PHOTO ELECTRIC EFFECT AND WAVE PARTICLE QUALITY CHAPTER 42

Size: px
Start display at page:

Download "PHOTO ELECTRIC EFFECT AND WAVE PARTICLE QUALITY CHAPTER 42"

Transcription

1 PHOTO ELECTRIC EFFECT AND WAVE PARTICLE QUALITY CHAPTER nm to 78 nm E h E 1 E h j - s, c m/s, 1 4 nm, 78 nm J 19 So, the range is J to J.. h/p P h/ J J-S kg m/s nm m, 7 nm m E 1 E Energy absorbed by the atom in the process. [1/ 1 1/ ] [1/5 1/7] J 4. P 1 W E in 1 sec 1 J % used to convert into photon 6% Energy used 6 J Energy used to take out 1 photon / No. of photons used a) Here intensity I /m Intensity, I power area /m Let no.of photons/sec emitted n No.of photons/m n/ intensity 3 9 Power Energy emitted/sec n/ P int ensity n b) Consider no.of two parts at a distance r and r + dr from the source. The time interval dt in which the photon travel from one point to another dv/e dt. p dr In this time the total no.of photons emitted N n dt C These points will be present between two spherical shells of radii r and r+dr. It is the distance of the 1 st point from the sources. No.of photons per volume in the shell N Pdr 1 p (r + r + dr) rdr 4r ch 4 r In the case m, 5 nm, m P 4r , No.of photons/m 3 P 4r c) No.of photons (No.of photons/sec/m ) Area ( ) 4r (3.14)( )

2 m, 6, n , h/p P p/ 1 7 Force exerted on the wall n(mv cos ( mv cos )) n mv cos ½ N. 7. Power 1 W P Momentum h p E W Pc/t or Force or, P h or, P h t t or, E Power (W) t t or, P/t W/c force. 7/1 (absorbed) + 3/1 (reflected) 4. 7 W 3 W C 1 C / N. 8. m g The weight of the mirror is balanced. Thus force exerted by the photons is equal to weight P h E P C t t E PC Rate of change of momentum Power/C 3% of light passes through the lens. Thus it exerts force. 7% is reflected. Force exerted (rate of change of momentum) Power/C Power 3% mg C Power 1 w 1 MW Power 1 W Radius cm 6% is converted to light 6 w Now, Force power N. 8 velocity force 1 1 Pressure 1 area (.) N/m. 1. We know, If a perfectly reflecting solid sphere of radius r is kept in the path of a parallel beam of light of large aperture if intensity is I, Force r l C I.5 W/m, r 1 cm, C m/s (1) Force N. 5 6

3 For a perfectly reflecting solid sphere of radius r kept in the path of a parallel beam of light of large aperture with intensity I, force exerted r I C 1. If the i undergoes an elastic collision with a photon. Then applying energy conservation to this collision. We get, hc/ + m c mc and applying conservation of momentum h/ mv m Mass of e m 1 v / c from above equation it can be easily shown that V C or V both of these results have no physical meaning hence it is not possible for a photon to be completely absorbed by a free electron. 13. r 1 m Energy Now, kq kq R 1 kq 1 or kq For max, q should be min, For minimum e C Max kq m For next smaller wavelength m (1.6 ) nn m 1.9 ev Max KE of electrons 1.65 ev 1.6 ev. 15. W J a) We know W h W.5 1 h b) ev h W or, V 34 8 hc Hz Hz h W e ev J a) Threshold wavelength /.91 V hc m 31 nm b) Stopping potential is.5 V E + ev / nm

4 17. Energy of photoelectron ½ mv hv P We know KE m P m KE. P P kg m/s nm m V 1.1 V ev ev.65 ev a) When 35, V s 1.45 and when 4, V s m 6 nm. W (1) and 4 W + 1 () Subtracting () from (1) and solving to get the value of h we get h ev-sec b) Now work function w ev. 35 c) w there cathod nm. w ev - s. The electric field becomes times per second. Frequency h + ke h KE KE ev.48 ev. 1. E E sin[( m 1 ) (x ct)] W C Stopping potential 1/

