Kronecker Product of Networked Systems and their Approximates

Size: px
Start display at page:

Download "Kronecker Product of Networked Systems and their Approximates"

Transcription

1 Kronecker Product of Networked Systems and their Approximates Robotics, Aerospace and Information Networks (RAIN) University of Washington (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 1 / 19

2 Graph Products: Networks within Networks Many ways to compose graphs G and H Cartesian product G H Tensor/Direct/Kronecker product G H Strong product G H Lexicographic product G H Rooted product G H Corona product G H Star product G H How does modularity of the network manifest itself as modularity within the state dynamics? Kronecker Product: (Graphs, ) (Dynamics, ) (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 2 / 19

3 Graph Product Examples Periodic Structures: e.g., hypercube multiprocessors, building trusses Compartmental Networks: e.g., air traffic networks, chemical reactions Constant degree expander graphs: e.g., computer networks, sorting networks, cryptography Australian Academic Research Network (AARNET) Cite: Parsonage et al. Generalized Graph Products for Network Design and Analysis, (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 3 / 19

4 Graph Kronecker Product Kronecker product G H Vertex set: V (G H) = V (G) V (H) Edge set: (x 1,x 2 ) (y 1,y 2 ) is in G H if x 1 y 1 and x 2 y 2 Algebraic Representation A(G H) = A(G) A(H) (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 4 / 19

5 Graph Kronecker Product Weighted: Directed: Multiple Products: (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 5 / 19

6 Relevance and Intuition: Fractal Nature Recursive growth of graph communities: Nodes get expanded to micro communities A(K) A(K K) A(K K K) A(K K K K) Obey common network features: Degree distribution, density power law, diameters, spectra [Leskovec et al. 10] (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 6 / 19

7 Relevance and Intuition: Null-Models Attribute representations, e.g., High/Low GPA, Year in school Nodes describe attributes, e.g., u = (High GPA,Yr 12), v = (Low GPA,Yr 11) Edges describe interaction probabilities, e.g., p(u v) = = 0.02 GPA High Low High Low Class Yr12 Yr11 Yr Yr A(G 1 ) A(G 2 ) (GPA,Class) (High,Yr12) (High,Yr11) (Low,Yr12) (Low,Yr11) (High,Yr12) (High,Yr11) (Low,Yr12) (Low,Yr11) A(G 1 G 2 ) (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 7 / 19

8 Dynamics over Kronecker Product The factor dynamics for i = 1,2,... Consider the discrete dynamics x i (k + 1) = A(G i )x i (k) y i (k) = C i x i (k) x(k + 1) = A(G 1 G 2...)x(k) = A( G i )x(k) y(k) = (C 1 C 2...)x(k) = C i x(k) For output node sets S 1,S 2,... then C(S 1 ) C(S 2 ) = C(S 1 S 2...) Here A( ) preserved the Kronecker product, e.g., Adjacency A(G 1 ), Row stochastic adjacency [A s (G)] ij = [A(G)] ij j [A(G)] ij How does the features of the factors compare to the composite system? (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 8 / 19

9 Trajectory and Stability When initialized from x(0) = x i (0) the composite trajectory is x(k + 1) = x i (k) Consequence: If the factors are stable then the composite is stable (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 9 / 19

10 Observability Dynamics are observable if for any unknown x(0), t f there exists a t f such that knowledges of u(t) and y(t) over [0,t 1 ] uniquely determine x(0). Significant in networked robotic systems, human-swarm interaction, network security, quantum networks. Challenging to establish for large networks Known families of observable graphs for selected outputs Paths (Rahmani and Mesbahi 07) Circulants (Nabi-Abdolyousefi and Mesbahi 12) Grids (Parlengeli and Notarsefano 11) Distance regular graphs (Zhang et al. 11) Cartesian products (Chapman et al. 14) (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 10 / 19

11 Observability Consider diagonalizable A(G 1 ) and A(G 2 ) with distinct eigenvalues of λ 1,..., λ p and µ 1,..., µ q Theorem The pair (A(G 1 G 2 ),C 1 C 2 ) is observable if and only if (1) the pairs (A(G 1 ),C 1 ) and (A(G 2 ),C 2 ) are observable and (2) for λ 1 µ 1 = λ 2 µ 2 = = λ p µ p, λ i λ j i j, p > 1, C T 1 [U 1,U 2,...,U p ] and/or C T 2 [V 1,V 2,...,V p ], where the columns of U i are the orthogonal right eigenvectors of eigenvalues λ i of A(G 1 ) (sim. for pairs ( µ i,v i ) of A(G 2 )). If the factors are observable then all modes such that λ i µ s λ j µ t are observable If (1) and (2) satisfied, and C 1 and C 2 are minimal rank observable on the factors then C 1 C 2 is a minimal rank observable on the composite (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 11 / 19

