevices! W. Pauli: God made solids, but surfaces were the work of Devil. Surfaces and Interfaces 1 Role of surface effects in mesoscopic

More information

4. I-V characteristics of electric

4. I-V characteristics of electric KL 4. - characteristics of electric conductors 4.1 ntroduction f an electric conductor is connected to a voltage source with voltage a current is produced. We define resistance being the ratio of the voltage

More information

Physical Structure of Matter. Hall effect in p-germanium Solid-state Physics, Plasma Physics. What you need:

Physical Structure of Matter. Hall effect in p-germanium Solid-state Physics, Plasma Physics. What you need: Solid-state Physics, Plasma Physics Physical Structure of Matter What you can learn about Semiconductor Band theory Forbidden zone Intrinsic conductivity Extrinsic conductivity Valence band Conduction

More information

Before we go to the topic of hole, we discuss this important topic. The effective mass m is defined as. 2 dk 2

Before we go to the topic of hole, we discuss this important topic. The effective mass m is defined as. 2 dk 2 Notes for Lecture 7 Holes, Electrons In the previous lecture, we learned how electrons move in response to an electric field to generate current. In this lecture, we will see why the hole is a natural

More information

Bonding in Solids. Section 4 (M&T Chapter 7) Structure and Energetics of Metallic and Ionic Solids. Close-Packing

Bonding in Solids. Section 4 (M&T Chapter 7) Structure and Energetics of Metallic and Ionic Solids. Close-Packing Section 4 (M&T Chapter 7) Structure and Energetics of Metallic and Ionic Solids Bonding in Solids We have discussed bonding in molecules with three models: Lewis Valence Bond MO Theory These models not

More information

Lecture 4. Detectors for Ionizing Particles

Lecture 4. Detectors for Ionizing Particles Lecture 4 Detectors for Ionizing Particles Introduction Overview of detector systems Sources of radiation Radioactive decay Cosmic Radiation Accelerators Content Interaction of Radiation with Matter General

More information

Electron-phonon scattering (Finish Lundstrom Chapter 2)

Electron-phonon scattering (Finish Lundstrom Chapter 2) Electron-phonon scattering (Finish Lundstrom Chapter ) Deformation potentials The mechanism of electron-phonon coupling is treated as a perturbation of the band energies due to the lattice vibration. Equilibrium

More information

Lecture 8. Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination

Lecture 8. Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination Lecture 8 Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination Reading: (Cont d) Notes and Anderson 2 sections 3.4-3.11 Energy Equilibrium Concept Consider a non-uniformly

More information

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney Solid State Physics Lecture 10 Band Theory Professor Stephen Sweeney Advanced Technology Institute and Department of Physics University of Surrey, Guildford, GU2 7XH, UK s.sweeney@surrey.ac.uk Recap from

More information

Enhancement of Ionization Efficiency of Acceptors by Their Excited States in Heavily Doped p-type GaN and Wide Bandgap Semiconductors

Enhancement of Ionization Efficiency of Acceptors by Their Excited States in Heavily Doped p-type GaN and Wide Bandgap Semiconductors Enhancement of Ionization Efficiency of cceptors by Their Excited States in Heavily Doped p-type GaN and Wide Bandgap Semiconductors Hideharu Matsuura Osaka Electro-Communication University 2004 Joint

More information

7.4. Why we have two different types of materials: conductors and insulators?

7.4. Why we have two different types of materials: conductors and insulators? Phys463.nb 55 7.3.5. Folding, Reduced Brillouin zone and extended Brillouin zone for free particles without lattices In the presence of a lattice, we can also unfold the extended Brillouin zone to get

More information

Electrochemistry of Semiconductors

Electrochemistry of Semiconductors Electrochemistry of Semiconductors Adrian W. Bott, Ph.D. Bioanalytical Systems, Inc. 2701 Kent Avenue West Lafayette, IN 47906-1382 This article is an introduction to the electrochemical properties of

More information

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Conductors under dynamic conditions Current, current density, drift velocity Ohm s law Types of conductor

More information

Single Photon detectors

Single Photon detectors Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor

More information

After successfully completing this laboratory assignment, including the assigned reading, the lab

After successfully completing this laboratory assignment, including the assigned reading, the lab University of California at Santa Cruz Jack Baskin School of Engineering Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 6: Temperature Dependence of Semiconductor Conductivity

More information

Advanced Level Physics May 2016 Paper 1. Section A

Advanced Level Physics May 2016 Paper 1. Section A Advanced Level Physics May 06 Paper Mark schemes are prepared by the Examination Board and considered, together with the relevant questions. This mark scheme includes any amendments made at the standardisation

More information

Energy Losses in the Electrical Circuits

Energy Losses in the Electrical Circuits Energy Losses in the Electrical Circuits Motors, lighting systems, wiring, mechanical terminations, distribution panels, protective devices, transformers, switchgear, and all end of circuit equipment experience

More information

EXPERIMENT 6 Semiconductors: Preparation of Semiconducting Thin Films

EXPERIMENT 6 Semiconductors: Preparation of Semiconducting Thin Films 6-1 Introduction EXPERIMENT 6 Semiconductors: Preparation of Semiconducting Thin Films Metals are good conductors of electricity. Copper, for example, allows the flow of electrons with relatively little

More information

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm)

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm) Ionic Bonding Ion: an atom or molecule that gains or loses electrons (acquires an electrical charge). Atoms form cations (+charge), when they lose electrons, or anions (- charge), when they gain electrons.

More information

pn JUNCTION THE SHOCKLEY MODEL

pn JUNCTION THE SHOCKLEY MODEL The pn Junction: The Shockley Model ( S. O. Kasap, 1990-001) 1 pn JUNCTION THE SHOCKLEY MODEL Safa Kasap Department of Electrical Engineering University of Saskatchewan Canada Although the hole and its

More information

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1 Laser Diodes Revised: 3/14/14 14:03 2014, Henry Zmuda Set 6a Laser Diodes 1 Semiconductor Lasers The simplest laser of all. 2014, Henry Zmuda Set 6a Laser Diodes 2 Semiconductor Lasers 1. Homojunction

More information

Energy Levels and Atomic Structure. The Rutherford Model of the Atom

Energy Levels and Atomic Structure. The Rutherford Model of the Atom University of Technology 2016 2017 First Year, Lecture One Basic Construction of the Atom: Energy Levels and Atomic Structure The atom is a basic unit of material that consists of central nucleus surrounded

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity (which atoms are physically connected). By noting the number of bonding and nonbonding electron

More information