5 f Hz W 1.9 ev Now ev h W ev ev So, V 1.5 V E 1 sin[( s 1 )t] sin [ s 1 )t] 1 ½ [cos[( s 1 )t] cos [ s 1 )t] The w are and for largest K.E. f max wmax E K.E. hf K.E KE KE ev 3.93 ev. 3. W hv ev (Given V 15 V, No. of photons , Power 5 mw) J ev We have to take two cases : Case I v Hz Case II v Hz We know ; a) ev h w 1.656e h w (1) 5h w () 1.656e 4w w ev.414 ev 4 b) Putting value of w in equation () 5w 5h h 1 14 h ev-s 5. w.6 ev For w to be min becomes maximum. w 34 8 or w m 71 nm 4.5 V (in volts) v(in 1 14 Hz)

6 6. 4 nm, P 5 w E of 1 photon 14 4 ev No.of electrons No.of electrons 1 per 1 6 photon Energy of 1 photon No.of photoelectrons emitted Photo electric current nm 1 7 m E of one photon No.of photons no.s A 1.6 A. 11 Hence, No.of photo electrons Net amount of positive charge q developed due to the outgoing electrons C. Now potential developed at the centre as well as at the surface due to these charger 9 1 Kq r V.3 V ev 1 4 nm, 6 nm for B to the minimum energy should be maximum should be minimum. E ev. The presence of magnetic field will bend the beam there will be no current if the electron does not reach the other plates. r r mv qb me qb 1 cm X X X X X X A B B T 9. Given : fringe width, y 1. mm. mm, D.4 mm, W. ev, D 1. m y or, D d 3 3 yd D m B A B A B S A E ev Stopping potential ev V 4.6

7 ev, nm Stopping potential or energy E WC Minimum 1.7 V is necessary to stop the electron The minimum K.E. ev [Since the electric potential of V is reqd. to accelerate the electron to reach the plates] the maximum K.E. (+1, 7)ev 3.7 ev. 31. Given cm, W (C s ) 1.9 ev, d cm. m, 4 nm we know Electric potential due to a charged plate V E d Where E elelctric field due to the charged plate /E d Separation between the plates. V d 1 E V V e h w w ev or, V 1.5 V As V is much less than V Hence the minimum energy required to reach the charged plate must be.6 ev For maximum KE, the V must be an accelerating one. Hence max KE V + V ev 3. Here electric field of metal plate E P/E v/m accl. de qe / m t y 1 a K.E. w ev sec J [because in previous problem i.e. in problem 31 : KE 1. ev] V KE m Horizontal displacement V t t m 9. cm. 33. When 5 nm Energy of photon K.E. w ev ev 3.6 ev. Velocity to be non positive for each photo electron The minimum value of velocity of plate should be velocity of photo electron Velocity of photo electron KE / m y cm Metal plate 4.7

8 m/sec. 34. Work function, distance d The particle will move in a circle When the stopping potential is equal to the potential due to the singly charged ion at that point. ev 1 ke 1 V e d e Ke Ke Ke d d d d d d 8d. 1 Ke d d e 8d 4 e 35. a) When 4 nm 14 Energy of photon 3.1 ev 4 This energy given to electron But for the first collision energy lost 3.1 ev 1%.31 ev for second collision energy lost 3.1 ev 1%.31 ev Total energy lost the two collision ev K.E. of photon electron when it comes out of metal / work function Energy lost due to collision 3.1 ev ev b) For the 3 rd collision the energy lost.31 ev Which just equative the KE lost in the 3 rd collision electron. It just comes out of the metal Hence in the fourth collision electron becomes unable to come out of the metal Hence maximum number of collision 4. ion d 4.8

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Lenard s experiment The photon model Light as photons Einstein s explanation of the photoelectric effect Photon energy Electron volts Electron energy 1 Lenard s experiment Philipp

More information

BOHR S THEORY AND PHYSICS OF ATOM CHAPTER

BOHR S THEORY AND PHYSICS OF ATOM CHAPTER BOHR S THEORY AND PHYSICS OF ATOM CHAPTER 3 1. a 1 h A T (ML T ) M L T 3 L me L MLT M(AT) M L T a has dimensions of length.. We know, 1/ 1.1 1 (1/n 1 1/n ) a) n 1, n 3 or, 1/ 1.1 1 (1/ 1/9) 36 or, 6.5