12 Observability Example (A(G 1 ),C(S 1 )) is observable with S 1 = {blue, green} (A(G 2 ),C(S 2 )) is observable with S 2 = { } No new multiplicities are introduced in A(G 1 G 2 ) = (A(G 1 G 2 ),C(S 1 S 2 )) is observable with S 1 S 2 = {blue, green } (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 12 / 19

13 Observability Factorization - Idea of the Proof Popov-Belevitch-Hautus (PBH) test (A, C) is unobservable if and only if there exists a right eigenvalue-eigenvector pair (λ,v) of A such that Cv = 0. Eigenvalue and eigenvector relationship: A(G 1 ) A(G 2 ) A(G 1 G 2 ) Eigenvalue λ i µ j λ i µ j Eigenvector v i u j v i u j Also (C 1 C 2 )(v i u i ) = C 1 v i C 2 u i The proof for simple eigenvalues follows from these observations. (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 13 / 19

14 Graph Factorization A graph can be factored as well as composed... Theorem (Sabidussi 1960) Every connected graph can be factored as a Kronecker product of prime graphs. This is NOT unique up to reordering of the factors. Primes: G = G 1 G 2 implies that either G 1 or G 2 is K 1 Number of prime factors is at most log G Algorithms Van Loan and Pitsianis (1993) - Exact and an approximation O(n 3 ) (more later) Leskovec et al. (2010) - KronFit approximation of the form G 1 G 1 G 1 (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 14 / 19

15 Kronecker Product Approximations Van Loan and Pitsianis developed an efficient method to solve min A A 1 A 2 2,F, i.e., the closest Kronecker product G G 1 G 2 G 1 G 2 G 1 G 2 G How does the features of these approximate factors compare to the composite system? (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 15 / 19

16 Trajectory Approximation Approximate Kronecker Dynamics x(k + 1) = (A(G 1 G 2 ) + )x(k) y(k) = (C 1 C 2 )x(k) For unforced dynamics if x(0) = x 1 (0) x 2 (0) then the trajectory can be approximated by x a (k) = x 1 (k) x 2 (k) where A = A(G 1 G 2 ) A x(k) x a (k) x(0) I k A I k A I A I (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 16 / 19

17 Distance to Instability Distance to instability is d A = inf( : A + is unstable) = 1 ρ(d A ). If the distance to instability of the factors is d G1 and d G2 then the distance to instability of the composite is d G1 G 2 = d G1 + d G2 d G1 d G2 Consequence: A stable composite dynamics is always more stable than its factors dynamics, i.e., d G1 G 2 max(d G1,d G2 ) (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 17 / 19

18 Distance to Unobservability Distance to unobservability is d A,C = inf { : (A +,C) is unobservable } Let λ 1 and µ 1 are the smallest magnitude eigenvalues of A(G 1 ) and A(G 2 ), respectively If the distance to unobservability of the factors is d G1,C 1 and d G2,C 2 then the distance to unobservability of the composite is bounded as d G1 G 2,C min( λ 1 d G2,C 2, µ 1 d G1,C 1 ) Consequence: For factor dynamics with a stable mode, the composite dynamics is always closer to unobservability than the factors, i.e., d G1 G 2,C min(d G2,C 2,d G1,C 1 ) (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 18 / 19

19 Conclusion Kronecker product dynamics related to its factors examining Trajectory Stability Observability Approximate Kronecker dynamics related to its approximate factors examining Bounded Trajectory Distance to instability Distance to unobservability Future work: Lower bounds for distance to unobservability Input/Output approximations Powers of Kronecker products (Robotics, Aerospace Kronecker and Information Products Networks (RAIN)) University of Washington 19 / 19

Cartesian Products of Z-Matrix Networks: Factorization and Interval Analysis

Cartesian Products of Z-Matrix Networks: Factorization and Interval Analysis Nabi-Abdolyouse) Factorization University (Distributed andofinterval Washington Space Analysis Systems1 Lab / 27(D Cartesian Products of Z-Matrix Networks: Factorization and Interval Analysis Airlie Chapman

More information

State Controllability, Output Controllability and Stabilizability of Networks: A Symmetry Perspective

State Controllability, Output Controllability and Stabilizability of Networks: A Symmetry Perspective State Controllability, Output Controllability and Stabilizability of Networks: A Symmetry Perspective Airlie Chapman and Mehran Mesbahi Robotics, Aerospace, and Information Networks Lab (RAIN) University

More information

On Symmetry and Controllability of Multi-Agent Systems

On Symmetry and Controllability of Multi-Agent Systems 53rd IEEE Conference on Decision and Control December 15-17, 2014. Los Angeles, California, USA On Symmetry and Controllability of Multi-Agent Systems Airlie Chapman and Mehran Mesbahi Abstract This paper

More information

1 Similarity transform 2. 2 Controllability The PBH test for controllability Observability The PBH test for observability...

