Exceptional Grand Unification at the LHC

Size: px
Start display at page:

Download "Exceptional Grand Unification at the LHC"

Transcription

1 0/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC Hints of Exceptional Grand Unification at the LHC Ju rgen R. Reuter DESY Hamburg Seminar, SLAC, 4. May 2012 SLAC,

2 1/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Supersymmetric Grand Unification

3 2/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Prime Example: (SUSY) SU(5) SU(5) MX SU(3) c SU(2) w U(1) Y MZ SU(5) has = 24 generators: SU(3) c U(1) em 24 (8, 1) 0 (1, 3) 0 (1, 1) 0 }{{}}{{}}{{} W B G β α (3, 2) 5 3 }{{} X,Y (3, 2) 5 3 }{{} X,Ȳ

4 2/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Prime Example: (SUSY) SU(5) SU(5) MX SU(3) c SU(2) w U(1) Y MZ SU(5) has = 24 generators: SU(3) c U(1) em 24 (8, 1) 0 (1, 3) 0 (1, 1) 0 }{{}}{{}}{{} W B G β α 24 A = g A a λa 2 = g 2G a λa GM 2 a=1 2 X X X Y Y Y 2 g 2 15 B (3, 2) 5 3 }{{} X,Y X X X Ȳ Ȳ Ȳ 2W a σ (3, 2) 5 3 }{{} X,Ȳ

5 3/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Fermions (Matter superfields) Only possible way to combine matter: d c 0 u c u c u d d c 5 = : d c 1 u c 0 u c u d = : u c u c 0 u d l 2 u u u 0 e c ν l d d d e c 0 Remarks 5 = (3, 1) 2 3 (1, 2) 1 = (3, 2) 1 3 (3, 1) 4 3 (1, 1) 2 2 = = 2, (5 5)a =, (3 3) a = 3, ( ) a = Quarks and leptons in the same multiplet Condition of tracelessness (color!) 5 and have equal and opposite anomalies ν c must be SU(5) singlet

6 4/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Interactions e e ν Leptoquark couplings d X u Y d Y (and SUSY vertices) u u Diquark couplings u X d Y (and SUSY Vertices) Vector bosons induce e.g. decay p e + π 0 u u Y d e + d

7 4/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Interactions e e ν Leptoquark couplings d X u Y d Y (and SUSY vertices) u u Diquark couplings u X d Y (and SUSY Vertices) Proton Lifetime with α(m GUT ) 1 24 and M GUT 2 16 GeV: τ(p e + π 0 M ) 4 GUT [α(m GUT )] 2 m 31±1 years 5 p

8 5/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, The Doublet-Triplet Splitting SU(5) breaking: Higgs Σ in adjoint 24 rep. Σ = w diag(1, 1, 1, 3 2, 3 2 ) M X = M Y = g w other breaking mechanisms possible (e.g. orbifold)

9 5/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, The Doublet-Triplet Splitting SU(5) breaking: Higgs Σ in adjoint 24 rep. Σ = w diag(1, 1, 1, 3 2, 3 2 ) M X = M Y = g w other breaking mechanisms possible (e.g. orbifold) (MS)SM Higgs(es) in = : D D D h + h 0 5 = : D c D c D c h h 0 5 = (3, 1) 2 3 (1, 2) 1 5 = (3, 1) 2 3 (1, 2) 1 D, D c coloured triplets with charges ± 1 3 induce proton decay, too mh 0 GeV, m D 16 GeV Doublet-Triplet Splitting Problem

10 6/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Proton Decay experimentum crucis for GUTs Tracking calorimeter (SOUDAN) or RICH Cerenkov counter Super-Kamiokande: 50 kt water RICH For reconstruction: measure time and location γ γ 0 π P + e

11 6/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Proton Decay experimentum crucis for GUTs Tracking calorimeter (SOUDAN) or RICH Cerenkov counter Super-Kamiokande: 50 kt water RICH For reconstruction: measure time and location γ γ π 0 P + e Kanal τ p( 30 years) p invisible 0.21 p e + π p µ + π p νπ + 25 p νk p e + η p µ + η p e + ρ 0 75 p µ + ρ 0 1 p νρ p e + ω 0 00 p µ + ω p e + K p µ + K p νk p e + γ 670 p µ + γ 478 New experiments: HyperK (1 Mt), UNO (650 kt), European project Fréjus (1 Mt) Precision: years running = years

12 7/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Why chiral exotics? JRR/Kilian, PLB 642 (2006), 81, JRR Proof of Unification only with megatons? What about colliders? SPA: Super precision accurately Alternative: Search for chiral exotics Physics beyond the MSSM as lever-arm to GUT scale µ problem NMSSM trick Singlett Superfield with TeV-scale vacuum expectation value Doublet-Triplet Splitting Problem; Longevity of the Proton Keep D, D c superfields at the TeV scale New mechanism against proton decay Different unification scenario Proton Decay Flavour symmetry can save the proton Discrete parity eliminates either LQ/DQ couplings

13 8/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Exceptional Lie Algebras Lie, 1881; Dynkin, An (n > 1) n 1 n Bn (n > 2) n 1 n Cn (n > 1) 0 1 n 1 n 1 n 1 Dn (n > 3) 2 3 n 3 n 2 0 n 0 6 E E E F G

14 9/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, E 6 SUSY Grand Unification Supersymmetry: allows consistent extrapolation to (very) high scales Two Higgs doublets H u, H d SM superpartners at the TeV scale Bottom-Up approach: Matter-Higgs unification only MSSM Ansatz: all new particles at the TeV scale α i U(1) SU(2) SU(3) MSSM µ (GeV) Q L = (3, 2) 1 6,Q Q u c = ( 3, 1) 2 3,Q u d c = ( 3, 1) 1 3,Q d L L = (1, 2) 1 2,Q L ν c = (1, 1) 0,Q ν =0 e c = (1, 1) 1,Q e H u = (1, 2) 1 2,Q H u H d = (1, 2) 1 2,Q H d D = (3, 1) 1 3, Q D S = (1, 1) 0,Q S 0 D c = ( 3, 1) 1 3, Q D

15 /34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Running With Triplets Kilian/JR, 2006 Bottom-up approach: MSSM with one generation of triplets 60 Running of 1/α, MSSM with 1 [(Hu, D) (Hd, D c )] SU(3)c SU(2)L SU(2)R 40 1/α1 1/α2 20 1/α3 1/α log (µ [GeV]) 15 GeV: crossing of SU(2) L and U(1) Y unification to LR symmetry SU(2) L SU(2) R, requires ν c R SU(3) c crosses at 21 GeV: too high

16 /34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Running With Triplets Kilian/JR, 2006 Bottom-up approach: MSSM with one generation of triplets 60 Running of 1/α, MSSM with 1 [(Hu, D) (Hd, D c )] SU(4)c SU(2)L SU(2)R 40 1/α1 1/α2 20 1/α3 1/α log (µ [GeV]) 15 GeV: crossing of SU(2) L and U(1) Y unification to LR symmetry SU(2) L SU(2) R, requires ν c R SU(3) c crosses at 21 GeV: too high extend to SU(4) C : unification possible at 18 GeV

17 11/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Running With Triplets Kilian/JR, 2006 Complete Model: Full SUSY E 6 /G Tri matter spectrum above 3 GeV, except ν c 60 Running of 1/α, MSSM with 3 [(Hu, D) (Hd, D c )] SU(4)c SU(2)L SU(2)R 40 1/α1 20 1/α2 1/α log (µ [GeV]) PS symmetry with ν R above 15 GeV Q L = (Q, L) = (4, 2, 1) D = (D, D c ) = (6, 1, 1) Q R = ((u c, d c ), (ν c, l c )) = (4, 1, 2) S = (1, 1, 1) H = (H u, H d ) = (1, 2, 2) E 6 symmetry (and possibly extra fields) at 18 GeV