More information

Dual Nature of Matter and Radiation 9. The work function of a certain metal is 3.3 J. Then the maximum kinetic energy of photoelectrons emitted by incident radiation of wavelength 5 A is- ).48 ev ).4 ev

More information

DUAL NATURE OF RADIATION AND MATTER

DUAL NATURE OF RADIATION AND MATTER Chapter Eleven DUAL NATURE OF RADIATION AND MATTER MCQ I 111 A particle is dropped from a height H The de Broglie wavelength of the particle as a function of height is proportional to (a) H (b) H 1/2 (c)

More information

Downloaded from

Downloaded from UNIT VII- DUAL NATURE OF MATTER & RADIATION LIST OF FORMULAE 1. Energy of a photon E =hʋ = 2. Number of photon emitted per second N = 3. Momentum of photon P = mc = = = 4. Equivalent mass of photon m =

More information

Selected "Phacts" for the Physics Regents Exam You Should Know

Selected Phacts for the Physics Regents Exam You Should Know Selected "Phacts" for the Physics Regents Exam You Should Know I. Mechanics Study Hard! 1. Mass and inertia are the same thing. (Mass actually measures inertia in kilograms Much as monetary resources measures

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantization of Light Max Planck started the revolution of quantum theory by challenging the classical physics and the classical wave theory of light. He proposed the concept of quantization

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 Physics and the Universe FINAL EXAMINATION December 9, 011 NAME: (Last) Please Print (Given) Time: 3 hours STUDENT

More information

PARTICLES AND WAVES CHAPTER 29 CONCEPTUAL QUESTIONS

PARTICLES AND WAVES CHAPTER 29 CONCEPTUAL QUESTIONS CHAPTER 29 PARTICLES AND WAVES CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION A monochromatic light source emits photons of a single frequency. According to Equation 29.2, the energy, E, of a single photon

More information

MR. HOLL S PHYSICS FACTS MECHANICS. 1) Velocity is a vector quantity that has both magnitude and direction.

MR. HOLL S PHYSICS FACTS MECHANICS. 1) Velocity is a vector quantity that has both magnitude and direction. MR. HOLL S PHYSICS FACTS MECHANICS 1) Velocity is a vector quantity that has both magnitude and direction. 2) Speed is a scalar quantity that has ONLY magnitude. 3) Distance is a scalar and represents

More information

λ φ φ = hc λ ev stop φ = λ φ and now ev stop λ ' = Physics 220 Homework #2 Spring 2016 Due Monday 4/11/16

λ φ φ = hc λ ev stop φ = λ φ and now ev stop λ ' = Physics 220 Homework #2 Spring 2016 Due Monday 4/11/16 Physics 0 Homework # Spring 06 Due Monday 4//6. Photons with a wavelength λ = 40nm are used to eject electrons from a metallic cathode (the emitter) by the photoelectric effect. The electrons are prevented

More information

Experimental Basis for QM Ch3

Experimental Basis for QM Ch3 Experimental Basis for QM Ch3 This chapter describes the early evidence for quantization including Blackbody radiation Photoelectric effect Compton scattering X-rays and their spectra We ll see how early

More information

WAVES AND PARTICLES. (c)

WAVES AND PARTICLES. (c) WAVES AND PARTICLES 1. An electron and a proton are accelerated through the same potential difference. The ration of their De Broglie wave length will be -- (a) (b) (c) (d) 1 2. What potential must be

More information

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS 1. Introduction Types of electron emission, Dunnington s method, different types of spectra, Fraunhoffer

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

Physics 6C. Final Practice Solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Final Practice Solutions. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6C Final Practice Solutions Use the following information for problems 1 and. A beam of white light with frequency between 4.00 x 10 14 Hz and 7.90 x 10 14 Hz is incident on a sodium surface, which

More information

Electrostatics. 4πε 2) + Q / 2 4) 4 Q

Electrostatics. 4πε 2) + Q / 2 4) 4 Q Two spheres A and B of radius a and b respectively are at the same potential The ratio of the surface charge density of A to B is: ) a / b ) b / a a / b b / a Two free protons are separated by a distance

More information

IIT-JEE 2012 PAPER - 1 PART - I : PHYSICS. Section I : Single Correct Answer Type

IIT-JEE 2012 PAPER - 1 PART - I : PHYSICS. Section I : Single Correct Answer Type IIT-JEE PAPER - PART - I : PHYSICS Section I : Single Correct Answer Type This section contains multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is

More information

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet.