1 Similarity transform 2. 2 Controllability The PBH test for controllability Observability The PBH test for observability... Contents 1 Similarity transform 2 2 Controllability 3 21 The PBH test for controllability 5 3 Observability 6 31 The PBH test for observability 7 4 Example ([1, pp121) 9 5 Subspace decomposition 11 51

More information

Control Systems. System response. L. Lanari

Control Systems. System response. L. Lanari Control Systems m i l e r p r a in r e v y n is o System response L. Lanari Outline What we are going to see: how to compute in the s-domain the forced response (zero-state response) using the transfer

More information

On almost equitable partitions and network controllability

On almost equitable partitions and network controllability 2016 American Control Conference (ACC) Boston Marriott Copley Place July 6-8, 2016. Boston, MA, USA On almost equitable partitions and network controllability Cesar O. Aguilar 1 and Bahman Gharesifard

More information

Control Systems. Laplace domain analysis

Control Systems. Laplace domain analysis Control Systems Laplace domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic equations define an Input/Output

More information

Section 5.4 (Systems of Linear Differential Equation); 9.5 Eigenvalues and Eigenvectors, cont d

Section 5.4 (Systems of Linear Differential Equation); 9.5 Eigenvalues and Eigenvectors, cont d Section 5.4 (Systems of Linear Differential Equation); 9.5 Eigenvalues and Eigenvectors, cont d July 6, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This

More information

An Algorithmist s Toolkit September 10, Lecture 1

An Algorithmist s Toolkit September 10, Lecture 1 18.409 An Algorithmist s Toolkit September 10, 2009 Lecture 1 Lecturer: Jonathan Kelner Scribe: Jesse Geneson (2009) 1 Overview The class s goals, requirements, and policies were introduced, and topics

More information

1 Continuous-time Systems

1 Continuous-time Systems Observability Completely controllable systems can be restructured by means of state feedback to have many desirable properties. But what if the state is not available for feedback? What if only the output

More information

Observability. Dynamic Systems. Lecture 2 Observability. Observability, continuous time: Observability, discrete time: = h (2) (x, u, u)

Observability. Dynamic Systems. Lecture 2 Observability. Observability, continuous time: Observability, discrete time: = h (2) (x, u, u) Observability Dynamic Systems Lecture 2 Observability Continuous time model: Discrete time model: ẋ(t) = f (x(t), u(t)), y(t) = h(x(t), u(t)) x(t + 1) = f (x(t), u(t)), y(t) = h(x(t)) Reglerteknik, ISY,

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ ANNOUNCEMENT 1 Assignment P1 the Diagnostic assignment 1 will

More information

HW2 - Due 01/30. Each answer must be mathematically justified. Don t forget your name.

HW2 - Due 01/30. Each answer must be mathematically justified. Don t forget your name. HW2 - Due 0/30 Each answer must be mathematically justified. Don t forget your name. Problem. Use the row reduction algorithm to find the inverse of the matrix 0 0, 2 3 5 if it exists. Double check your

More information

MATH 221, Spring Homework 10 Solutions

MATH 221, Spring Homework 10 Solutions MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

More information

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs Ma/CS 6b Class 3: Eigenvalues in Regular Graphs By Adam Sheffer Recall: The Spectrum of a Graph Consider a graph G = V, E and let A be the adjacency matrix of G. The eigenvalues of G are the eigenvalues

More information

MULTIVARIABLE ZEROS OF STATE-SPACE SYSTEMS

MULTIVARIABLE ZEROS OF STATE-SPACE SYSTEMS Copyright F.L. Lewis All rights reserved Updated: Monday, September 9, 8 MULIVARIABLE ZEROS OF SAE-SPACE SYSEMS If a system has more than one input or output, it is called multi-input/multi-output (MIMO)

More information

Linear Algebra (MATH ) Spring 2011 Final Exam Practice Problem Solutions

Linear Algebra (MATH ) Spring 2011 Final Exam Practice Problem Solutions Linear Algebra (MATH 4) Spring 2 Final Exam Practice Problem Solutions Instructions: Try the following on your own, then use the book and notes where you need help. Afterwards, check your solutions with

More information

Diffusion and random walks on graphs

Diffusion and random walks on graphs Diffusion and random walks on graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural

More information

1 Some Facts on Symmetric Matrices

1 Some Facts on Symmetric Matrices 1 Some Facts on Symmetric Matrices Definition: Matrix A is symmetric if A = A T. Theorem: Any symmetric matrix 1) has only real eigenvalues; 2) is always iagonalizable; 3) has orthogonal eigenvectors.