18 12/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Intermediate Pati-Salam symmetry JRR et al , King et al Additional particles destroy MSSM unification Unification below Λ P lanck with intermediate SU(4) SU(2) L SU(2) R[ U(1) χ] Pati-Salam symmetry at GeV Α i SM U 1 ' Pati Salam U 1 Χ E 6 U 1 U 1 Y SU 2 L SU 3 SU 2 L R U 1 Χ SU Μ GeV SU(2) R and SU(2) L: identical content/running Crossing of SU(4) with SU(2) L/R couplings determines E 6 scale Lepton number: 4. colour T 15 SU(4) B L 2 Y = B L 2 + T 3 R U(1) Matching condition 1 g 2 Y = g B L 2 5 g R 2 Integrating out ν c : (see-saw) correct breaking

19 13/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, U(1) Mixing Braam/Knochel/JRR, JHEP 06:013; King et al., 2009, Braam/JRR, EPJC 72 (2012) 1885 Two U(1) factors below the intermediate scale Kinetic mixing: non-rational coefficients (gauge couplings) L = i g i Q a i Aµ i ψ a γµ ψ a 1 4 F µν δ i ij F µν,j 1 4 F µν Z i ij F µν,j. Effects for the running: 60 U 1 Y 60 U 1 U 1 U 1 Y 50 U U U U Αi 30 SU 2 L U 1 B L 1 Αi 30 SU 2 L 20 U 1 Χ 20 U 1 Χ B L SU 3 SU Μ GeV Μ GeV

20 13/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, U(1) Mixing Braam/Knochel/JRR, JHEP 06:013; King et al., 2009, Braam/JRR, EPJC 72 (2012) 1885 Two U(1) factors below the intermediate scale Kinetic mixing: non-rational coefficients (gauge couplings) L = i g i Q a i Aµ i ψ a γµ ψ a 1 4 F µν δ i ij F µν,j 1 4 F µν Z i ij F µν,j. Effects for the running: 60 U 1 Y 60 U 1 Y U 1 50 U 1 50 U 1 1 U U U 1 2 Αi 30 SU 2 L Αi 30 SU 2 L 20 U 1 Χ B L 20 U 1 B L Χ SU 3 SU Μ GeV Μ GeV

21 13/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, U(1) Mixing Braam/Knochel/JRR, JHEP 06:013; King et al., 2009, Braam/JRR, EPJC 72 (2012) 1885 Two U(1) factors below the intermediate scale Kinetic mixing: non-rational coefficients (gauge couplings) L = i g i Q a i Aµ i ψ a γµ ψ a 1 4 F µν δ i ij F µν,j 1 4 F µν Z i ij F µν,j. Effects for the running: 60 U 1 Y 60 U 1 Y U 1 50 U 1 50 U 1 1 U U U 1 2 Αi 30 SU 2 L Αi 30 SU 2 L 20 U 1 Χ B L 20 U 1 B L Χ SU 3 SU Μ GeV Μ GeV Same effect for soft-breaking terms: interesting singlino mixing

22 14/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, The Superpotential / Sketch of a Model Kilian/JR, 2006 Superpotential: W= W MSSM + W D + W N W MSSM = Y u u c QH u + Y d d c QH d + Y e e c LH d W D = Y D Du c e c + Y Dc D c QL W S = Y S H SH u H d + Y S D SDD c Corresponding soft-breaking terms t/ t drive m 2 H u negative D/ D drive m 2 S negative U(1) D-terms provide large enough S quartics (and H quartics) Configuration drives system to large S 1 2 TeV R parity is not sufficient to protect proton: discrete parity to distinguish LQ/DQ couplings (or flavor symmetry) Flavored Higgs sector: additional parity to beware of FCNCs H parity Griest/Sher, 1989

23 15/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Problems and E 6 /Pati-Salam breaking JRR et al., 2012 E 6 superpotential vanishes E 6 operators generate PS superpotential Power suppression: top Yukawa? discrete symmetry to discriminate lepto-/diquark couplings/h-parity violate GUT multiplet structure strong constraints from perturbativity above Λ P S Difficulties to find representations for PS breaking 27, 351, and 351 break E 6 to rank 5 U(1) χ broken, no quartic singlet potential No rank reduction: adjoint breaking Breaking through (27)(27) or = smallest rep for E6 G P S U(1) Possible to construct superpotential which does the breaking and allows leptoquark couplings

24 15/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Problems and E 6 /Pati-Salam breaking JRR et al., 2012 E 6 superpotential vanishes E 6 operators generate PS superpotential Power suppression: top Yukawa? discrete symmetry to discriminate lepto-/diquark couplings/h-parity violate GUT multiplet structure strong constraints from perturbativity above Λ P S Difficulties to find representations for PS breaking 27, 351, and 351 break E 6 to rank 5 U(1) χ broken, no quartic singlet potential No rank reduction: adjoint breaking Breaking through (27)(27) or = smallest rep for E6 G P S U(1) Possible to construct superpotential which does the breaking and allows leptoquark couplings

25 16/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Automatic Irrep Decomposition Mallot/JRR; Horst/JRR: CleGo, CPC (2011) 27

26 16/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Automatic Irrep Decomposition Mallot/JRR; Horst/JRR: CleGo, CPC (2011) 78

27 16/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ 2 ¾ ¾ ¾ ¾ ¾ 2 ¾ ¾ ¾ 2 2 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ 2 ¾ 2 ¾ ¾ ¾ ¾ 2 2 ¾ ¾ 2 2 ¾ ¾ ¾ 2 ¾ 2 ¾ 2 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 2 2 ¾ 2 ¾ ¾ 2 2 ¾ ¾ 2 2 ¾ ¾ ¾ ¾ 2 ¾ 2 2 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ ¾ 2 2 ¾ ¾ 2 ¾ ¾ 2 2 ¾ ¾ ¾ 2 ¾ 2 ¾ ¾ ¾ 2 ¾ ¾ ¾ ¾ ¾ ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ ¾ ¾ ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ 2 ¾ ¾ ¾ ¾ ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ 2 2 ¾ 2 2 ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ 2 2 ¾ ¾ ¾ ¾ ¾ ¾ ¾ 2 ¾ ¾ ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ Automatic Irrep Decomposition Mallot/JRR; Horst/JRR: CleGo, CPC (2011) ¾ ¾