Select the response that best answers the given statement. Be sure to write all final multiple choice answers on your Scantron answer sheet. Chapters 15-30 PHYS 1402 - Brooks This practice test is similar to the actual final. The final exam will focus on questions involving solving problems, and not so much on conceptual questions. The final

More information

Chapters 28 and 29: Quantum Physics and Atoms Solutions

Chapters 28 and 29: Quantum Physics and Atoms Solutions Chapters 8 and 9: Quantum Physics and Atoms Solutions Chapter 8: Questions: 3, 8, 5 Exercises & Problems:, 6, 0, 9, 37, 40, 48, 6 Chapter 9: Questions, 6 Problems 3, 5, 8, 9 Q8.3: How does Einstein's explanation

More information

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton 1 The Cathode Rays experiment is associated with: A B C D E Millikan Thomson Townsend Plank Compton 1 2 The electron charge was measured the first time in: A B C D E Cathode ray experiment Photoelectric

More information

TARGET IIT JEE 2013 XIII MODERN PHYSICS C O N T E N T S. KEY CONCEPT...Page 2. EXERCISE I...Page 6. EXERCISE II...Page 7. EXERCISE III...

TARGET IIT JEE 2013 XIII MODERN PHYSICS C O N T E N T S. KEY CONCEPT...Page 2. EXERCISE I...Page 6. EXERCISE II...Page 7. EXERCISE III... PHYSICS TARGET IIT JEE 013 XIII MODERN PHYSICS C O N T E N T S KEY CONCEPT...Page EXERCISE I...Page 6 EXERCISE II...Page 7 EXERCISE III...Page 8 OBJECTIVE QUESTION BANK... Page 13 ANSWER KEY...Page KEY

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

Electric Potential Energy

Electric Potential Energy Electric Potential Energy the electric potential energy of two charges depends on the distance between the charges when two like charges are an infinite distance apart, the potential energy is zero An

More information

Electric Fields Electric charges exert forces on each other when they are a distance apart. The word Electric field is used to explain this action at

Electric Fields Electric charges exert forces on each other when they are a distance apart. The word Electric field is used to explain this action at Electricity & Magnetism Electric Fields Marline Kurishingal Electric Fields Electric charges exert forces on each other when they are a distance apart. The word Electric field is used to explain this action

More information

Physics 228. Momentum and Force Kinetic Energy Relativistic Mass and Rest Mass Photoelectric Effect Energy and Momentum of Photons

Physics 228. Momentum and Force Kinetic Energy Relativistic Mass and Rest Mass Photoelectric Effect Energy and Momentum of Photons Physics 228 Momentum and Force Kinetic Energy Relativistic Mass and Rest Mass Photoelectric Effect Energy and Momentum of Photons Lorentz Transformations vs. Rotations The Lorentz transform is similar

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 115.3 Physics and the Universe FINAL EXAMINATION December 11, 2009 Time: 3 hours NAME: STUDENT NO.: (Last) Please Print

More information

Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x C and mass 9.1x kg

Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x C and mass 9.1x kg Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x 10-19 C and mass 9.1x 10-31 kg... Work function. The minimum amount of energy required

More information

Chapter-11 DUAL NATURE OF MATTER AND RADIATION

Chapter-11 DUAL NATURE OF MATTER AND RADIATION Chapter-11 DUAL NATURE OF MATTER AND RADIATION Work function (j o ): The minimum energy required for an electron to escape from the surface of a metal i.e. The energy required for free electrons to escape

More information

CHAPTER 3 The Experimental Basis of Quantum

CHAPTER 3 The Experimental Basis of Quantum CHAPTER 3 The Experimental Basis of Quantum 3.1 Discovery of the X Ray and the Electron 3.2 Determination of Electron Charge 3.3 Line Spectra 3.4 Quantization 3.5 Blackbody Radiation 3.6 Photoelectric