More information

Control and synchronization in systems coupled via a complex network

Control and synchronization in systems coupled via a complex network Control and synchronization in systems coupled via a complex network Chai Wah Wu May 29, 2009 2009 IBM Corporation Synchronization in nonlinear dynamical systems Synchronization in groups of nonlinear

More information

16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1

16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1 16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1 Charles P. Coleman October 31, 2005 1 / 40 : Controllability Tests Observability Tests LEARNING OUTCOMES: Perform controllability tests Perform

More information

On the reachability and observability. of path and cycle graphs

On the reachability and observability. of path and cycle graphs On the reachability and observability 1 of path and cycle graphs Gianfranco Parlangeli Giuseppe Notarstefano arxiv:1109.3556v1 [math.oc] 16 Sep 2011 Abstract In this paper we investigate the reachability

More information

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity CS322 Project Writeup Semih Salihoglu Stanford University 353 Serra Street Stanford, CA semih@stanford.edu

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec Stanford University Jure Leskovec, Stanford University http://cs224w.stanford.edu Task: Find coalitions in signed networks Incentives: European

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

Markov Chains and Spectral Clustering

Markov Chains and Spectral Clustering Markov Chains and Spectral Clustering Ning Liu 1,2 and William J. Stewart 1,3 1 Department of Computer Science North Carolina State University, Raleigh, NC 27695-8206, USA. 2 nliu@ncsu.edu, 3 billy@ncsu.edu

More information

Structural Controllability and Observability of Linear Systems Over Finite Fields with Applications to Multi-Agent Systems

Structural Controllability and Observability of Linear Systems Over Finite Fields with Applications to Multi-Agent Systems Structural Controllability and Observability of Linear Systems Over Finite Fields with Applications to Multi-Agent Systems Shreyas Sundaram, Member, IEEE, and Christoforos N. Hadjicostis, Senior Member,

More information

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

Some constructions of integral graphs

Some constructions of integral graphs Some constructions of integral graphs A. Mohammadian B. Tayfeh-Rezaie School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran ali m@ipm.ir tayfeh-r@ipm.ir

More information

Ma/CS 6b Class 20: Spectral Graph Theory

Ma/CS 6b Class 20: Spectral Graph Theory Ma/CS 6b Class 20: Spectral Graph Theory By Adam Sheffer Eigenvalues and Eigenvectors A an n n matrix of real numbers. The eigenvalues of A are the numbers λ such that Ax = λx for some nonzero vector x

More information

arxiv: v1 [math.oc] 12 Feb 2018

arxiv: v1 [math.oc] 12 Feb 2018 Controllability Analysis of Threshold Graphs and Cographs Shima Sadat Mousavi Mohammad Haeri and Mehran Mesbahi arxiv:80204022v [mathoc] 2 Feb 208 Abstract In this paper we investigate the controllability

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

Network Reconstruction from Intrinsic Noise: Non-Minimum-Phase Systems

Network Reconstruction from Intrinsic Noise: Non-Minimum-Phase Systems Preprints of the 19th World Congress he International Federation of Automatic Control Network Reconstruction from Intrinsic Noise: Non-Minimum-Phase Systems David Hayden, Ye Yuan Jorge Goncalves Department

More information

An Algorithmist s Toolkit September 15, Lecture 2

An Algorithmist s Toolkit September 15, Lecture 2 18.409 An Algorithmist s Toolkit September 15, 007 Lecture Lecturer: Jonathan Kelner Scribe: Mergen Nachin 009 1 Administrative Details Signup online for scribing. Review of Lecture 1 All of the following

More information

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial.

