Outline: Absolute spot size effect on penetration depth in laser welding

Size: px
Start display at page:

Download "Outline: Absolute spot size effect on penetration depth in laser welding"

Transcription

1 Absolute spot size effect on penetration depth in laser welding Wojciech Suder Stewart Williams aul Colegrove Welding Engineering Research Centre Cranfield University ILAS 9 Outline: Intensity-interaction time concept (material dependent parameters ) for laser welding Absolute spot size effect Characteristic time enetration efficiency Conclusions 1

2 ower, Travel Speed Traditional Approach 1 [mm] enetration Depth [ 1 1 kw 5kW kw Intuitive Easy to implement Difficult to transfer between different laser systems Travel Speed [m min -1 ] Intensity Interaction Time Concept Laser-material interactions J.C. Ion Laser processing of engineering materials.

3 Intensity, Interaction Time, rocess Energy Intensity I r [ Wm ] Interaction Time t i r [ s ] v r Constant welding speed rocess Energy E I t A i r r v J laser power; v welding speed; r beam radius MW/cm and ms instead of kw and m/min e enetration Depth [mm] I r [ Wm ] 17.3 ms mmin ms.5 mmin -1 3 ms 1 mmin ms 7. ms mmin -1.7 ms 5 mmin ms mmin -1.5 ms 15 mmin -1 r t i [ s ] v Intensity ower [MW [kw] cm -1 ] enetration Dep Dep pth pth [mm] [mm] MW cm MW cm -. MW cm High speed or small spot size Travel Interaction Speed Time [m min [ms] -1 ] Low speed or large spot size Allow comparison of different laser sources kw 5kW kw 3

4 ] How to Keep Intensity and Interaction Time Constant 1 I r ower [kw] 1 1.MW cm 1.MW cm MW cm Beam radius [mm] Travel Speed [m min -1 ] ms ms r v t i Constant intensity of.mw cm -1 and interaction time of ms Beam radius [mm] Beam Radius Effect If we set the intensity and interaction time to be the same If we set the intensity and interaction time to be the same with different beam radius what do we get?

5 Beam Radius Effect 1 1 Beam radius.39mm Beam radius.19mm mm] enetration Depth [ Interaction Time [ms] Constant intensity of 1.7MW cm - Beam Radius Effect enetration Depth [mm] Interaction Time 3ms Interaction Time 19ms Interaction Time 7.ms Interaction Time.5ms Beam Radius [mm] Why does the penetration go up with beam radius? rocess energy increases as the beam area increases E I t A But why does it depend on interaction time? i constant J Constant Intensity of 1. MW cm - ; mild steel 5

6 Thermal Diffusion Effect Determined by the characteristic thermal time Interaction ms time below interaction threshold time value ms interaction ti time Welding direction reheated front Welding direction reheated front Side losses Negligible conduction Side losses There is less time for conduction as interaction time decreases Characteristic Thermal Time T t T l [s] T l characteristic thermal length [m] κ thermal diffusivity [m s -1 ] Characteristic thermal time is in effect the thermal time constant for a particular material Characteristic thermal length defines the distance that heat conducts within characteristic thermal time

7 Beam Radius Effect enetration Depth [mm] Interaction Time 3ms Interaction Time 19ms Interaction Time 7.ms Interaction Time.5ms If interaction time is shorter than characteristic time heat conduction transfer is negligible and there is no influence of process energy on penetration Beam Radius [mm] Constant Intensity of 1. MW cm - ; mild steel Characteristic Thermal Time vs. Welding Conditions Characteristic Time [m ms] tion Depth [mm] enetrat Interaction Time 3ms Interaction Time 19ms Interaction Time 7.ms Interaction Time.5ms Beam Radius [mm] Tl Tt [ s] 7.ms spot size starts affecting the penetration ms no spot size effect on Characteristic Length [mm] penetration Characteristic thermal time in function of characteristic length for mild steel, thermal diffusivity 1.17* -5 m s -1 7

8 What does this mean for Efficiency? enetration efficiency is defined as the energy required per unit depth of weld The optimum penetration efficiency corresponds to minimum heat input for a particular weld depth eff D I Ti A D [ m J E p 1 ] D - penetration depth I - intensity Ti - Interaction time A - spot area E p - process energy enetration Efficiency vs. Interaction Time for Different Intensities e enetration Efficiency [m mm kj -1 ] mm mm.mwcm - 1.MWcm - 1mm 1 Log Interaction Time [ms] Constant spot radius.3mm

9 enetration Efficiency for Different Beam Radii enetration Efficiency [ mm kj -1 ] Ep=7.7J Ep=3J Ep=9J 1 Beam radius.39mm Beam 1 radius.19mmbeam radius.19mm Beam radius.3mm Depth [mm] enetration Ep=J ms 1 Constant intensity of 1.7MW cm - ms 5ms Log Interaction Time [ms] 5ms Log Interaction Time Time [ms] [ms] eff D [ m J E p 1 ] Keyhole Welding Regimes Long Interaction Time Constant Intensity Short Interaction Time Low Efficiency High Efficiency Conduction No Conduction Thermal Losses reheating Small Thermal Losses Insignificant reheating 9