More information

PHYSICS Units 3 & 4 Written examination (TSSM s 2009 trial exam updated for the current study design) SOLUTIONS

PHYSICS Units 3 & 4 Written examination (TSSM s 2009 trial exam updated for the current study design) SOLUTIONS PHYSICS Units 3 & 4 Written examination (TSSM s 009 trial exam updated for the current study design) SOLUTIONS TSSM 017 Page 1 of 1 SECTION A - Multiple Choice (1 mark each) Question 1 Answer: D ( ) (

More information

Explain how line spectra are produced. In your answer you should describe:

Explain how line spectra are produced. In your answer you should describe: The diagram below shows the line spectrum of a gas. Explain how line spectra are produced. In your answer you should describe: how the collisions of charged particles with gas atoms can cause the atoms

More information

Physics (SPH4U) FINAL EXAMINATION

Physics (SPH4U) FINAL EXAMINATION Canadian International Matriculation Programme Sunway College Date: Tuesday, June 06 th, 017 Time: 11:30 am 1:30 pm Length:.0 hrs Lecturer: Mr. Anton Gillich Physics (SPH4U) FINAL EXAMINATION Student Name:

More information

Gen. Phys. II Exam 4 - Chs. 27,28,29 - Wave Optics, Relativity, Quantum Physics Apr. 16, 2018

Gen. Phys. II Exam 4 - Chs. 27,28,29 - Wave Optics, Relativity, Quantum Physics Apr. 16, 2018 Gen. Phys. II Exam 4 - Chs. 27,28,29 - Wave Optics, Relativity, Quantum Physics Apr. 16, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with

More information

Structured Essay. Answers

Structured Essay. Answers Structured Essay Answers 0. (a) AVρ...(0) (b) Momentum of air mass = mv = Av ρ v = Av ρ...(0) (c) (d) (e) (f) Force exerted on air /Force exerted on fan = F = Av ρ - 0 mv - mv t F = = Av Reaction forces

More information

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt

jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth egkjkt Phone : 0 903 903 7779, 98930 58881 Modern Physics Page: 55 fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks]

More information

SAMPLE USEFUL INFORMATION: Acceleration due to gravity, gg 9.80 m s 2. Avogadro s number, NN AA particles

SAMPLE USEFUL INFORMATION: Acceleration due to gravity, gg 9.80 m s 2. Avogadro s number, NN AA particles USFUL INFORMTION: cceleration due to gravity, gg 9.80 m s vogadro s number, NN 6.0 3 particles mol Universal gas constant, RR 8.314 J K 1 mol 1 Gravitational constant, GG 6.673 11 N m kg oulomb constant,

More information

Electromagnetic Waves Properties. The electric and the magnetic field, associated with an electromagnetic wave, propagating along the z=axis. Can be represented by E = E kˆ, = iˆ E = E ˆj, = ˆj b) E =

More information

Chapter 2 Problem Solutions

Chapter 2 Problem Solutions Chapter Problem Solutions 1. If Planck's constant were smaller than it is, would quantum phenomena be more or less conspicuous than they are now? Planck s constant gives a measure of the energy at which

More information

Poornima University. For any query, contact us at: ,18

Poornima University. For any query, contact us at: ,18 AIEEE/010/Physics 1 S. No Questions Solutions Q.1 A rectangular loop has a sliding connector PQ of length l and resistance Ω and it is moving with a speed v as shown. The set-up is placed in a uniform

More information

Physics 12. June 1997 Provincial Examination

Physics 12. June 1997 Provincial Examination Physics 2 June 997 Provincial Examination ANSWER KEY / SCORING GUIDE TOPICS:. Kinematics and Dynamics 2. Energy and Momentum 3. Equilibrium 4. Circular Motion and Gravitation 5. Electrostatics and Circuitry

More information

Physics 208 Exam 3 Nov. 28, 2006

Physics 208 Exam 3 Nov. 28, 2006 Name: Student ID: Section #: Physics 208 Exam 3 Nov. 28, 2006 Print your name and section clearly above. If you do not know your section number, write your TA s name. Your final answer must be placed in

More information

ELECTROSTATIC FIELDS

ELECTROSTATIC FIELDS ELECTROSTATIC FIELDS Electric charge Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. A body can become charged if it loses or

More information

Which iceboat crosses the finish line with more kinetic energy (KE)?