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. Geometric properties of determinants 2 2 determinants and plane geometry

More information

arxiv: v1 [math.oc] 15 Feb 2019

arxiv: v1 [math.oc] 15 Feb 2019 Generalizing Laplacian Controllability of Paths arxiv:1902.05671v1 [math.oc] 15 Feb 2019 Abstract Shun-Pin Hsu, Ping-Yen Yang Department of Electrical Engineering, National Chung Hsing University 250,

More information

Structural Consensus Controllability of Singular Multi-agent Linear Dynamic Systems

Structural Consensus Controllability of Singular Multi-agent Linear Dynamic Systems Structural Consensus Controllability of Singular Multi-agent Linear Dynamic Systems M. ISAL GARCÍA-PLANAS Universitat Politècnica de Catalunya Departament de Matèmatiques Minería 1, sc. C, 1-3, 08038 arcelona

More information

Linear Algebra. Shan-Hung Wu. Department of Computer Science, National Tsing Hua University, Taiwan. Large-Scale ML, Fall 2016

Linear Algebra. Shan-Hung Wu. Department of Computer Science, National Tsing Hua University, Taiwan. Large-Scale ML, Fall 2016 Linear Algebra Shan-Hung Wu shwu@cs.nthu.edu.tw Department of Computer Science, National Tsing Hua University, Taiwan Large-Scale ML, Fall 2016 Shan-Hung Wu (CS, NTHU) Linear Algebra Large-Scale ML, Fall

More information

The Hypercube Graph and the Inhibitory Hypercube Network

The Hypercube Graph and the Inhibitory Hypercube Network The Hypercube Graph and the Inhibitory Hypercube Network Michael Cook mcook@forstmannleff.com William J. Wolfe Professor of Computer Science California State University Channel Islands william.wolfe@csuci.edu

More information

Designing Information Devices and Systems II Fall 2015 Note 22

Designing Information Devices and Systems II Fall 2015 Note 22 EE 16B Designing Information Devices and Systems II Fall 2015 Note 22 Notes taken by John Noonan (11/12) Graphing of the State Solutions Open loop x(k + 1) = Ax(k) + Bu(k) y(k) = Cx(k) Closed loop x(k

More information

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Name: TA Name and section: NO CALCULATORS, SHOW ALL WORK, NO OTHER PAPERS ON DESK. There is very little actual work to be done on this exam if

More information

Name Solutions Linear Algebra; Test 3. Throughout the test simplify all answers except where stated otherwise.

Name Solutions Linear Algebra; Test 3. Throughout the test simplify all answers except where stated otherwise. Name Solutions Linear Algebra; Test 3 Throughout the test simplify all answers except where stated otherwise. 1) Find the following: (10 points) ( ) Or note that so the rows are linearly independent, so

More information

APPLICATIONS The eigenvalues are λ = 5, 5. An orthonormal basis of eigenvectors consists of

APPLICATIONS The eigenvalues are λ = 5, 5. An orthonormal basis of eigenvectors consists of CHAPTER III APPLICATIONS The eigenvalues are λ =, An orthonormal basis of eigenvectors consists of, The eigenvalues are λ =, A basis of eigenvectors consists of, 4 which are not perpendicular However,

More information

Kronecker Product Approximation with Multiple Factor Matrices via the Tensor Product Algorithm

Kronecker Product Approximation with Multiple Factor Matrices via the Tensor Product Algorithm Kronecker Product Approximation with Multiple actor Matrices via the Tensor Product Algorithm King Keung Wu, Yeung Yam, Helen Meng and Mehran Mesbahi Department of Mechanical and Automation Engineering,

More information

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

More information

18.312: Algebraic Combinatorics Lionel Levine. Lecture 19

18.312: Algebraic Combinatorics Lionel Levine. Lecture 19 832: Algebraic Combinatorics Lionel Levine Lecture date: April 2, 20 Lecture 9 Notes by: David Witmer Matrix-Tree Theorem Undirected Graphs Let G = (V, E) be a connected, undirected graph with n vertices,

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms : Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA 2 Department of Computer

More information

22m:033 Notes: 7.1 Diagonalization of Symmetric Matrices

22m:033 Notes: 7.1 Diagonalization of Symmetric Matrices m:33 Notes: 7. Diagonalization of Symmetric Matrices Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman May 3, Symmetric matrices Definition. A symmetric matrix is a matrix

More information

Ma/CS 6b Class 20: Spectral Graph Theory

Ma/CS 6b Class 20: Spectral Graph Theory Ma/CS 6b Class 20: Spectral Graph Theory By Adam Sheffer Recall: Parity of a Permutation S n the set of permutations of 1,2,, n. A permutation σ S n is even if it can be written as a composition of an

More information

Radial eigenvectors of the Laplacian of the nonbinary hypercube

Radial eigenvectors of the Laplacian of the nonbinary hypercube Radial eigenvectors of the Laplacian of the nonbinary hypercube Murali K. Srinivasan Department of Mathematics Indian Institute of Technology, Bombay Powai, Mumbai 400076, INDIA mks@math.iitb.ac.in murali.k.srinivasan@gmail.com