28 16/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Automatic Irrep Decomposition Mallot/JRR; Horst/JRR: CleGo, CPC (2011) 2925 ¾ ¾ ¾ ¾ 2 2 ¾ 2 ¾ 2 ¾ ¾ 2 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 2 ¾ 2 ¾ 2 ¾ ¾ ¾ ¾ 2 ¾ 2 ¾ 2 ¾ ¾ ¾ 2 ¾ 2 ¾ 2 ¾ ¾ 2 2 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ ¾ 2 ¾ ¾ ¾ ¾ ¾ ¾ 2 2 ¾ 2 ¾ ¾ 2 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 2 ¾ ¾ ¾ 2 2 ¾ 2 ¾ ¾ ¾ 2 2 ¾ ¾ 2 ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ ¾ 2 2 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ ¾ 2 2 ¾ ¾ 2 2 ¾ ¾ ¾ ¾ 2 ¾ 2 ¾ 2 2 ¾ ¾ ¾ 2 ¾ 2 ¾ ¾ ¾ 2 ¾ 2 2 ¾ 2 ¾ ¾ 2 2 ¾ 3 ¾ ¾ ¾ ¾ 2 2 ¾ 3 ¾ 2 ¾ 2 2 ¾ 2 ¾ 2 ¾ 2 2 ¾ 2 ¾ ¾ 2 ¾ 2 2 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ ¾ ¾ ¾ 2 ¾ ¾ ¾ 3 ¾ 2 ¾ ¾ ¾ ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ 3 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ 3 ¾ 2 ¾ ¾ ¾ ¾ 2 2 ¾ ¾ ¾ ¾ ¾ ¾ ¾ 2 2 ¾ ¾ ¾ ¾ 2 ¾ 3 2 ¾ 2 ¾ ¾ ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ 2 2 ¾ ¾ ¾ 3 ¾ 2 ¾ ¾ 2 ¾ 2 ¾ 3 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ 2 2 ¾ ¾ 3 2 ¾ 2 ¾ ¾ 3 ¾ 2 ¾ 2 ¾ ¾ ¾ 2 2 ¾ ¾ 2 2 ¾ ¾ ¾ ¾ 2 2 ¾ ¾ 2 ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ 2 ¾ 3 ¾ 3 2 ¾ 2 2 ¾ 3 ¾ 2 ¾ ¾ 2 ¾ 2 2 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ 3 ¾ ¾ 3 ¾ ¾ 2 ¾ 2 2 ¾ ¾ 3 ¾ 2 2 ¾ 3 ¾ ¾ 3 3 ¾ 3 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ 2 ¾ 2 2 ¾ 2 ¾ 2 ¾ ¾ 2 3 ¾ 3 ¾ 2 2 ¾ 3 ¾ ¾ 2 ¾ ¾ 2 ¾ 3 ¾ ¾ 2 ¾ ¾ 2 ¾ 3 ¾ 3 ¾ ¾ 2 ¾ 2 ¾ ¾ 2 3 ¾ 2 ¾ ¾ 3 ¾ 2 2 ¾ 2 2 ¾ ¾ ¾ 3 ¾ 2 ¾ 3 ¾ 2 ¾ ¾ 2 ¾ 2 2 ¾ 2 ¾ ¾ 3 2 ¾ ¾ 2 ¾ 2 ¾ ¾ 3 3 ¾ ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 3 ¾ 2 ¾ ¾ 2 2 ¾ ¾ ¾ 2 ¾ 2 ¾ 2 2 ¾ 3 ¾ 2 ¾ ¾ 3 ¾ ¾ 3 ¾ ¾ 2 ¾ 2 3 ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ 3 ¾ ¾ ¾ ¾ 3 ¾ 2 ¾ 2 ¾ ¾ 3 ¾ ¾ ¾ 2 ¾ 2 ¾ 2 ¾ 2 2 ¾ 2 ¾ 2 3 ¾ ¾ ¾ 2 ¾ 3 ¾ ¾ 2 3 ¾ 3 2 ¾ ¾ ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ 2 ¾ ¾ ¾ ¾ 2 ¾ ¾ 2 2 ¾ ¾ 2 ¾ 2 ¾ 2 2 ¾ ¾ 2 2 ¾ 2 ¾ ¾ 2 2 ¾ 2 2 ¾ ¾ 2 2 ¾ ¾ ¾ 2 ¾ ¾ ¾ ¾ 2 ¾ 2 2 ¾ ¾ ¾ 2 2 ¾ ¾ ¾ ¾ ¾ ¾ 2 ¾ 2 2 ¾ ¾ 2 ¾ ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 3 ¾ ¾ ¾ ¾ ¾ 2 ¾ 2 ¾ 2 ¾ ¾ 3 ¾ ¾ 2 3 ¾ 2 2 ¾ 3 2 ¾ ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ ¾ ¾ ¾ ¾ ¾ 2 ¾ 2 ¾ 3 ¾ ¾ ¾ 2 2 ¾ 3 ¾ ¾ 2 ¾ 3 ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ 3 ¾ 2 ¾ ¾ ¾ 3 ¾ 2 ¾ ¾ 2 2 ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ ¾ ¾ 3 ¾ ¾ 3 ¾ ¾ 2 3 ¾ 3 ¾ 2 ¾ 2 ¾ ¾ ¾ 2 2 ¾ ¾ 2 2 ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ 3 2 ¾ 3 ¾ 2 2 ¾ ¾ ¾ 2 ¾ ¾ 3 2 ¾ ¾ 2 2 ¾ 2 ¾ ¾ 2 ¾ 2 ¾ ¾ 3 ¾ 2 ¾ ¾ 3 ¾ ¾ ¾ ¾ ¾ 2 ¾ ¾ 3 ¾ 2 ¾ 3 ¾ 3 ¾ 2 ¾ ¾ 3 ¾ ¾ ¾ ¾ 2 ¾ 2 2 ¾ 2 ¾ ¾ ¾ 2 2 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ 3 2 ¾ 2 2 ¾ ¾ 2 ¾ ¾ ¾ ¾ ¾ ¾ ¾ 3 ¾ ¾ ¾ 2 ¾ ¾ 3 ¾ 2 ¾ 2 3 ¾ 2 2 ¾ 2 ¾ 2 ¾ 3 2 ¾ ¾ ¾ 2 3 ¾ 3 2 ¾ 2 ¾ ¾ ¾ ¾ 2 ¾ ¾ ¾ ¾ 2 ¾ 2 2 ¾ ¾ 2 ¾ ¾ 2 ¾ 2 ¾ 3 ¾ 3 ¾ ¾ 2 ¾ 2 ¾ ¾ ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ 3 2 ¾ 2 ¾ ¾ 2 2 ¾ ¾ ¾ 3 ¾ 2 2 ¾ 2 2 ¾ 2 ¾ 3 ¾ ¾ 3 ¾ ¾ ¾ 2 2 ¾ ¾ 2 2 ¾ ¾ 2 ¾ 2 ¾ 3 ¾ 2 2 ¾ ¾ ¾ ¾ 2 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ 3 ¾ ¾ 2 ¾ 2 ¾ ¾ 3 ¾ 2 2 ¾ 2 ¾ 2 ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ 2 2 ¾ ¾ ¾ 2 ¾ 2 2 ¾ 2 2 ¾ ¾ 2 ¾ 2 ¾ 2 ¾ ¾ 2 2 ¾ 2 ¾ ¾ 2 2 ¾ 3 ¾ 2 ¾ ¾ 2 ¾ 2 2 ¾ 2 2 ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ ¾ ¾ 2 2 ¾ 2 ¾ ¾ 3 ¾ 2 ¾ 2 ¾ 2 2 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ 2 ¾ 2 ¾ ¾ ¾ 2 2 ¾ ¾ 2 ¾ ¾ ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ ¾ 3 ¾ ¾ 2 2 ¾ ¾ 2 2 ¾ 2 ¾ ¾ ¾ ¾ ¾ ¾ 2 2 ¾ ¾ ¾ 2 ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ ¾ 2 ¾ ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ 2 2 ¾ ¾ ¾ 2 ¾ 2 ¾ 2 2 ¾ ¾ 2 ¾ ¾ ¾ 2 2 ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ 2 2 ¾ ¾ 2 2 ¾ ¾ ¾ ¾ 2 2 ¾ 2 2 ¾ 2 ¾ 2 ¾ ¾ 2 2 ¾ 2 2 ¾ 2 2 ¾ ¾ 2 2 ¾ ¾ 2 2 ¾ 2 2 ¾ ¾ 2 ¾ ¾ 2 2 ¾ ¾ ¾ ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ ¾ ¾ 2 2 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ 2 ¾ ¾ ¾ 2 ¾ 2 ¾ 2 ¾ 2 ¾ ¾ 2 2 ¾ 2 ¾ 2 ¾ ¾ 2 ¾ 2 ¾ ¾ 2 ¾ 2 ¾ 3 ¾ ¾ 3 ¾ ¾ 2 ¾ 3 ¾ ¾ ¾ 3 ¾ 2 ¾ 3 ¾ 2 ¾ 2 2 ¾ 3 ¾ 2 3 ¾ 2 ¾ 3 2 ¾ 2 ¾ 2 3 ¾ 2 ¾

29 17/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Alternative: Orbifold Breaking in Extra Dimensions Asaki/Buchmüller/Covi, 01-02; Hebecker/Ratz, 03; Kobayashi/Raby/Zhang, 04; Förste/Nilles/Wingerter, 05; Buchmüller/Hamaguchi/Lebedev/Ratz, 07; Lebedev/Nilles/Raby/Ramos-Sanchez/Ratz/Vaudrevange, 07-08; Groot Nibbelink/Held/Ruehle/Trapletti/Vaudrevange, 09

30 17/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Alternative: Orbifold Breaking in Extra Dimensions

31 17/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Alternative: Orbifold Breaking in Extra Dimensions

32 17/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Alternative: Orbifold Breaking in Extra Dimensions