Which iceboat crosses the finish line with more kinetic energy (KE)? Two iceboats (one of mass m, one of mass 2m) hold a race on a frictionless, horizontal, frozen lake. Both iceboats start at rest, and the wind exerts the same constant force on both iceboats. Which iceboat

More information

RED. BLUE Light. Light-Matter

RED. BLUE Light.   Light-Matter 1 Light-Matter This experiment demonstrated that light behaves as a wave. Essentially Thomas Young passed a light of a single frequency ( colour) through a pair of closely spaced narrow slits and on the

More information

Chapter 10: Wave Properties of Particles

Chapter 10: Wave Properties of Particles Chapter 10: Wave Properties of Particles Particles such as electrons may demonstrate wave properties under certain conditions. The electron microscope uses these properties to produce magnified images

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential Units of Chapter 23 Electric Potential Energy and Potential Difference Relation between Electric Potential and Electric Field Electric Potential Due to Point Charges Potential

More information

LINEAR MOMENTUM. Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions Center of Mass

LINEAR MOMENTUM. Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions Center of Mass LINEAR MOMENTUM Momentum Impulse Conservation of Momentum Inelastic Collisions Elastic Collisions Momentum In 2 Dimensions Center of Mass MOMENTUM Quantity of Motion Product of Mass and Velocity p = mv

More information

AIPMT 2015 (Code: E) DETAILED SOLUTION

AIPMT 2015 (Code: E) DETAILED SOLUTION AIPMT 2015 (Code: E) DETAILED SOLUTION Physics 1. If energy (E), velocity (V) and time (T) are chosen as the fundamental quantities, the dimensional formula of surface tension will be: (1) [EV 2 T 1 ]

More information

PHYS 3313 Section 001 Lecture #7

PHYS 3313 Section 001 Lecture #7 PHYS 3313 Section 001 Lecture #7 Photoelectric Effect Compton Effect Pair production/pair annihilation PHYS 3313-001, Fall 1 Reading assignments: CH3.9 Announcements Homework #2 CH3 end of the chapter

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main FOUNDATION STUDIES EXAMINATIONS June 203 PHYSICS Semester One February Main Time allowed 2 hours for writing 0 minutes for reading This paper consists of 4 questions printed on 0 pages. PLEASE CHECK BEFORE

More information

PHYS102 Previous Exam Problems. Electric Potential

PHYS102 Previous Exam Problems. Electric Potential PHYS102 Previous Exam Problems CHAPTER 24 Electric Potential Electric potential energy of a point charge Calculating electric potential from electric field Electric potential of point charges Calculating

More information

Physics 2D Lecture Slides Lecture 11: Jan. 27 th Sunil Sinha UCSD Physics

Physics 2D Lecture Slides Lecture 11: Jan. 27 th Sunil Sinha UCSD Physics Physics 2D Lecture Slides Lecture 11: Jan. 27 th 2010 Sunil Sinha UCSD Physics Einstein s Explanation of PhotoElectric Effect What Maxwell Saw of EM Waves What Einstein Saw of EM Waves Light as bullets

More information

TAP 522-6: Electrons measure the size of nuclei

TAP 522-6: Electrons measure the size of nuclei TAP 522-6: lectrons measure the size of nuclei Scattering by small particles Hold a glass plate smeared with a little milk, or dusted with lycopodium powder, in front of a point source of light and you

More information

Question 11.1: Find the

Question 11.1: Find the Question 11.1: Find the (a) maximum frequency, and (b) minimum wavelength of X-rays produced by 30 kv electrons. Potential of the electrons, V = 30 kv = 3 10 4 V Hence, energy of the electrons, E = 3 10

More information

a. Find the speed of the model airplane. b. On the diagram, draw a vector that shows the resultant velocity of the plane.

a. Find the speed of the model airplane. b. On the diagram, draw a vector that shows the resultant velocity of the plane. Vector diagrams *Vectors should be drawn tip-to-tail *Put arrows on all vectors *Resultant arrow goes toward last open arrow *angle is measured from the starting point a. Find the speed of the model airplane.