More information

EE226a - Summary of Lecture 13 and 14 Kalman Filter: Convergence

EE226a - Summary of Lecture 13 and 14 Kalman Filter: Convergence 1 EE226a - Summary of Lecture 13 and 14 Kalman Filter: Convergence Jean Walrand I. SUMMARY Here are the key ideas and results of this important topic. Section II reviews Kalman Filter. A system is observable

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Chapter 11. Matrix Algorithms and Graph Partitioning. M. E. J. Newman. June 10, M. E. J. Newman Chapter 11 June 10, / 43

Chapter 11. Matrix Algorithms and Graph Partitioning. M. E. J. Newman. June 10, M. E. J. Newman Chapter 11 June 10, / 43 Chapter 11 Matrix Algorithms and Graph Partitioning M. E. J. Newman June 10, 2016 M. E. J. Newman Chapter 11 June 10, 2016 1 / 43 Table of Contents 1 Eigenvalue and Eigenvector Eigenvector Centrality The

More information

Controllability, Observability, Full State Feedback, Observer Based Control

Controllability, Observability, Full State Feedback, Observer Based Control Multivariable Control Lecture 4 Controllability, Observability, Full State Feedback, Observer Based Control John T. Wen September 13, 24 Ref: 3.2-3.4 of Text Controllability ẋ = Ax + Bu; x() = x. At time

More information

Coding the Matrix Index - Version 0

Coding the Matrix Index - Version 0 0 vector, [definition]; (2.4.1): 68 2D geometry, transformations in, [lab]; (4.15.0): 196-200 A T (matrix A transpose); (4.5.4): 157 absolute value, complex number; (1.4.1): 43 abstract/abstracting, over

More information

Research Article Mathematical Model and Cluster Synchronization for a Complex Dynamical Network with Two Types of Chaotic Oscillators

Research Article Mathematical Model and Cluster Synchronization for a Complex Dynamical Network with Two Types of Chaotic Oscillators Applied Mathematics Volume 212, Article ID 936, 12 pages doi:1.11/212/936 Research Article Mathematical Model and Cluster Synchronization for a Complex Dynamical Network with Two Types of Chaotic Oscillators

More information

Symmetric 0-1 matrices with inverses having two distinct values and constant diagonal

Symmetric 0-1 matrices with inverses having two distinct values and constant diagonal Symmetric 0-1 matrices with inverses having two distinct values and constant diagonal Wayne Barrett Department of Mathematics, Brigham Young University, Provo, UT, 84602, USA Steve Butler Dept. of Mathematics,

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 14: Controllability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 14: Controllability p.1/23 Outline

More information

Linear Algebra Final Exam Study Guide Solutions Fall 2012

Linear Algebra Final Exam Study Guide Solutions Fall 2012 . Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize

More information

Math 304 Handout: Linear algebra, graphs, and networks.

Math 304 Handout: Linear algebra, graphs, and networks. Math 30 Handout: Linear algebra, graphs, and networks. December, 006. GRAPHS AND ADJACENCY MATRICES. Definition. A graph is a collection of vertices connected by edges. A directed graph is a graph all

More information

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018 Lab 8: Measuring Graph Centrality - PageRank Monday, November 5 CompSci 531, Fall 2018 Outline Measuring Graph Centrality: Motivation Random Walks, Markov Chains, and Stationarity Distributions Google

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Module 03 Linear Systems Theory: Necessary Background

Module 03 Linear Systems Theory: Necessary Background Module 03 Linear Systems Theory: Necessary Background Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

ECE557 Systems Control

ECE557 Systems Control ECE557 Systems Control Bruce Francis Course notes, Version.0, September 008 Preface This is the second Engineering Science course on control. It assumes ECE56 as a prerequisite. If you didn t take ECE56,

More information

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88 Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

More information

MA 527 first midterm review problems Hopefully final version as of October 2nd

MA 527 first midterm review problems Hopefully final version as of October 2nd MA 57 first midterm review problems Hopefully final version as of October nd The first midterm will be on Wednesday, October 4th, from 8 to 9 pm, in MTHW 0. It will cover all the material from the classes

More information

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31 Contents Preamble xiii Linear Systems I Basic Concepts 1 I System Representation 3 1 State-Space Linear Systems 5 1.1 State-Space Linear Systems 5 1.2 Block Diagrams 7 1.3 Exercises 11 2 Linearization