10 Laser System arameter Selection Operating beam diameter Defects Weld width System limitations Depth of focus/working distance Focus shift? Maximum efficiency/minimum heat input Maximum interaction time Travel speed enetration depth requirement Intensity Laser power Conclusions By studying keyhole welding with constant intensity and interaction time two distinct regimes were identified : Long interaction time Lateral thermal diffusion i effects Large effect of process energy (beam radius) due to pre-heating on penetration depth Low process efficiency due to lateral thermal losses Short interaction time No lateral thermal diffusion effects No effect of process energy (beam radius) on penetration depth High process efficiency i as no lateral l thermal losses Transition is determined by the characteristic thermal time of the process

11 Thank You for Attention 11

Temperature Change for Uniform Illumination

Temperature Change for Uniform Illumination Temperature Change for Uniform Illumination Assume that the surface is uniformly illuminated by the laser Energy absorbed at the surface in a ery small depth H=I(1-R) where R = reflectiity I = light intensity

More information

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 ISSN

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 ISSN ISSN 2229-5518 916 Laser Damage Effect Studies with Hollow Metallic Targets Satyender Kumar, S Jain, K C Sati, S Goyal, R Malhotra, R Rajan, N R Das & A K Srivastava Laser Science & Technology Centre Metcalfe

More information

QUELQUES PROCESSUS PHYSIQUES PRESENTS EN REGIME DE SOUDAGE PAR KEYHOLE

QUELQUES PROCESSUS PHYSIQUES PRESENTS EN REGIME DE SOUDAGE PAR KEYHOLE QUELQUES PROCESSUS PHYSIQUES PRESENTS EN REGIME DE SOUDAGE PAR KEYHOLE Applications à : Analyse des effets des paramètres opératoires et matériaux sur la profondeur du capillaire. Mécanismes en jeu lors

More information

TRANSIENT PROCESS SIMULATION OF HEAT TRANSFER IN LASER BEAM WELDING WITH AN EQUIVALENT HEAT SOURCE

TRANSIENT PROCESS SIMULATION OF HEAT TRANSFER IN LASER BEAM WELDING WITH AN EQUIVALENT HEAT SOURCE 19.10.2017 TRANSIENT PROCESS SIMULATION OF HEAT TRANSFER IN LASER BEAM WELDING WITH AN EQUIVALENT HEAT SOURCE A. Artinov, M. Bachmann, M. Rethmeier BAM, Federal Institute for Material Research and Testing,

More information

Laser Heat Processing: Advantages Laser radiation very "clean" no containments with other materials Working atmosphere can be controlled as needed

Laser Heat Processing: Advantages Laser radiation very clean no containments with other materials Working atmosphere can be controlled as needed Laser Heat Processing: Adantages Laser radiation ery "clean" no containments with other materials Woring atmosphere can be controlled as needed Lasers can be focused to small spots ery localized heating

More information

Turbulence and transport reduction with innovative plasma shapes in TCV - correlation ECE measurements and gyrokinetic simulations

Turbulence and transport reduction with innovative plasma shapes in TCV - correlation ECE measurements and gyrokinetic simulations Turbulence and transport reduction with innovative plasma shapes in TCV - correlation ECE measurements and gyrokinetic simulations A. Pochelon, and the TCV team 1 Ecole Polytechnique de Lausanne (EPFL)

More information

Laser processing of materials. Temperature distributions

Laser processing of materials. Temperature distributions Laser processing of materials Temperature distributions Prof. Dr. Frank Mücklich Dr. Andrés Lasagni Lehrstuhl für Funktionswerkstoffe Sommersemester 7 Contents: Temperature distributions 1. Definitions.

More information

Alcator C-Mod. Double Transport Barrier Plasmas. in Alcator C-Mod. J.E. Rice for the C-Mod Group. MIT PSFC, Cambridge, MA 02139

Alcator C-Mod. Double Transport Barrier Plasmas. in Alcator C-Mod. J.E. Rice for the C-Mod Group. MIT PSFC, Cambridge, MA 02139 Alcator C-Mod Double Transport Barrier Plasmas in Alcator C-Mod J.E. Rice for the C-Mod Group MIT PSFC, Cambridge, MA 139 IAEA Lyon, Oct. 17, Outline Double Barrier Plasma Profiles and Modeling Conditions

More information

BETTER DESIGN AND NEW TECHNOLOGIES IMPROVE LASER POWER MEASUREMENT INSTRUMENTATION

BETTER DESIGN AND NEW TECHNOLOGIES IMPROVE LASER POWER MEASUREMENT INSTRUMENTATION BETTER DESIGN AND NEW TECHNOLOGIES IMPROVE LASER POWER MEASUREMENT INSTRUMENTATION Luigi Argenti, Andrea Brinciotti, Flavio Ferretti - Laserpoint s.r.l.- Vimodrone Italy New challenges from High Brightness

More information

STUDY OF HEAT TRANSFER MECHANISMS DURING THE LENS TM PROCESS

STUDY OF HEAT TRANSFER MECHANISMS DURING THE LENS TM PROCESS STUDY OF HEAT TRANSFER MECHANISMS DURING THE LENS TM PROCESS Liang Wang 1 and Sergio Felicelli 1. Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 3976, USA; email:

More information

Analysis and Modelling of Welding Prof. Gandham Phanikumar Department of Metallurgy and Material Science Indian Institute of Technology, Madras

Analysis and Modelling of Welding Prof. Gandham Phanikumar Department of Metallurgy and Material Science Indian Institute of Technology, Madras Analysis and Modelling of Welding Prof. Gandham Phanikumar Department of Metallurgy and Material Science Indian Institute of Technology, Madras Lecture - 10 Keyhole mode Welcome to the lesson on Keyhole

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

Optical absorption measurements in sapphire

Optical absorption measurements in sapphire Optical absorption measurements in sapphire Alexei Alexandrovski Martin Fejer Roger Route Ginzton Laboratory, Stanford University LIGO-G000242-00-D Optical absorption measurements in sapphire OUTLINE ¾Background

More information

Physics 2135 Exam 3 April 18, 2017

Physics 2135 Exam 3 April 18, 2017 Physics 2135 Exam 3 April 18, 2017 Exam Total / 200 Printed Name: Rec. Sec. Letter: Solutions for problems 6 to 10 must start from official starting equations. Show your work to receive credit for your

More information

Practice Final Name. m 3 /s b) 8.75 x 10 4 c) 8.21 x 10 4 d) 7.45 x 10 4 e) 7.21 x 10 4 Ans: a

Practice Final Name. m 3 /s b) 8.75 x 10 4 c) 8.21 x 10 4 d) 7.45 x 10 4 e) 7.21 x 10 4 Ans: a I included more than 35 problems only for practice purposes. In the final you will have 35 problems, as I stated during the last class meeting on Thursday, December 7, 2006. Practice Final Name 1) In a

More information

MODELING OF ABOVE-THRESHOLD SINGLE-MODE OPERATION OF EDGE- EMITTING DIODE LASERS

MODELING OF ABOVE-THRESHOLD SINGLE-MODE OPERATION OF EDGE- EMITTING DIODE LASERS MODELING OF ABOVE-THRESHOLD SINGLE-MODE OPERATION OF EDGE- EMITTING DIODE LASERS A. P. Napartovich, N. N. Elkin, A. G. Sukharev, V. N. Troshchieva, and D. V. Vysotsky Troitsk Institute for Innovation and

More information

THIS IS A NEW SPECIFICATION

THIS IS A NEW SPECIFICATION THIS IS A NEW SPECIFICATION ADVANCED SUBSIDIARY GCE PHYSICS A Electrons, Waves and Photons G482 * OCE / T 67602* Candidates answer on the question paper OCR Supplied Materials: Data, Formulae & Relationships

More information

PHA7/W PHYSICS (SPECIFICATION A) Unit 7 Nuclear Instability: Applied Physics Option

PHA7/W PHYSICS (SPECIFICATION A) Unit 7 Nuclear Instability: Applied Physics Option Surname Centre Number Other Names Candidate Number Leave blank Candidate Signature General Certificate of Education January 2005 Advanced Level Examination PHYSICS (SPECIFICATION A) PHA7/W Unit 7 Nuclear

More information

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics Software Using Rosenthal s Approach

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics Software Using Rosenthal s Approach Simulation of the Temperature Profile During Welding with COMSOL Multiphysics Software Using Rosenthal s Approach A. Lecoanet*, D. G. Ivey, H. Henein Department of Chemical & Materials Engineering, University

More information

Practical Results of Ultrasonic Imaging by Inverse Wave Field Extrapolation

Practical Results of Ultrasonic Imaging by Inverse Wave Field Extrapolation ECNDT 2006 - Th.2.3.1 Practical Results of Ultrasonic Imaging by Inverse Wave Field Extrapolation Niels PÖRTZGEN, RTD Group, Rotterdam, The Netherlands Abstract: Array technology in non-destructive inspection

More information

Idaho National Laboratory Reactor Analysis Applications of the Serpent Lattice Physics Code

Idaho National Laboratory Reactor Analysis Applications of the Serpent Lattice Physics Code Idaho National Laboratory Reactor Analysis Applications of the Serpent Lattice Physics Code By Frederick N. Gleicher II, Javier Ortensi, Benjamin Baker, and Mark DeHart Outline Intra-Pin Power and Flux

More information

LECTURE 7 ENERGY AND INTENSITY. Instructor: Kazumi Tolich

LECTURE 7 ENERGY AND INTENSITY. Instructor: Kazumi Tolich LECTURE 7 ENERGY AND INTENSITY Instructor: Kazumi Tolich Lecture 7 2 15.5 Energy and intensity Circular, spherical, and plane waves Power, energy, and intensity 15.6 Loudness of sound The decibel scale

More information

Mechanics of the Selective Laser Raster-Scanning Surface Interaction

Mechanics of the Selective Laser Raster-Scanning Surface Interaction Mechanics of the Selective aser Raster-Scanning Surface Interaction J.A. Ramos 1, D.. Bourell 2 (1) Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Vicuña

More information

Lab 3: measurement of Laser Gaussian Beam Profile Lab 3: basic experience working with laser (1) To create a beam expander for the Argon laser (2) To

Lab 3: measurement of Laser Gaussian Beam Profile Lab 3: basic experience working with laser (1) To create a beam expander for the Argon laser (2) To Lab 3: measurement of Laser Gaussian Beam Profile Lab 3: basic experience working with laser (1) To create a beam expander for the Argon laser () To measure the spot size and profile of the Argon laser

More information

Axial symmetric open magnetic traps with depressed transversal losses of plasmas

Axial symmetric open magnetic traps with depressed transversal losses of plasmas Axial symmetric open magnetic traps with depressed transversal losses of plasmas A. Sidorov, S. Golubev, I. Izotov, S. Razin, V. Skalyga and A. Vodopyanov Institute of Applied Physics, RAS, 603950 Nizhny

More information

Name the region of the electromagnetic radiation emitted by the laser. ...