33 18/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, PS models from 5D orbifolds Braam/Knochel/JRR, JHEP 06:013 SO() U(1)χ E 6 P S U(1) breaking on S 1 /(Z 2 Z 2 ) r r t SO() 6Qχ 16 1 SU(6) SU(2) L SU(6) SU(2) (15, 1) (4, 1, 2) 1/2 (6, 1, 1) 1 (1, 1, 1) 2 (6, 2) (4, 2, 1) 1/2 (1, 2, 2) 1 LQ/DQ couplings from: 16 16, , no way to forbid either of them Anomalies: SU(6) SU(2) fixed point only vector-like matter Gauge shifts: V = ( 1 2, 1 2, 0, 1 2, 1 2, 0), V = ( 1 2, 1 2, 1 2, 1 2, 1 2, 0) 5D E 6 78 vector multiplet 16 3/ /2, (20, 2) 4 bulk 5D E 6 27 hypermultiplet with Z 2 Z 2 parities (++), ( ), ( +), (+ ) (6, 1, 1) 1 + (1, 1, 1) 2, (4, 2, 1) 1 2, (4, 1, 2) 1 2, (1, 2, 2) 1 3rd gen. from 2 bulk hypermultiplets + a brane-localized LQ-/DQ couplings generated (only simultaneously), but must be rendered small by hand

34 19/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, LR Models from 6D Orbifolds Braam/Knochel/JRR, JHEP 06:013 Consider: R 4 (R 2 /Γ), Γ one of the 17 crystallographic groups Use shifts of the bulk E 6 root lattice + discrete Wilson lines on the tori E 6 SU(3) SU(2) 2 U(1) 2 breakings through Z 2, Z 3, Z 4, Z 6 : t2 t2 r r t2 r r t2 r r3 r r r r r r6 r2 t1 t1 t1 t1 H Parity: at least one fixed point to distinguish Higgs/Matter at least one fixed point to discriminate LQ/DQ couplings ( ) ) θ Z n Orbifold compactification breaks SUSY ξ 1, ξ 2 (e iπ/n ξ 1, e iπ/n ξ 2 4D N = 1 SUSY conserved by either: Using D Lorentz phases: [ ] θ = exp A 4 [Γ5, Γ 6 ] + B 4 [Γ7, Γ 8 ] + C 4 [Γ9, Γ ] Non-trivial embedding of SU(2) R symmtry [ ] θ = exp 2π 1 n 4 ([Γ5, Γ 6 ] + c R ii 3R )

35 20/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Classification of Models E 6 H SU(3) SU(2) 2 U(1) 2 Breaking through Z 2, Z 3, Z 4. Z 2 Subgroup H Shift 2V SO() U(1) χ (1, 1, 0, 1, 1, 0) SU(6) SU(2) R (0, 0, 1, 0, 0, 0) SU(6) SU(2) L (1, 1, 1, 1, 1, 0) Z 3 Subgroup H Shift 3V SU(3) C SU(3) L SU(3) R (0, 0, 1, 1, 0, 0) Z 4 Subgroup H Shift 4V SU(3) C SU(3) L SU(2) R U(1) (0, 0, 1, 2, 0, 0) SU(3) C SU(3) R SU(2) L U(1) ( 1, 1, 1, 1, 1, 0) non-trivial (H i H j ) common invariant subgroups H i H j under two combined shifts Z 2 Z 2 Z 2 Z 3 Z 2 Z 4 Z 3 Z 4 Z 4 Z 4 SU(4) C SU(2) L SU(2) R U(1) χ SU(3) C SU(2) L SU(2) R U(1) B L U(1) χ SU(3) C SU(3) L SU(2) R U(1) SU(3) C SU(3) R SU(2) L U(1) SU(4) C SU(2) L SU(2) R U(1) χ SU(3) C SU(2) L SU(2) R U(1) B L U(1) χ SU(3) C SU(3) L SU(2) R U(1) SU(3) C SU(3) R SU(2) L U(1) SU(3) C SU(2) L SU(2) R U(1) B L U(1) χ

36 21/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, A specific Model Braam/Knochel/JRR, JHEP 06:013 Use T 2 /Z 6 (a.k.a. R 2 /632 or p6) SU(3) 3 Shift vector V (r 6 ) = ( 1 6, 6 1, 3 1, 1 2, 6 1, 0) (in Q B L direction) No discrete Wilson lines allowed Anomalies from bulk 78 chiral modes after projection E 6 G LR U(1) χ SO() U(1) χ (16 3/ /2, (3, 2, 1) + (3, 1, 2), (3, 3, 3)) cancel against 78 bulk hypermultiplet 3 gen. of 27 as brane-localized matter SU(3) 3 \SO() Qχ A = (3, 1, 3) (3, 1, 2) ( 1, 1 (3, 1, 1) ) ( 2, 1) B = (3, 3, 1) (3, 2, 1) ( 1, 1 (3, 1, 1) ) ( 2, 1) C = (1, 3, 3) (1, 2, 1) ( 1, 1 2 ) (1, 1, 2) ( 1, 1 2 ) (1, 2, 2) ( 0, 1) (1, 1, 1) ( 0,2) Trinification FP SU(3) 3 (H-even!) to discriminate LQ/DQ couplings (3rd gen.): 27 3 (3, 1, 3) 3 + (3, 3, 1) 3 + (1, 3, 3) 3 + (3, 1, 3)(3, 3, 1)(1, 3, 3) gen. on SO() FP. (allows for LQ couplings) LR symmetry breaking by brane-localized matter: i) L, l c, ν c + c.c. (1, 3, 3) 16 + c.c. ii) L, l c, ν c, H u, H d, S + c.c. (1, 3, 3) + c.c.

37 21/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Model Building Phenomenology

38 22/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Scan of Parameter Space Braam/JRR/Wiesler, ; JRR et al., 2012 # free parameters O(0), additional assumptions: - Unified Soft-Breaking terms - Flavour structure Restriction to 14 parameters Constraints: (1) Experimental search limits for new particles (2) Running couplings perturbative up to Λ E6 (3) Scalar (non-higgs) mass terms positive ( No false vacua) 14-dim. parameter space 1 Grid Scan: 28 points Investigation per point (RGE, Higgs potential minimisation, Calculation of masses) 0 ms Lsg.: Monte-Carlo Markov chain through parameter space Effective search for relevant parameter tuples Y SD tanβ Güte

39 23/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Generic Properties of Spectra mass GeV 2000 u d _2 1 b _2 2 d _ t _2 b _ t _1 e _2 Τ _2 e Τ _1 1 Χ 0 Χ Χ _6 Z' 0 _5 0 _4 3 Χ _2 Χ 0 Χ _2 0 _1 A 0 Χ _1 g H'_8 9 H'_7654 H'_123 D_2 h 0 _3 2 h 0 _1 D_1 D Vanishing 1-loop QCD β function Light Gluino Higgs- and neutralino sector different because of singlet superfield admixture light Z (peculiar asymmetries) Flavoured Higgs sector: Unhiggses, Unhiggsinos Leptoquarks/Leptoquarkinos

40 24/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Sample Spectra H int, H int i) ii) 3ii) i) + 2ii) Λ int /GeV Λ GUT /GeV g MZ Q X Q u c d c D D c L e c H u H d S U 1 Y 60 U 1 U 1 U 1 Y 50 U U U U Αi 30 SU 2 L U 1 B L 1 Αi 30 SU 2 L 20 U 1 Χ 20 U 1 Χ B L SU 3 SU Μ GeV Μ GeV

41 24/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Sample Spectra H int, H int i) ii) 3ii) i) + 2ii) Λ int /GeV Λ GUT /GeV g MZ Q X Q u c d c D D c L e c H u H d S U 1 Y 60 U 1 Y U 1 50 U 1 50 U 1 1 U U U 1 2 Αi 30 SU 2 L Αi 30 SU 2 L 20 U 1 Χ B L 20 U 1 B L Χ SU 3 SU Μ GeV Μ GeV

42 25/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Sample Spectra Scenario A Scenario B Scenario C y lq y lqc y sd y sh y nmssm M g M gluino h sm h lq h lqc h sd h sh h nmssm m sfer m dh m H m D m S m int Higgs boson: A,C m h 1 GeV B m h 7 GeV Z : A, B m Z 2480 GeV C m Z 2090 GeV (R-odd and H-odd) Dark Matter: lightest dark Higgsino, m χ ± O(.1 1GeV)

43 26/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Sample Spectra mass GeV Scenario A Z g t u b d Ν Τ e D D h 0 A 0 h Χ 0 Χ h 0 A 0 h Χ 0 Χ

44 26/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Sample Spectra mass GeV 4000 Scenario B Z g t u b d Ν Τ e D D h 0 A 0 h Χ 0 Χ h 0 A 0 h Χ 0 Χ