More information

Physics 111 Homework Solutions Week #9 - Friday

Physics 111 Homework Solutions Week #9 - Friday Physics 111 Homework Solutions Week #9 - Friday Tuesday, March 1, 2011 Chapter 24 Questions 246 The Compton shift in wavelength for the proton and the electron are given by Δλ p = h ( 1 cosφ) and Δλ e

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

Introduction. 6.1 Summary Notes The Quantum. D Notes: ! is wavelength (m) c is the speed of light (m/s)

Introduction. 6.1 Summary Notes The Quantum. D Notes: ! is wavelength (m) c is the speed of light (m/s) Introduction Matter and energy have a dual nature: wave and particle. Understanding the particle nature of light is necessary for learning about modern physics and technology. 6.1 Summary Notes The Quantum

More information

CHAPTER 3 Prelude to Quantum Theory. Observation of X Rays. Thomson s Cathode-Ray Experiment. Röntgen s X-Ray Tube

CHAPTER 3 Prelude to Quantum Theory. Observation of X Rays. Thomson s Cathode-Ray Experiment. Röntgen s X-Ray Tube CHAPTER Prelude to Quantum Theory.1 Discovery of the X Ray and the Electron. Determination of Electron Charge. Line Spectra.4 Quantization.5 Blackbody Radiation.6 Photoelectric Effect.7 X-Ray Production.8

More information

Electromagnetic Radiation

Electromagnetic Radiation Chapter 6: The Periodic Table and Atomic Structure Electromagnetic Radiation Atomic Spectra The Bohr Atom Quantum Mechanical Model of the Atom Wave Mechanics Quantum Numbers and Electron Orbitals Interpreting

More information

PHY114 S11 Final Exam

PHY114 S11 Final Exam PHY4 S Final Exam S. G. Rajeev May 4 0 7:5 pm to 9:5 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.

More information

Extra Circular Motion Questions

Extra Circular Motion Questions Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

More information

CBSE Sample Paper 1. Question 4 What are the maximum and minimum values of power factor in a LCR circuit and under what conditions?

CBSE Sample Paper 1. Question 4 What are the maximum and minimum values of power factor in a LCR circuit and under what conditions? CBSE Sample Paper General Instruction:. Answer all questions. Internal choices are provided for some questions 3. Question numbers to 8 are very short answer questions and carry mark each. 4. Question

More information

Preview from Notesale.co.uk Page 4 of 35

Preview from Notesale.co.uk Page 4 of 35 field 64 If a dielectric is inserted b/w the plates of a charged capacitor, its Remains Becomes infinite capacitance constant decreases increases 65 Selenium is an insulator in the dark but when exposed

More information

PHYSICS 113: Contemporary Physics Final Exam Solution Key (2016)

PHYSICS 113: Contemporary Physics Final Exam Solution Key (2016) PHYSICS 113: Contemporary Physics Final Exam Solution Key (2016) 1. [25 points] (5 points each) Short Answers (a) The central reaction that governs the weak nuclear reactions of the sun reduces to: 4 p

More information

GCE A level 1324/01 PHYSICS PH4 Oscillations and Fields

GCE A level 1324/01 PHYSICS PH4 Oscillations and Fields Surname Centre Number Candidate Number Other Names 2 GCE A level 1324/01 PHYSICS PH4 Oscillations and Fields S15-1324-01 A.M. THURSDAY, 11 June 2015 1 hour 30 minutes For s use Question Maximum Mark Mark

More information

Workout Examples No.of nucleons Binding energy

Workout Examples No.of nucleons Binding energy Workout Examples 1. Find (i) mass defect (ii) binding energy (iii) binding energy per nucleon for a helium nucleus. Given the mass of helium nucleus= 4.001509 a.m.u., mass of proton= 1.00777 a.m.u. and

More information

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space.