Name the region of the electromagnetic radiation emitted by the laser. ... 1. An argon-laser emits electromagnetic radiation of wavelength 5.1 10 7 m. The radiation is directed onto the surface of a caesium plate. The work function energy for caesium is 1.9 ev. (i) Name the region

More information

PHOTO ELECTRIC EFFECT AND WAVE PARTICLE QUALITY CHAPTER 42

PHOTO ELECTRIC EFFECT AND WAVE PARTICLE QUALITY CHAPTER 42 PHOTO ELECTRIC EFFECT AND WAVE PARTICLE QUALITY CHAPTER 4 1. 1 4 nm to 78 nm E h E 1 E h 6.63 1 34 j - s, c 3 1 8 m/s, 1 4 nm, 78 nm 34 8 6.63 1 3 1 6.63 3 9 1 4 1 4 6.63 3 1 7.8 19.55 1 19 J 19 So, the

More information

New 1-Micron Laser Sources High Brightness Tools for Industrial Applications

New 1-Micron Laser Sources High Brightness Tools for Industrial Applications New 1-Micron Laser Sources High Brightness Tools for Industrial Applications Manfred Berger, II-VI Development POLLASNET, Warszawa Dec. 11, 2006 Content 1. Introduction 2. Beamquality & Brilliance 3. Nd:YAG

More information

Analytical Modeling of Laser Moving Sources

Analytical Modeling of Laser Moving Sources Analytical Modeling of Laser Moving Sources Contains: Heat flow equation Analytic model in one dimensional heat flow Heat source modeling Point heat source Line heat source Plane heat source Surface heat

More information

New Concept of DPSSL

New Concept of DPSSL New Concept of DPSSL - Tuning laser parameters by controlling temperature - Junji Kawanaka Contributors ILS/UEC Tokyo S. Tokita, T. Norimatsu, N. Miyanaga, Y. Izawa H. Nishioka, K. Ueda M. Fujita Institute

More information

Electronic thermal transport in nanoscale metal layers

Electronic thermal transport in nanoscale metal layers Electronic thermal transport in nanoscale metal layers David Cahill, Richard Wilson, Wei Wang, Joseph Feser Department of Materials Science and Engineering Materials Research Laboratory University of Illinois

More information

HFS PELLET REFUELING FOR HIGH DENSITY TOKAMAK OPERATION

HFS PELLET REFUELING FOR HIGH DENSITY TOKAMAK OPERATION ASDEX Upgrade Session: "Issues and prospects of effcient fueling for magnetic confinement" HFS ELLET REFUELING FOR HIGH DENSITY TOKAMAK OERATION.T. Lang for the ASDEX Upgrade and JET teams Cubic mm size

More information

Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-z plasmas

Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-z plasmas Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-z plasmas This model Monte Carlo 1 MeV e 1 MeV e C. K. Li and R. D. Petrasso MIT 47th Annual Meeting of the

More information

Optical Parametric Generation

Optical Parametric Generation x (2) Parametric Processes 27 Optical Parametric Generation Spontaneous parametric down-conversion occurs when a pump photon at v P spontaneously splits into two photons called the signal at v S, and the

More information

24. Advanced Topic: Laser resonators

24. Advanced Topic: Laser resonators 4. Advanced Topic: Laser resonators Stability of laser resonators Ray matrix approach Gaussian beam approach g parameters Some typical resonators Criteria for steady-state laser operation 1. The amplitude

More information

Non-traditional methods of material properties and defect parameters measurement

Non-traditional methods of material properties and defect parameters measurement Non-traditional methods of material properties and defect parameters measurement Juozas Vaitkus on behalf of a few Vilnius groups Vilnius University, Lithuania Outline: Definition of aims Photoconductivity

More information

Unit 1: Engineering Principles

Unit 1: Engineering Principles Unit 1: Engineering Principles Your exam Unit 1 will be assessed through an exam, which will be set by Pearson. You will need to use your ability to solve problems that require individual and combined

More information

Needle cathodes for high-brightness beams. Chase Boulware Jonathan Jarvis Heather Andrews Charlie Brau

Needle cathodes for high-brightness beams. Chase Boulware Jonathan Jarvis Heather Andrews Charlie Brau Needle cathodes for high-brightness beams Chase Boulware Jonathan Jarvis Heather Andrews Charlie Brau Outline of the talk What is brightness? Definition Sources Why is brightness important? Light sources