45 26/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Sample Spectra mass GeV Scenario C Z g t u b d Ν Τ e D D h 0 A 0 h Χ 0 Χ h 0 A 0 h Χ 0 Χ

46 27/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, LHC: Search & Model Discrimination Decay products of heavy particles high-pt jets, many hard leptons Production of coloured particles weakly interacting particles only in decays Dark Matter discrete parity (R, T, KK) evt/ GeV L = 0 fb pt (b/ b) [GeV] new particles only in pairs high energies, long decay chains Dark Matter large missing energy in the detector ( /ET ) Different models/decay chains identical signatures Mass of new particles: endpoints of decay spectra 0.04 Events/1 GeV/0 fb m(ll) (GeV) dp / d(cos θ * ) / SUSY UED PS cos θ * Spin of new particles: Angular correlations, asymmetries,... Model discrimination: Measuring coupling constants

47 27/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, LHC: Search & Model Discrimination Decay products of heavy particles high-pt jets, many hard leptons Production of coloured particles weakly interacting particles only in decays Dark Matter discrete parity (R, T, KK) new particles only in pairs high energies, long decay chains Dark Matter large missing energy in the detector ( /ET ) Different models/decay chains identical signatures Mass of new particles: endpoints of decay spectra q q q L q R q q l l lr l R l l 0.04 Events/1 GeV/0 fb m(ll) (GeV) dp / d(cos θ * ) / SUSY UED PS cos θ * Spin of new particles: Angular correlations, asymmetries,... Model discrimination: Measuring coupling constants

48 27/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, LHC: Search & Model Discrimination Decay products of heavy particles high-pt jets, many hard leptons Production of coloured particles weakly interacting particles only in decays Dark Matter discrete parity (R, T, KK) new particles only in pairs high energies, long decay chains Dark Matter large missing energy in the detector ( /ET ) Different models/decay chains identical signatures Mass of new particles: endpoints of decay spectra 0.04 Events/1 GeV/0 fb m(ll) (GeV) dp / d(cos θ * ) / SUSY UED PS cos θ * Spin of new particles: Angular correlations, asymmetries,... Model discrimination: Measuring coupling constants

49 28/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, WHIZARD Kilian/Ohl/JRR: DESY/Freiburg/Siegen/Würzburg, hep-ph/02195, Multi-Purpose event generator for collider and astroparticle physics Acronym: W, HIggs, Z, And Respective Decays (deprecated) Fast adaptive multi-channel Monte-Carlo integration Very efficient phase space and event generation Optimized/-al matrix elements Recent version: ( ) und Parton shower (k -ordered and analytical) Kilian/JRR/Schmidt/Wiesler, JHEP 1204 (2012) 013 Underlying Event: preliminary (for 2.1) Arbitrary processes: matrix element generator (O Mega) 2.0 Features: ME/PS matching, cascades, versatile new steering syntax, WHIZARD as shared library Interface to FeynRules Christensen/Duhr/Fuks/JRR/Speckner,.3215, EPJC (in print) Prime example: LHC pheno of HEIDI models Christensen/Fuks/JRR/Speckner,

50 28/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, WHIZARD Kilian/Ohl/JRR: DESY/Freiburg/Siegen/Würzburg, hep-ph/02195, Multi-Purpose event generator for collider and astroparticle physics Focus: LHC, ILC, CLIC, SM, QCD, BSM MODEL TYPE with CKM matrix trivial CKM QED with e, µ, τ, γ QED QCD with d, u, s, c, b, t, g QCD Standard model SM CKM SM SM with anomalous couplings SM ac CKM SM ac SM with anomalous top couplings SM top SM with K matrix SM KM MSSM MSSM CKM MSSM MSSM with Gravitinos MSSM Grav NMSSM NMSSM CKM NMSSM extended SUSY models PSSSM Littlest Higgs Littlest Littlest Higgs with ungauged U(1) Littlest Eta Littlest Higgs with T parity Littlest Tpar Simplest Little Higgs (anomaly free) Simplest Simplest Little Higgs (universal) Simplest univ UED UED 3-Site Higgsless Model Threeshl Noncommutative SM (inoff.) NCSM SM with Z Zprime SM with Gravitino and Photino GravTest Augmentable SM template Template Interface to FeynRules easy to implement new models Christensen/Duhr/Fuks/JRR/Speckner,.3215, EPJC (in print) Prime example: LHC pheno of HEIDI models Christensen/Fuks/JRR/Speckner,

51 29/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Z : Drell-Yan and Asymmetry Z, typical mass: TeV, typical width: 40 GeV Drell-Yan cross section: σ(pp Z µµ; 14 TeV) = fb Cuts: η < 2.5 (acceptance), p T (µ) > 50 GeV, M µµ > 1.5 TeV Z line shape; simulation with WHIZARD for 0 fb 1 : Scenario C 70 Scenario C 0 fb dσ d MΜΜ fb GeV events 40 GeV MΜΜ GeV MΜΜ GeV Forward-backward Asymmetry: A F B σ F σ B σ F +σ B where σ F 1 0 dσ(q q µ + µ ) d cos θ d cos θ σ B 0 1 dσ(q q µ + µ ) d cos θ d cos θ

52 29/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Z : Drell-Yan and Asymmetry Z, typical mass: TeV, typical width: 40 GeV Drell-Yan cross section: σ(pp Z µµ; 14 TeV) = fb Cuts: η < 2.5 (acceptance), p T (µ) > 50 GeV, M µµ > 1.5 TeV Z line shape; simulation with WHIZARD for 0 fb 1 : Scenario A: p p ΜΜ Whizard Scenario C: p p ΜΜ Whizard A FB 0.0 A FB MΜΜ GeV MΜΜ GeV Forward-backward Asymmetry: A F B σ F σ B σ F +σ B where σ F 1 0 dσ(q q µ + µ ) d cos θ d cos θ σ B 0 1 dσ(q q µ + µ ) d cos θ d cos θ

53 30/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, u + g e Predictions from E 6 GUTs for LHC Braam/JRR/Wiesler, Simulations for the E 6 model with WHIZARD Implementation of Leptoquark/Leptoquarkino + Higgs/weak ino sector (now FeynRules impl.) Analyses: BRs, cross sections for scalar leptoquarks, S/B Leptoquarkino phenomenology X L Branching Ratio D Decays of D L - e D Yukawa Coupling Y 1 D L D L D L D L D L + u 0 χ + D ~ 1 ~ u L + ~ d L ~ u L + + ~ e L ν ~ e R CrossSection σ [fb] PairProduction q + q D L g + g D L p + p D L * + D L * + D L * + D L Cross section σ [fb] Leptoquark Single Production u + g e - d + g ν + D L + D R + D R Leptoquarkmass M [GeV] LQ Leptoquark mass M [GeV] LQ Cuts Background m D = 0.6 TeV m D = 0.8 TeV m D = 1.0 TeV p T M ll N BG N 1 S 1/ B N 2 S 2/ B N 3 S 3/ B

54 30/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, u + g e Predictions from E 6 GUTs for LHC Braam/JRR/Wiesler, Simulations for the E 6 model with WHIZARD Implementation of Leptoquark/Leptoquarkino + Higgs/weak ino sector (now FeynRules impl.) Analyses: BRs, cross sections for scalar leptoquarks, S/B Leptoquarkino phenomenology X R Branching Ratio D Decays of D R ν D Yukawa Coupling Y 1 D R D R D R D R D R - e + d + u 0 χ + D ~ 1 ~ u R + ~ u R + ~ e L ~ e R CrossSection σ [fb] PairProduction q + q D L g + g D L p + p D L * + D L * + D L * + D L Cross section σ [fb] Leptoquark Single Production u + g e - d + g ν + D L + D R + D R Leptoquarkmass M [GeV] LQ Leptoquark mass M [GeV] LQ Cuts Background m D = 0.6 TeV m D = 0.8 TeV m D = 1.0 TeV p T M ll N BG N 1 S 1/ B N 2 S 2/ B N 3 S 3/ B