More information

Full-State Feedback Design for a Multi-Input System

Full-State Feedback Design for a Multi-Input System Full-State Feedback Design for a Multi-Input System A. Introduction The open-loop system is described by the following state space model. x(t) = Ax(t)+Bu(t), y(t) =Cx(t)+Du(t) () 4 8.5 A =, B =.5.5, C

More information

Outline. Linear Algebra for Computer Vision

Outline. Linear Algebra for Computer Vision Outline Linear Algebra for Computer Vision Introduction CMSC 88 D Notation and Basics Motivation Linear systems of equations Gauss Elimination, LU decomposition Linear Spaces and Operators Addition, scalar

More information

ECS231: Spectral Partitioning. Based on Berkeley s CS267 lecture on graph partition

ECS231: Spectral Partitioning. Based on Berkeley s CS267 lecture on graph partition ECS231: Spectral Partitioning Based on Berkeley s CS267 lecture on graph partition 1 Definition of graph partitioning Given a graph G = (N, E, W N, W E ) N = nodes (or vertices), E = edges W N = node weights

More information

João P. Hespanha. January 16, 2009

João P. Hespanha. January 16, 2009 LINEAR SYSTEMS THEORY João P. Hespanha January 16, 2009 Disclaimer: This is a draft and probably contains a few typos. Comments and information about typos are welcome. Please contact the author at hespanha@ece.ucsb.edu.

More information

MATH 583A REVIEW SESSION #1

MATH 583A REVIEW SESSION #1 MATH 583A REVIEW SESSION #1 BOJAN DURICKOVIC 1. Vector Spaces Very quick review of the basic linear algebra concepts (see any linear algebra textbook): (finite dimensional) vector space (or linear space),

More information

An Introduction to Spectral Graph Theory

An Introduction to Spectral Graph Theory An Introduction to Spectral Graph Theory Mackenzie Wheeler Supervisor: Dr. Gary MacGillivray University of Victoria WheelerM@uvic.ca Outline Outline 1. How many walks are there from vertices v i to v j

More information

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015

Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 Midterm for Introduction to Numerical Analysis I, AMSC/CMSC 466, on 10/29/2015 The test lasts 1 hour and 15 minutes. No documents are allowed. The use of a calculator, cell phone or other equivalent electronic

More information

Networks and Their Spectra

Networks and Their Spectra Networks and Their Spectra Victor Amelkin University of California, Santa Barbara Department of Computer Science victor@cs.ucsb.edu December 4, 2017 1 / 18 Introduction Networks (= graphs) are everywhere.

More information

Lecture 12 : Graph Laplacians and Cheeger s Inequality

Lecture 12 : Graph Laplacians and Cheeger s Inequality CPS290: Algorithmic Foundations of Data Science March 7, 2017 Lecture 12 : Graph Laplacians and Cheeger s Inequality Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Graph Laplacian Maybe the most beautiful

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

DIAGONALIZATION OF THE STRESS TENSOR

DIAGONALIZATION OF THE STRESS TENSOR DIAGONALIZATION OF THE STRESS TENSOR INTRODUCTION By the use of Cauchy s theorem we are able to reduce the number of stress components in the stress tensor to only nine values. An additional simplification

More information

Math Final December 2006 C. Robinson

Math Final December 2006 C. Robinson Math 285-1 Final December 2006 C. Robinson 2 5 8 5 1 2 0-1 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the

More information

I. Multiple Choice Questions (Answer any eight)

I. Multiple Choice Questions (Answer any eight) Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam - Course Instructor : Prashanth L.A. Date : Sep-24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY

More information

Lecture 13 Spectral Graph Algorithms

Lecture 13 Spectral Graph Algorithms COMS 995-3: Advanced Algorithms March 6, 7 Lecture 3 Spectral Graph Algorithms Instructor: Alex Andoni Scribe: Srikar Varadaraj Introduction Today s topics: Finish proof from last lecture Example of random

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

Lecture 9: Laplacian Eigenmaps

Lecture 9: Laplacian Eigenmaps Lecture 9: Radu Balan Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD April 18, 2017 Optimization Criteria Assume G = (V, W ) is a undirected weighted graph with

More information

The spectra of super line multigraphs

The spectra of super line multigraphs The spectra of super line multigraphs Jay Bagga Department of Computer Science Ball State University Muncie, IN jbagga@bsuedu Robert B Ellis Department of Applied Mathematics Illinois Institute of Technology

More information

ITTC Science of Communication Networks The University of Kansas EECS SCN Graph Spectra

ITTC Science of Communication Networks The University of Kansas EECS SCN Graph Spectra Science of Communication Networks The University of Kansas EECS SCN Graph Spectra Egemen K. Çetinkaya and James P.G. Sterbenz Department of Electrical Engineering & Computer Science Information Technology