More information

LFW Machine Ratings A Power & Energy Approach

LFW Machine Ratings A Power & Energy Approach LFW Machine Ratings A Power & Energy Approach April 2015 Jeffrey Fletcher Vice President of Innovation fletcher.jeffrey@mtiwelding.com www.mtiwelding.com Innovating Force in Motion Process Power Based

More information

Design and Optimization of Multi-Material Material Objects for Enhanced Thermal Behavior Application: Brake Disk Design

Design and Optimization of Multi-Material Material Objects for Enhanced Thermal Behavior Application: Brake Disk Design Design and Optimization of Multi-Material Material Objects for Enhanced Thermal Behavior Application: Brake Disk Design Vincent Y. Blouin Martin Oschwald Yuna Hu Georges M. Fadel Clemson University 10

More information

High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources *

High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources * High-power Cryogenic Yb:YAG Lasers and Optical Particle Targeting for EUV Sources * J.D. Hybl**, T.Y. Fan, W.D. Herzog, T.H. Jeys, D.J.Ripin, and A. Sanchez 2008 International Workshop on EUV Lithography

More information

Laser Plasma Monochromatic Soft X-ray Source Using Nitrogen Gas Puff Target

Laser Plasma Monochromatic Soft X-ray Source Using Nitrogen Gas Puff Target Laser Plasma Monochromatic Soft X-ray Source Using Nitrogen Gas Puff Target M. Vrbova 1, P. Vrba 2, S.V. Zakharov 3, V.S. Zakharov 4, M. Müller 5, D. Pánek 1, T. Parkman 1, P.Brůža 1 1 Czech Technical

More information

Laser-Induced Explosion and Detonation in Gas-Particle and Gas-Droplet Mixtures

Laser-Induced Explosion and Detonation in Gas-Particle and Gas-Droplet Mixtures Laser-Induced Explosion and Detonation in Gas-Particle and Gas-Droplet Mixtures Dr Konstantin Volkov Centre for Fire and Explosion Studies Kingston University Friars Avenue, Roehampton Vale, SW15 3DW London

More information

Physics in Context (B)

Physics in Context (B) Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics in Context (B) Unit 2 Physics Keeps Us Going General Certificate of Education Advanced

More information

Nonlinear Optics (NLO)

Nonlinear Optics (NLO) Nonlinear Optics (NLO) (Manual in Progress) Most of the experiments performed during this course are perfectly described by the principles of linear optics. This assumes that interacting optical beams

More information

COST MP0601 Short Wavelength Laboratory Sources

COST MP0601 Short Wavelength Laboratory Sources Background: Short wavelength radiation has been used in medicine and materials studies since immediately after the 1895 discovery of X-rays. The development of synchrotron sources over the last ~25 years

More information

PHY132 Introduction to Physics II Class 2 Outline: i-clicker Discussion Question

PHY132 Introduction to Physics II Class 2 Outline: i-clicker Discussion Question PHY132 Introduction to Physics II Class 2 Outline: Waves in 2-D and 3-D Spherical waves and plane waves Index of Refraction Power, Intensity and Decibels The Doppler Effect QuickCheck 20.6 i-clicker Discussion

More information

Establishing Property-Performance Relationships through Efficient Thermal Simulation of the Laser-Powder Bed Fusion Process

Establishing Property-Performance Relationships through Efficient Thermal Simulation of the Laser-Powder Bed Fusion Process Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper Establishing Property-Performance

More information

Q1. The figure below shows an apparatus used to locate the centre of gravity of a non-uniform metal rod.

Q1. The figure below shows an apparatus used to locate the centre of gravity of a non-uniform metal rod. PhysicsAndMathsTutor.com 1 Q1. The figure below shows an apparatus used to locate the centre of gravity of a non-uniform metal rod. The rod is supported horizontally by two wires, P and Q and is in equilibrium.

More information

Electrochemical Equipment Design for Hybrid Vehicles

Electrochemical Equipment Design for Hybrid Vehicles ower to Motor (kw) Speed (mph) Electrochemical Equipment Design for Hybrid Vehicles Syed K. Ahmed, Benja. Omell and Donald J. Chmielewski 6 4 Cooling Air In Anode In (H, H O) Solid Material H H O Insulator

More information

1 An experiment is carried out to find a value for g, the acceleration of free fall.

1 An experiment is carried out to find a value for g, the acceleration of free fall. 1 An experiment is carried out to find a value for g, the acceleration of free fall. A weighted card of known length l is dropped through two light gates. The light gates are attached to a data logger

More information

Thermal lensing in high power ridge waveguide lasers. H. Wenzel, M. Dallmer and G. Erbert

Thermal lensing in high power ridge waveguide lasers. H. Wenzel, M. Dallmer and G. Erbert Thermal lensing in high power ridge waveguide lasers H. Wenzel, M. Dallmer and G. Erbert Outline motivation and laser structure experimental results theoretical model simulation results conclusions Motivation

More information

Physics 2135 Exam 3 November 18, 2014

Physics 2135 Exam 3 November 18, 2014 Exam Total / 200 hysics 2135 Exam 3 November 18, 2014 rinted Name: ec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. Two long straight wires

More information

Experimental determination of temperature threshold for melt surface deformation during laser interaction on iron at atmospheric pressure

Experimental determination of temperature threshold for melt surface deformation during laser interaction on iron at atmospheric pressure Experimental determination of temperature threshold for melt surface deformation during laser interaction on iron at Koji Hirano, Rémy Fabbro, Maryse Muller To cite this version: Koji Hirano, Rémy Fabbro,

More information

Axial Higher Order Modes Cluster (A-HOMC) Guided Wave for Pipe Inspection.