55 31/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Braam/JRR/Wiesler, ; Braam/Horst/Knochel/JRR/Wiesler, 20/11 Invariant mass of lepton and jet # Events/bin 5 4 Signal + Background for: h3 Entries 0 D Mean µ + uµ - µ + L/R RMS D τ + L/R uτ - τ + Invariant mass of lepton and jet # Events/bin 3 Signal + Background for: h3 D µ Entries + uµ - µ + L/R 0 Mean RMS D τ + uτ - τ L/R M [GeV] lj M [GeV] lj p distribution of the lepton T # Events/bin 5 h3 SM Background after cuts (1) Entries 0 Mean Signal: µ D µ µ j 4 RMS L/R 3 2 Processes: SM Background: µ + µ - Signal after cuts(1) j # Events/bin p distribution of the lepton T D-l-q coupl. λ= < cuts: η <3.5 p >50 T R(ll) < 6 Process pp De + ue - e + m D = 600 hbg m Entries 0 D = 800 Mean m RMS D = m D = 1200 m D = 1500 SM Bg: Zj/γj p [GeV] T p [GeV] T Backgrounds: tt + nj, W/Z + nj Cuts: /p T > 150 GeV, 1.0 < cos θ lj < 0.7

56 32/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Mass Edges for Leptoquarkinos JRR/Wiesler,.4215 Properties of Leptoquarkinos: X Branching Ratio D ~ -1-2 Leptoquarkino Branching Fraction Decays of D ~ D ~ ~ e L + u D ~ ~ e R + u - D ~ ~ u L + e - D ~ ~ u R + e ~ D ~ d L + νe D ~ ν L + d cross section σ [fb] Leptoquarkino production channels pp D ~ D ~ * D ~~ el * D ~~ er D ~~ e L D ~~ e R Leptoquarkino mass M D Identical exclusive final states Leptoquarkino mass M D [GeV] q l ± l q l ql χ 0 2 l R χ 0 1 D χ 0 1 l R χ 0 1 q L χ 0 2 l R χ 0 1 D l+ L χ 0 2 l R q l ± l q l + l ± l

57 32/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Mass Edges for Leptoquarkinos JRR/Wiesler,.4215 Mass edges more dominant because of missing spin correlations m ql,high = max{m ql +, m ql } m ql,low = min{m ql +, m ql } # Events / Bin Invariant Mass Distribution of (q,l) h1 Entries m ql, high SPS1a 0 Mean RMS 70.2 m ql, high LQinos # Events / Bin Invariant Mass Distribution of (q,l) m ql, low h1 SPS1a Entries 0 Mean RMS m ql, low LQinos ql m [GeV] ql m [GeV] Combinatorial backgrounds, combine softest jet and hardest lepton: m ql = m(min E{q 1, q 2 }, max E {l +, l }) # Events / Bin Invariant Mass Distribution * m ql SPS1a h1 Entries m D = 400 GeV 0 Mean m D = 600 GeV RMS m = 800 GeV 5 D m D = 00 GeV m ql [GeV]

58 33/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Discrimination from standard SUSY JRR/Wiesler, 20/11 Look at dilepton spectrum: standard SUSY same cascade, Leptoquarkinos different cascades Cut on kinematic edge in standard dilepton spectra # Events / Bin Invariant Mass Distribution of (l,l) m h1 ll Entries 0 Mean RMS m ll SPS1a LQinos # Events / Bin Invariant Mass Distribution of (q,l) SPS1a + LQinos h1 Entries 0 * Mean mql RMS * mql w/ m ll >0 GeV m [GeV] ll * m [GeV] ql S/B estimate, 0 fb 1, 2 OSSF, 2 hard jets, /E T m D # N(LQino) & N(SUSY) # N cut S / S+B More pheno to come... stay tuned...

59 34/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Proton Decay in the PSSSM Mallot/JRR, 20 Superpotential (and soft breaking) do not induce proton decay Investigate exchange of E 6 gauge bosons/gauginos Steps from top down: 1. Group-theoretical weights from Clebsch-Gordan decomposition Horst/Mallot/JRR, Calculation of proton-decay Wilson coefficients at Λ GUT 3. Short-distance (SUSY) renormalisation group factor 4. Matching to SM dimension-6 Fermi operators 5. Long-distance (SM/QCD) renormalisation group factor 6. Matching to mesonic/baryonic operators (analogue to chiral perturbation theory) 7. Calculation of baryon decay matrix element and width Yields very conservative estimate: 1/Γ tot (p X) Jahre

60 35/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Summary SUSY GUTs Grand Unified Theories with intermediate breaking Viable scenarios: E 6 SU(3/4) SU(2) L SU(2) R U(1) 2 Possible breaking mechanisms: Higgs vs. Orbifold boundary conditions Proton decay beyond experimental reach Direct hints through chiral exotics at LHC Interesting, but intricate phenomenology at LHC Embedding into heterotic string/f theory (if someone is interested) Flavour plays important role: continuous vs. discrete symmetries Open questions: flavour, dark matter, SUSY breaking mechanisms

61 35/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Outlook pedo mellon a minno. LHC: new era of physics New particles, new symmetries, new interactions, dark matter Model Building, Phenomenology, Tools Interesting times! Though this be madness, yet there is method in t.. - (Hamlet, Act II, Scene II).

62 35/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Outlook pedo mellon a minno. LHC: new era of physics New particles, new symmetries, new interactions, dark matter Model Building, Phenomenology, Tools Interesting times! Though this be madness, yet there is method in t.. - (Hamlet, Act II, Scene II).

63 35/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Outlook pedo mellon a minno. LHC: new era of physics New particles, new symmetries, new interactions, dark matter Model Building, Phenomenology, Tools Some Unification Needs Time Though this be madness, yet there is method in t.. - (Hamlet, Act II, Scene II).

64 34/34 J. R. Reuter Hints of Exceptional Grand Unification at the LHC SLAC, Outlook pedo mellon a minno. LHC: new era of physics New particles, new symmetries, new interactions, dark matter Model Building, Phenomenology, Tools Some Unification Needs Time Though this be madness, yet there is method in t.. - (Hamlet, Act II, Scene II).

Exceptional Grand Unification at the LHC. DESY Hamburg

Exceptional Grand Unification at the LHC. DESY Hamburg 0/29 J. R. Reuter Hints of Exceptional Grand Unification at the LHC Hamburg, 23.11.20 Hints of Exceptional Grand Unification at the LHC Jurgen R. Reuter DESY Hamburg Theory Colloquium, DESY Hamburg, 13.

More information

Hints of Exceptional Grand Unification at the LHC

Hints of Exceptional Grand Unification at the LHC 0/29 J. R. Reuter Hints of Exceptional Grand Unification at the LHC Hamburg, 23.11.20 Hints of Exceptional Grand Unification at the LHC Jürgen R. Reuter University of Edinburgh / Albert-Ludwigs-Universität

More information

LHC Phenomenology of SUSY multi-step GUTs

LHC Phenomenology of SUSY multi-step GUTs 0/14 J. Reuter LHC Phenomenology of SUSY multi-step GUTs PHENO 09, Madison, 1.5.009 LHC Phenomenology of SUSY multi-step GUTs Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PL B64 (006),

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PLB B642 (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Carleton University, Ottawa University of Freiburg W. Kilian, J. Reuter, PLB B642 (2006), 81, and work in progress (with

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

(Supersymmetric) Grand Unification

(Supersymmetric) Grand Unification (Supersymmetric) Grand Unification Jürgen Reuter Albert-Ludwigs-Universität Freiburg Uppsala, 15. May 2008 Literature General SUSY: M. Drees, R. Godbole, P. Roy, Sparticles, World Scientific, 2004 S. Martin,

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

The Constrained E 6 SSM

The Constrained E 6 SSM The Constrained E 6 SSM and its signatures at the LHC Work with Moretti and Nevzorov; Howl; Athron, Miller, Moretti, Nevzorov Related work: Demir, Kane, T.Wang; Langacker, Nelson; Morrissey, Wells; Bourjaily;

More information

Exceptional Supersymmetry. at the Large Hadron Collider

Exceptional Supersymmetry. at the Large Hadron Collider Exceptional Supersymmetry at the Large Hadron Collider E 6 SSM model and motivation Contents Why go beyond the Standard Model? Why consider non-minimal SUSY? Exceptional SUSY Structure, particle content