More information

Methods for sparse analysis of high-dimensional data, II

Methods for sparse analysis of high-dimensional data, II Methods for sparse analysis of high-dimensional data, II Rachel Ward May 26, 2011 High dimensional data with low-dimensional structure 300 by 300 pixel images = 90, 000 dimensions 2 / 55 High dimensional

More information

Example Linear Algebra Competency Test

Example Linear Algebra Competency Test Example Linear Algebra Competency Test The 4 questions below are a combination of True or False, multiple choice, fill in the blank, and computations involving matrices and vectors. In the latter case,

More information

Matrix Vector Products

Matrix Vector Products We covered these notes in the tutorial sessions I strongly recommend that you further read the presented materials in classical books on linear algebra Please make sure that you understand the proofs and

More information

Spectral radius, symmetric and positive matrices

Spectral radius, symmetric and positive matrices Spectral radius, symmetric and positive matrices Zdeněk Dvořák April 28, 2016 1 Spectral radius Definition 1. The spectral radius of a square matrix A is ρ(a) = max{ λ : λ is an eigenvalue of A}. For an

More information

Conditioning of the Entries in the Stationary Vector of a Google-Type Matrix. Steve Kirkland University of Regina

Conditioning of the Entries in the Stationary Vector of a Google-Type Matrix. Steve Kirkland University of Regina Conditioning of the Entries in the Stationary Vector of a Google-Type Matrix Steve Kirkland University of Regina June 5, 2006 Motivation: Google s PageRank algorithm finds the stationary vector of a stochastic

More information

A note on the minimal volume of almost cubic parallelepipeds

A note on the minimal volume of almost cubic parallelepipeds A note on the minimal volume of almost cubic parallelepipeds Daniele Micciancio Abstract We prove that the best way to reduce the volume of the n-dimensional unit cube by a linear transformation that maps

More information

MULTI-AGENT TRACKING OF A HIGH-DIMENSIONAL ACTIVE LEADER WITH SWITCHING TOPOLOGY

MULTI-AGENT TRACKING OF A HIGH-DIMENSIONAL ACTIVE LEADER WITH SWITCHING TOPOLOGY Jrl Syst Sci & Complexity (2009) 22: 722 731 MULTI-AGENT TRACKING OF A HIGH-DIMENSIONAL ACTIVE LEADER WITH SWITCHING TOPOLOGY Yiguang HONG Xiaoli WANG Received: 11 May 2009 / Revised: 16 June 2009 c 2009

More information

Numerical Solutions to PDE s

Numerical Solutions to PDE s Introduction Numerical Solutions to PDE s Mathematical Modelling Week 5 Kurt Bryan Let s start by recalling a simple numerical scheme for solving ODE s. Suppose we have an ODE u (t) = f(t, u(t)) for some

More information

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes

Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov Processes Elena Virnik, TU BERLIN Algebraic Multigrid Preconditioners for Computing Stationary Distributions of Markov

More information

33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM

33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM 33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM (UPDATED MARCH 17, 2018) The final exam will be cumulative, with a bit more weight on more recent material. This outline covers the what we ve done since the

More information

MATH 1553 PRACTICE FINAL EXAMINATION

MATH 1553 PRACTICE FINAL EXAMINATION MATH 553 PRACTICE FINAL EXAMINATION Name Section 2 3 4 5 6 7 8 9 0 Total Please read all instructions carefully before beginning. The final exam is cumulative, covering all sections and topics on the master

More information

Stability Analysis of Stochastically Varying Formations of Dynamic Agents

Stability Analysis of Stochastically Varying Formations of Dynamic Agents Stability Analysis of Stochastically Varying Formations of Dynamic Agents Vijay Gupta, Babak Hassibi and Richard M. Murray Division of Engineering and Applied Science California Institute of Technology

More information

Laplacians of Graphs, Spectra and Laplacian polynomials

Laplacians of Graphs, Spectra and Laplacian polynomials Laplacians of Graphs, Spectra and Laplacian polynomials Lector: Alexander Mednykh Sobolev Institute of Mathematics Novosibirsk State University Winter School in Harmonic Functions on Graphs and Combinatorial

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Measurement partitioning and observational. equivalence in state estimation

Measurement partitioning and observational. equivalence in state estimation Measurement partitioning and observational 1 equivalence in state estimation Mohammadreza Doostmohammadian, Student Member, IEEE, and Usman A. Khan, Senior Member, IEEE arxiv:1412.5111v1 [cs.it] 16 Dec

More information