Axial Higher Order Modes Cluster (A-HOMC) Guided Wave for Pipe Inspection. 384 Proceedings of the National Seminar & Exhibition on Non-Destructive Evaluation NDE 2009, December 10-12, 2009 Axial Higher Order Modes Cluster (A-HOMC) Guided Wave for Pipe Inspection. Chandrasekaran

More information

TRAJECTORIES IN LASER MACHINING CERAMICS: THERMAL MODEL TO CONTROL MATERIAL REMOVE RATE. Mons, Belgium

TRAJECTORIES IN LASER MACHINING CERAMICS: THERMAL MODEL TO CONTROL MATERIAL REMOVE RATE. Mons, Belgium MM Science Journal www.mmscience.eu ISSN 1803-169 (Print) ISSN 1805-0476 (On-line) Special Issue HSM 014 11 th International Conference on High Speed Machining September 11-1, 014, Prague, Czech Republic

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. A grinding wheel is used to sharpen chisels in a school workshop. A chisel is forced against the edge of the grinding wheel so that the tangential force on the wheel is a

More information

Optical absorption measurements in sapphire

Optical absorption measurements in sapphire Optical absorption measurements in sapphire Alexei Alexandrovski Martin Fejer Eric Gustafson Roger Route Ginzton Laboratory, Stanford University Optical absorption measurements in sapphire OUTLINE ¾Background

More information

PHYSICS (SPECIFICATION A) PA10

PHYSICS (SPECIFICATION A) PA10 Surname Centre Number Other Names Candidate Number Leave blank Candidate Signature General Certificate of Education June 2004 Advanced Level Examination PHYSICS (SPECIFICATION A) Unit 10 The Synoptic Unit

More information

Monitoring of recombination characteristics of the proton irradiated diodes by microwave absorption transients

Monitoring of recombination characteristics of the proton irradiated diodes by microwave absorption transients Monitoring of recombination characteristics of the proton irradiated diodes by microwave absorption transients E.Gaubas, J.Vaitkus in collaboration with university of Hamburg Institute of Material Science

More information

λ Fig. 2 Name: y direction. In what c) in the + y direction d) in the y direction e) in the x direction

λ Fig. 2 Name: y direction. In what c) in the + y direction d) in the y direction e) in the x direction Name: Exam #3 D#: Physics 140 Section #: hoose the best answer for each of Questions 1-19 below. Mark your answer on your scantron form using a # pencil. (5.6 pts each) 1. At a certain instant in time,

More information

Physics-based Investigation of Negative Ion Behavior in a Negativeion-rich Plasma using Integrated Diagnostics

Physics-based Investigation of Negative Ion Behavior in a Negativeion-rich Plasma using Integrated Diagnostics Physics-based Investigation of Negative Ion Behavior in a Negativeion-rich Plasma using Integrated Diagnostics K. Tsumori 1,2, Y. Takeiri 1,2, K. Ikeda 1, H. Nakano 1,2, S. Geng 2, M. Kisaki 1, M. Wada

More information

Higgs Factory Magnet Protection and Machine-Detector Interface

Higgs Factory Magnet Protection and Machine-Detector Interface Higgs Factory Magnet Protection and Machine-Detector Interface Nikolai Mokhov Fermilab MAP Spring Workshop May 27-31, 2014 Outline MDI Efforts Building Higgs Factory Collider, Detector and MDI Unified

More information

Chapter 2 Thermal Analysis of Friction Welding

Chapter 2 Thermal Analysis of Friction Welding Chater 2 Thermal Analysis of Friction Welding Abstract Thermal energy is generated during the friction welding rocess. In this case, the solid surfaces rub against each other and heat is generated as a

More information

M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg. Thermal Analysis of EPOS components

M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg. Thermal Analysis of EPOS components M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg Thermal Analysis of EPOS components Dresden, June 27, 2008 Page 2 FZD Abstract: We present a simulation study of the

More information

Q1. The figure below shows an apparatus used to locate the centre of gravity of a non-uniform metal rod.

Q1. The figure below shows an apparatus used to locate the centre of gravity of a non-uniform metal rod. PhysicsAndMathsTutor.com 1 Q1. The figure below shows an apparatus used to locate the centre of gravity of a non-uniform metal rod. The rod is supported horizontally by two wires, P and Q and is in equilibrium.