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

The Standard Model and beyond

The Standard Model and beyond The Standard Model and beyond In this chapter we overview the structure of the Standard Model (SM) of particle physics, its shortcomings, and different ideas for physics beyond the Standard Model (BSM)

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Is SUSY still alive? Dmitri Kazakov JINR

Is SUSY still alive? Dmitri Kazakov JINR 2 1 0 2 The l o o h c S n a e p o r Eu y g r e n E h g i of H s c i s y PAnhjou, France 2 1 0 2 e n 6 19 Ju Is SUSY still alive? Dmitri Kazakov JINR 1 1 Why do we love SUSY? Unifying various spins SUSY

More information

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1 Physics 662 Particle Physics Phenomenology February 21, 2002 Physics 662, lecture 13 1 Physics Beyond the Standard Model Supersymmetry Grand Unified Theories: the SU(5) GUT Unification energy and weak

More information

Crosschecks for Unification

Crosschecks for Unification Crosschecks for Unification Hans Peter Nilles Physikalisches Institut Universität Bonn Crosschecks for Unification, Planck09, Padova, May 2009 p. 1/39 Questions Do present observations give us hints for

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn Tuesday group seminar 17/03/15 University of Liverpool 1 Introduction Outline The SM & SUSY Flavour Problem. Solving it by imposing a

More information

New Physics from the String Vacuum

New Physics from the String Vacuum New Physics from the String Vacuum The string vacuum Extended MSSM quivers String remnants Small neutrino masses Quivers: Cvetič, Halverson, PL, JHEP 1111,058 (1108.5187) Z : Rev.Mod.Phys.81,1199 (0801.145)

More information

A Domino Theory of Flavor

A Domino Theory of Flavor A Domino Theory of Flavor Peter Graham Stanford with Surjeet Rajendran arxiv:0906.4657 Outline 1. General Domino Framework 2. Yukawa Predictions 3. Experimental Signatures General Domino Framework Inspiration

More information

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination University of Bonn Outlook: supersymmetry: overview and signal LHC and ATLAS invariant mass distribution

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Neutralino spin measurement with ATLAS detector at LHC

Neutralino spin measurement with ATLAS detector at LHC Neutralino spin measurement with ATLAS detector at LHC M. Biglietti 1,2, I. Borjanovic 3, G. Carlino 2, F. Conventi 1,2, E. Gorini 3,4, A. Migliaccio 1,2, E. Musto 1,2, M. Primavera 3, S. Spagnolo 3,4,

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

Ricerca di nuova fisica a HERA

Ricerca di nuova fisica a HERA Ricerca di nuova fisica a HERA Incontro sulla Fisica delle Alte Energie, Lecce 23-26 aprile 2003 S.Dusini, INFN Padova 1 Overview Introduction to Hera Results from HERA I Contact Interaction: Compositness,

More information

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF PE SU Outline: Introduction Search for new Physics Model driven Signature based General searches R Search for new Physics at CDF SUperSYmmetry Standard Model is theoretically incomplete SUSY: spin-based

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Slides available at: Alex Tapper http://www.hep.ph.ic.ac.uk/~tapper/lecture.html Objectives - Know what Supersymmetry (SUSY) is - Understand qualitatively the

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross THE DREAM OF GRAND UNIFIED THEORIES AND THE HC atsis symposium, Zurich, 2013 Graham Ross The Standard Model after HC 8 u Symmetries è Dynamics Gauge bosons Chiral Matter Higgs u i d i SU(3) SU(2) U(1)

More information

Heterotic Supersymmetry

Heterotic Supersymmetry Heterotic Supersymmetry Hans Peter Nilles Physikalisches Institut Universität Bonn Heterotic Supersymmetry, Planck2012, Warsaw, May 2012 p. 1/35 Messages from the heterotic string Localization properties

More information

Search for new physics in rare D meson decays

Search for new physics in rare D meson decays Search for new physics in rare D meson decays Svjetlana Fajfer and Sasa Prelovsek Department of Physics, University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia XXXIII INTERNATIONAL CONFERENCE

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Heterotic Brane World

Heterotic Brane World Heterotic Brane World Hans Peter Nilles Physikalisches Institut Universität Bonn Germany Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208, to appear in Physical Review D Heterotic

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia . Introduction to SUSY Giacomo Polesello INFN, Sezione di Pavia Why physics beyond the Standard Model? Gravity is not yet incorporated in the Standard Model Hierarchy/Naturalness problem Standard Model

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

Lecture 4 - Beyond the Standard Model (SUSY)

Lecture 4 - Beyond the Standard Model (SUSY) Lecture 4 - Beyond the Standard Model (SUSY) Christopher S. Hill University of Bristol Warwick Flavour ++ Week April 11-15, 2008 Recall the Hierarchy Problem In order to avoid the significant finetuning

More information

Supersymmetry Basics. J. Hewett SSI J. Hewett

Supersymmetry Basics. J. Hewett SSI J. Hewett Supersymmetry Basics J. Hewett SSI 2012 J. Hewett Basic SUSY References A Supersymmetry Primer, Steve Martin hep-ph/9709356 Theory and Phenomenology of Sparticles, Manual Drees, Rohini Godbole, Probir

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

Baryon and Lepton Number Violation at the TeV Scale

Baryon and Lepton Number Violation at the TeV Scale Baryon and Lepton Number Violation at the TeV Scale S. Nandi Oklahoma State University and Oklahoma Center for High Energy Physics : S. Chakdar, T. Li, S. Nandi and S. K. Rai, arxiv:1206.0409[hep-ph] (Phys.

More information

Composite gluino at the LHC

Composite gluino at the LHC Composite gluino at the LHC Thomas Grégoire University of Edinburgh work in progress with Ami Katz What will we see at the LHC? Natural theory of EWSB? Supersymmetry? Higgs as PGSB (LH, RS-like)? Extra-

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Alex Tapper Slides available at: http://www.hep.ph.ic.ac.uk/tapper/lecture.html Reminder Supersymmetry is a theory which postulates a new symmetry between fermions

More information

Grand Unification and Strings:

Grand Unification and Strings: Grand Unification and Strings: the Geography of Extra Dimensions Hans Peter Nilles Physikalisches Institut, Universität Bonn Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208,

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

SUSY searches at LHC and HL-LHC perspectives

SUSY searches at LHC and HL-LHC perspectives SUSY searches at LHC and HL-LHC perspectives Maximilian Goblirsch-Kolb, on behalf of the ATLAS and CMS collaborations 26.10.2017, LCWS 2017, Strasbourg SUSY particle production in p-p collisions Two main

More information

Theoretical Developments Beyond the Standard Model

Theoretical Developments Beyond the Standard Model Theoretical Developments Beyond the Standard Model by Ben Allanach (DAMTP, Cambridge University) Talk outline Bestiary of some relevant models SUSY dark matter Spins and alternatives B.C. Allanach p.1/18

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Strings and Particle Physics

Strings and Particle Physics Strings and Particle Physics Hans Peter Nilles Physikalisches Institut Universität Bonn Germany Strings and Particle Physics, SUSY07 p.1/33 Questions What can we learn from strings for particle physics?

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

Higgs boson(s) in the NMSSM

Higgs boson(s) in the NMSSM Higgs boson(s) in the NMSSM U. Ellwanger, LPT Orsay Supersymmetry had a bad press recently: No signs for squarks/gluino/charginos/neutralinos... at the LHC Conflict (?) between naturalness and the Higgs

More information

Search for physics beyond the SM in ep collisions at HERA

Search for physics beyond the SM in ep collisions at HERA Search for physics beyond the SM in ep collisions at HERA L.Bellagamba (INFN Bologna) on behalf of the H1 and ZEUS Collaboration L.Bellagamba, Search for physics beyond the SM in ep collisions at HERA,

More information

Searches for Supersymmetry at ATLAS

Searches for Supersymmetry at ATLAS Searches for Supersymmetry at ATLAS Renaud Brunelière Uni. Freiburg On behalf of the ATLAS Collaboration pp b b X candidate 2 b-tagged jets pt 52 GeV and 96 GeV E T 205 GeV, M CT (bb) 20 GeV Searches for

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

SU(3)-Flavons and Pati-Salam-GUTs

SU(3)-Flavons and Pati-Salam-GUTs SU(3)-Flavons and Pati-Salam-GUTs Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter Universität Siegen Theoretische Physik I Dortmund, 03.07.2012 Outline 1 Running couplings

More information

Koji TSUMURA (NTU à Nagoya U.)