More information

Thin-disk laser Power scaling to the kw regime in fundamental mode operation

Thin-disk laser Power scaling to the kw regime in fundamental mode operation Thin-disk laser Power scaling to the kw regime in fundamental mode operation J. Mende*, E. Schmid, J. Speiser, G. Spindler and A. Giesen German Aerospace Center, Institute of Technical Physics, Pfaffenwaldring

More information

Modelling plasma scenarios for MAST-Upgrade

Modelling plasma scenarios for MAST-Upgrade Modelling plasma scenarios for MAST-Upgrade Neutral beam requirements, sensitivity studies and stability D. Keeling R. Akers, I. Chapman, G. Cunningham, H. Meyer, S. Pinches, S. Saarelma, O. Zolotukhin

More information

Temporal analysis for implicit compensation of local variations of emission coefficient applied for laser induced crack checking

Temporal analysis for implicit compensation of local variations of emission coefficient applied for laser induced crack checking More Info at Open Access Database www.ndt.net/?id=17661 Abstract Temporal analysis for implicit compensation of local variations of emission coefficient applied for laser induced crack checking by G. Traxler*,

More information

Visit for more fantastic resources. AQA. A Level. A Level Physics. Particle physics (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. AQA. A Level. A Level Physics. Particle physics (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA A Level A Level Physics Particle physics (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. Rutherford

More information

INDUCTION-HEATED TOOL MACHINING OF ELASTOMERS PART 1: FINITE DIFFERENCE THERMAL MODELING AND EXPERIMENTAL VALIDATION

INDUCTION-HEATED TOOL MACHINING OF ELASTOMERS PART 1: FINITE DIFFERENCE THERMAL MODELING AND EXPERIMENTAL VALIDATION Machining Science and Technology, 9:547 565 Copyright # 2005 Taylor & Francis LLC ISSN: 1091-0344 print/1532-2483 online DOI: 10.1080/10910340500398225 INDUCTION-HEATED TOOL MACHINING OF ELASTOMERS PART

More information

Measurement of local elastic modulus with CLUE

Measurement of local elastic modulus with CLUE Measurement of local elastic modulus with CLUE Alexander A.Karabutov 1, Alexander A.Karabutov (Jr.) 2, Elena V.Savateeva 3 1 International Laser Center of Moscow State University aak@ilc.edu.ru 2 Deptm.of

More information

Seminar BELA STAR SIMULATOR

Seminar BELA STAR SIMULATOR Seminar BELA STAR SIMULATOR Sumita Chakraborty, Michael Affolter, Jakob Neubert (external contractor), Stefan Graf, Daniele Piazza and many more Universität Bern Content > Mercury > BepiColombo > MPO and

More information

Improving reliability of modelling heat and fluid flow in complex gas metal arc fillet welds part II: application to welding of steel

Improving reliability of modelling heat and fluid flow in complex gas metal arc fillet welds part II: application to welding of steel INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 38 (005) 7 34 doi:0.088/00-377/38//00 Improving reliability of modelling heat and fluid flow in complex gas

More information

Data Analysis Question Sheet

Data Analysis Question Sheet MSE 11: Mathematics: Sam Cooper and David Dye Data Analysis Question Sheet Comments and corrections to david.dye@imperial.ac.uk Exercises Logs and curve sketching 1. Simplify the following expressions:

More information

SHATIN TSUNG TSIN SECONDARY SCHOOL Final Examination Physics. S3 Date :

SHATIN TSUNG TSIN SECONDARY SCHOOL Final Examination Physics. S3 Date : 2002-2003 Final Examination - S3 hysics.1/1 SHATIN TSUNG TSIN SECNDARY SCHL 2002-2003 Final Examination hysics S3 Date : 26.6.2003 Total marks : 70 marks Time allowed : 1 hour Section A : (Multiple Choice,

More information

Laser Welding of a Stent

Laser Welding of a Stent Laser Welding of a Stent C J Budd, Ian Hewitt, Sarah Mitchell, Chris Coles, James Rankin, David Rodrigues, Mick O Brien, Sean McKee, Michael Vynnycky, John King, Sean McGinty Abstract We consider the problem

More information

Effect of object-to-camera distance on temperature and spatial resolution of a Thermal imaging system FLIR SC 5000

Effect of object-to-camera distance on temperature and spatial resolution of a Thermal imaging system FLIR SC 5000 Effect of object-to-camera distance on temperature and spatial resolution of a Thermal imaging system FLIR SC 5000 B. B. Lahiri, S. Bagavathiappan, John Philip, B.P.C. Rao & T. Jayakumar Non-Destructive

More information

gives rise to multitude of four-wave-mixing phenomena which are of great

gives rise to multitude of four-wave-mixing phenomena which are of great Module 4 : Third order nonlinear optical processes Lecture 26 : Third-order nonlinearity measurement techniques: Z-Scan Objectives In this lecture you will learn the following Theory of Z-scan technique

More information

d ( ) ( 0.165) = 169 W/m 2

d ( ) ( 0.165) = 169 W/m 2 Page 1 of 10 Concentrating Solar Power Solutions Question #31: Calculate the amount of beam radiation ( G b ) for an extraterrestrial radiation ( G o ) of 1250 W/m 2 and a clearness index ( k T ) equivalent

More information

FEM based simulation of the pulsed laser ablation process in nanosecond fields

FEM based simulation of the pulsed laser ablation process in nanosecond fields Journal of Mechanical Science and Technology 25 (7) (2011) 1811~1816 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-011-0511-z FEM based simulation of the pulsed laser ablation process in nanosecond

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figures Supplementary figure S1: Characterisation of the electron beam intensity profile. (a) A 3D plot of beam intensity (grey value) with position, (b) the beam