Koji TSUMURA (NTU à Nagoya U.) Koji TSUMURA (NTU à Nagoya U.) Toyama mini WS 20-21/2/2012 S. Kanemura, K. Tsumura and H. Yokoya, arxiv:1111.6089 M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Phys. Rev. D80 015017 (2009) Outline The

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

Searches for new physics at ATLAS

Searches for new physics at ATLAS 1 Searches for new physics at ATLAS Gökhan Ünel U.C. Irvine On behalf of the ATLAS collaboration ICPP 2011 Istanbul Outline 2 LHC has been giving us data at ever increasing pace. Lint =1 fb reached as

More information

Geography on Heterotic Orbifolds

Geography on Heterotic Orbifolds Geography on Heterotic Orbifolds Hans Peter Nilles Physikalisches Institut, Universität Bonn and CERN, Geneva Based on work with S. Förste, P. Vaudrevange and A. Wingerter hep-th/0406208, hep-th/0504117

More information

Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking

Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking Dynamical Solution to the µ/b µ Problem in Gauge Mediated Supersymmetry Breaking Carlos E.M. Wagner EFI and KICP, University of Chicago HEP Division, Argonne National Lab. Work done in collaboration with

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Z' Bosons On-peak, Off-peak, and Way Off-peak

Z' Bosons On-peak, Off-peak, and Way Off-peak Z' Bosons On-peak, Off-peak, and Way Off-peak Seth Quackenbush University of Wisconsin-Madison arxiv:0801.4389 [hep ph] (F. Petriello, SQ) WIP (Y. Li, F. Petriello, SQ) Outline What is a Z'? How do we

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

arxiv:hep-ph/ v1 6 Feb 2004

arxiv:hep-ph/ v1 6 Feb 2004 arxiv:hep-ph/0402064v1 6 Feb 2004 AN NMSSM WITHOUT DOMAIN WALLS TAO HAN Department of Physics University of Wisconsin Madison, WI 53706 USA E-mail: than@pheno.physics.wisc.edu PAUL LANGACKER Department

More information

Strings, Exceptional Groups and Grand Unification

Strings, Exceptional Groups and Grand Unification Strings, Exceptional Groups and Grand Unification Hans Peter Nilles Physikalisches Institut Universität Bonn Strings, Exceptional Groups and Grand Unification, Planck11, Lisbon, June 2011 p. 1/39 Outline

More information

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012 Koji TSUMURA (NTU Nagoya U.) @ KEK 16-18/2/2012 Outline: -Two-Higgs-doublet model -Leptophilic Higgs boson S. Kanemura, K. Tsumura and H. Yokoya, arxiv:1111.6089 M. Aoki, S. Kanemura, K. Tsumura and K.

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS Alon E. Faraggi AEF, 990 s (top quark mass, CKM, MSSM w Cleaver and Nanopoulos) AEF, C. Kounnas, J. Rizos, 003-009 AEF, PLB00, work in progress with Angelantonj,

More information

Dirac gauginos, R symmetry and the 125 GeV Higgs

Dirac gauginos, R symmetry and the 125 GeV Higgs Claudia Frugiuele Dirac gauginos, R symmetry and the 125 GeV Higgs with E.Bertuzzo, T. Grègoire and E. Ponton hep ph 1402.5432 GOAL 8, 14/08/2014 OUTLINE Dirac gauginos and natural SUSY R symmetric models

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group CP3 Origins, September 16 th, 2013 At this seminar I will touch upon... σ 2 Issues of the Standard Model Dramatically

More information

BSM Higgs Searches at ATLAS

BSM Higgs Searches at ATLAS BSM Higgs Searches at ATLAS Martin zur Nedden Humboldt-Universität zu Berlin for the ATLAS Collaboration SUSY Conference 2014 Manchester July 20 th July 25 th, 2014 Introduction Discovery of a scalar Boson

More information

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Golden SUSY, Boiling Plasma, and Big Colliders M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Outline Part I: Supersymmetric Golden Region and its Collider Signature (with Christian

More information

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

BSM physics at the LHC. Akimasa Ishikawa (Kobe University) BSM physics at the LHC Akimasa Ishikawa (Kobe University) 7 Jan. 2011 If SM Higgs exists Why BSM? To solve the hierarchy and naturalness problems O(1 TeV) Quadratic divergence of Higgs mass If SM Higgs

More information

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09 The first year of the LHC and Theory G.G.Ross, Krakow, December 09 The LHC a discovery machine The gauge sector : new gauge bosons? The maber sector : new quarks and leptons? The scalar sector : the hierarchy

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton-flavor violation in tau-lepton decay and the related topics Lepton-flavor violation in tau-lepton decay and the related topics Junji Hisano Institute for Cosmic Ray Research Univ. of Tokyo International Workshop On Discoveries In Flavour Physics At E+ E- Colliders

More information

Patrick Kirchgaeßer 07. Januar 2016

Patrick Kirchgaeßer 07. Januar 2016 Patrick Kirchgaeßer 07. Januar 2016 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

Anomalies and Remnant Symmetries in Heterotic Constructions. Christoph Lüdeling

Anomalies and Remnant Symmetries in Heterotic Constructions. Christoph Lüdeling Anomalies and Remnant Symmetries in Heterotic Constructions Christoph Lüdeling bctp and PI, University of Bonn String Pheno 12, Cambridge CL, Fabian Ruehle, Clemens Wieck PRD 85 [arxiv:1203.5789] and work

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Chapter 4 Supersymmetry

Chapter 4 Supersymmetry Chapter 4 Supersymmetry Contents 4.1 Introduction... 68 4. Difficulties in the standard model... 68 4.3 Minimal Supersymmetric Standard Model... 69 4.3.1 SUSY... 69 4.3. Reasons to introduce SUSY... 69

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

The discrete beauty of local GUTs

The discrete beauty of local GUTs The discrete beauty of local GUTs Hans Peter Nilles Physikalisches Institut Universität Bonn The discrete beauty of local grand unification, GUTs and Strings, MPI München, February 2010 p. 1/33 Outline

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

14th Lomonosov Conference on Elementary Particle Physics Moscow, 24 August 2009

14th Lomonosov Conference on Elementary Particle Physics Moscow, 24 August 2009 M. Biglietti University of Rome Sapienza & INFN On behalf of the ATLAS Collaboration 1 14th Lomonosov Conference on Elementary Particle Physics Moscow, 24 August 2009 Theoretically favored candidates for

More information

Higgs physics at the ILC

Higgs physics at the ILC Higgs physics at the ILC Klaus Desch University of Bonn Second Linear Collider Physics School Ambleside,UK, 15/09/06 Disclaimers + Announcements Focus will be on experimental possibilities + studies with

More information

Higher dimensional operators. in supersymmetry

Higher dimensional operators. in supersymmetry I. Antoniadis CERN Higher dimensional operators in supersymmetry with E. Dudas, D. Ghilencea, P. Tziveloglou Planck 2008, Barcelona Outline Effective operators from new physics integrating out heavy states

More information

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders BSM Physics at + High-Energy e e Colliders Jürgen R. Reuter, DESY J.R.Reuter BSM Physics at High-Energy ee Colliders CLIC 2015, CERN, 28.1.2015 Physics at High-Energy e+ e- Colliders High-energy e+ e-

More information

Supersymmetry and the LHC: An Introduction

Supersymmetry and the LHC: An Introduction Supersymmetry and the LHC: An Introduction Brent D. Nelson Northeastern University 8/13/2007 Outline 1 1. Why do we need to look beyond the Standard Model? 2. What is supersymmetry? What is the MSSM? 3.

More information

LHC signals for SUSY discovery and measurements

LHC signals for SUSY discovery and measurements 06 March 2009 ATL-PHYS-SLIDE-2009-038 LHC signals for SUSY discovery and measurements Vasiliki A. Mitsou (for the ATLAS and CMS Collaborations) IFIC Valencia PROMETEO I: LHC physics and cosmology 2-6 March,

More information