More information

Impact of the forces due to CLIQ discharges on the MQXF Beam Screen. Marco Morrone, Cedric Garion TE-VSC-DLM

Impact of the forces due to CLIQ discharges on the MQXF Beam Screen. Marco Morrone, Cedric Garion TE-VSC-DLM Impact of the forces due to CLIQ discharges on the MQXF Beam Screen Marco Morrone, Cedric Garion TE-VSC-DLM The High Luminosity - LHC project HL-LHC Beam screen design - Beam screen dimensions - Conceptual

More information

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

INTRODUCTION TO MAGNETIC NUCLEAR FUSION INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies

More information

Finite Element Simulation ForThermal Analysis In Laser Forming Of D36 Ship Building Steel

Finite Element Simulation ForThermal Analysis In Laser Forming Of D36 Ship Building Steel Finite Element Simulation ForThermal Analysis In Laser Forming Of D36 Ship Building Steel Mridul Kr. Nath 1, Ashok Chowdhury 2,PolashPratim Dutta 2 1 Royal school of engineering ISBT NH - 37, Opposite

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

PIC simulations of laser interactions with solid targets

PIC simulations of laser interactions with solid targets PIC simulations of laser interactions with solid targets J. Limpouch, O. Klimo Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, Praha 1, Czech Republic

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute

Thermal Transport in Graphene and other Two-Dimensional Systems. Li Shi. Department of Mechanical Engineering & Texas Materials Institute Thermal Transport in Graphene and other Two-Dimensional Systems Li Shi Department of Mechanical Engineering & Texas Materials Institute Outline Thermal Transport Theories and Simulations of Graphene Raman

More information

V Predicted Weldment Fatigue Behavior AM 11/03 1

V Predicted Weldment Fatigue Behavior AM 11/03 1 V Predicted Weldment Fatigue Behavior AM 11/03 1 Outline Heavy and Light Industry weldments The IP model Some predictions of the IP model AM 11/03 2 Heavy industry AM 11/03 3 Heavy industry AM 11/03 4

More information

Net emission coefficients of low temperature thermal iron-helium plasma

Net emission coefficients of low temperature thermal iron-helium plasma Optica Applicata, Vol. XXXVIII, No. 2, 28 Net emission coefficients of low temperature thermal iron-helium plasma TOMASZ MOSCICKI, JACEK HOFFMAN, ZYGMUNT SZYMANSKI Institute of Fundamental Technological

More information

Lab 2: Mach Zender Interferometer Overview

Lab 2: Mach Zender Interferometer Overview Lab : Mach Zender Interferometer Overview Goals:. Study factors that govern the interference between two light waves with identical amplitudes and frequencies. Relative phase. Relative polarization. Learn

More information

Lasers... the optical cavity

Lasers... the optical cavity Lasers... the optical cavity history principle, intuitive aspects, characteristics 2 levels systems Ti: Helium Al2O3 - Neon model-locked laser laser VCSEL bragg mirrors cleaved facets 13 ptical and/or

More information

Chapter 16 Fringe Distortion Effects

Chapter 16 Fringe Distortion Effects Chapter 16 Fringe Distortion Effects From the LDA principle described in Chap. 3, the necessary condition for accurate LDA measurements is the uniformity of the fringe spacing in the measurement volume.

More information

Analysis of cold rolling a more accurate method

Analysis of cold rolling a more accurate method Analysis of cold rolling a more accurate method 1.1 Rolling of stri more accurate slab analysis The revious lecture considered an aroximate analysis of the stri rolling. However, the deformation zone in

More information

plasma optics Amplification of light pulses: non-ionised media

plasma optics Amplification of light pulses: non-ionised media Amplification of light pulses: non-ionised media since invention of laser: constant push towards increasing focused intensity of the light pulses Chirped pulse amplification D. Strickland, G. Mourou, Optics

More information

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam LASERS Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam General Objective To understand the principle, characteristics and types

More information

Photothermal Lens Aberration Effects in Two Laser Thermal Lens Spectrometry

Photothermal Lens Aberration Effects in Two Laser Thermal Lens Spectrometry Utah State University From the SelectedWorks of Stephen E. Bialkowski January 1, 1985 Photothermal Lens Aberration Effects in Two Laser Thermal Lens Spectrometry Stephen E. Bialkowski, Utah State University

More information

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Copyright 2009 by YASHKIR CONSULTING LTD Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Yuri Yashkir 1 Introduction The

More information

CALCULATION METOD FOR THE EVALUATION OF INFLUENCE OF TOOTH ENGAGAMENT PARITY IN CONICAL SPUR GEAR ON CONTACT PRESSURES, WEAR AND DURABILITY

CALCULATION METOD FOR THE EVALUATION OF INFLUENCE OF TOOTH ENGAGAMENT PARITY IN CONICAL SPUR GEAR ON CONTACT PRESSURES, WEAR AND DURABILITY Applied Computer Science, vol., no. 3, pp. 74 84 Submitted: 06-07-0 Revised: 06-09-05 Accepted: 06-09-9 involute conical gear, tooth correction, contact and tribocontact pressures, tooth wear, gear durability

More information