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space. Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space. Photon: a quantum of light or electromagnetic wave. Quantum:

More information

Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170

Chapter 22 Quantum Mechanics & Atomic Structure 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 22.1 Photon Theory of Light and The Photoelectric Effect Homework # 170 See Homework #95 in "Chapter 12-Electrostatics" for the table of "Useful nformation" on atomic particles. 01. What is the energy

More information

2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1

2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1 2.1- CLASSICAL CONCEPTS; Dr. A. DAYALAN, Former Prof & Head 1 QC-2 QUANTUM CHEMISTRY (Classical Concept) Dr. A. DAYALAN,Former Professor & Head, Dept. of Chemistry, LOYOLA COLLEGE (Autonomous), Chennai

More information

Table of Contents. Properties of X-rays... 3 X-ray Spectrum Moseley s Law... 9 de-broglie Waves or Matter Waves... 13

Table of Contents. Properties of X-rays... 3 X-ray Spectrum Moseley s Law... 9 de-broglie Waves or Matter Waves... 13 Table of Contents Properties of X-rays... 3 X-ray Spectrum... 5 Continuous X-ray Spectrum... 5 Characteristic Spectrum... 7 Uses of X-rays... 8 Moseley s Law... 9 de-broglie Waves or Matter Waves... 13

More information

Physics 102: Lecture 23

Physics 102: Lecture 23 Physics 102: Lecture 23 De Broglie Waves & Compton Scattering Physics 102: Lecture 23, Slide 1 Early Indications of Problems with Classical Physics Blackbody radiation Photoelectric effect Wave-particle

More information

Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30.

Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30. Chapter 30 Quantum Physics 30.1 Blackbody Radiation and Planck s Hypothesis of Quantum Energy 30.2 Photons and the Photoelectric Effect 30.3 The Mass and Momentum of a Photon 30.4 Photon Scattering and

More information

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N

PHY2049 Fall11. Final Exam Solutions (1) 700 N (2) 350 N (3) 810 N (4) 405 N (5) 0 N Exam Solutions 1. Three charges form an equilateral triangle of side length d = 2 cm. The top charge is q3 = 3 μc, while the bottom two are q1 = q2 = - 6 μc. What is the magnitude of the net force acting

More information

Mechanics Answers to Examples B (Momentum) - 1 David Apsley

Mechanics Answers to Examples B (Momentum) - 1 David Apsley TOPIC B: MOMENTUM ANSWERS SPRING 2019 (Full worked answers follow on later pages) Q1. (a) 2.26 m s 2 (b) 5.89 m s 2 Q2. 8.41 m s 2 and 4.20 m s 2 ; 841 N Q3. (a) 1.70 m s 1 (b) 1.86 s Q4. (a) 1 s (b) 1.5

More information

Class XII_Delhi_Physics_Set-1

Class XII_Delhi_Physics_Set-1 17. Write three important factors which justify the need of modulating a message signal. Show diagrammatically how an amplitude modulated wave is obtained when a modulating signal is superimposed on a

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

Downloaded from

Downloaded from 7. DUAL NATURE OF MATTER & RADIATION GIST ELECTRON EMISSION 1. There are three types of electron emission, namely, Thermionic Emission, Photoelectric Emission and Field Emission. 2. The minimum energy

More information

Dual Nature of Radiation and Matter-I

Dual Nature of Radiation and Matter-I Dual Nature of Radiation and Matter-I Physics Without Fear CONTENTS ELECTRON EMISSION PHOTOELECTRIC EFFECT; HERTZ S OBSERVATIONS HALLWACHS AND LENARD S OBSERVATIONS EXPERIMENTAL STUDY OF PHOTOELECTRIC

More information

Momentum and impulse Book page 73-79

Momentum and impulse Book page 73-79 Momentum and impulse Book page 73-79 Definition The rate of change of linear momentum is directly proportional to the resultant force acting upon it and takes place in the direction of the resultant force

More information

Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version

Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version Physics 202 Final (Monday, December 12) Fall 2016 (Saslow) White Version Name (printed) Lab Section(+2 pts) Name (signed as on ID) Show all work. Partial credit may be given. Answers should include the

More information

JEE(MAIN) 2015 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 04 th APRIL, 2015) PART A PHYSICS

JEE(MAIN) 2015 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 04 th APRIL, 2015) PART A PHYSICS 1. Distance of the centre of mass of a solid uniform cone from its vertex is. f the radius of its base is and its height is h then is equal to :- 5h 8 () h 4 h 4 for solid cone c.m. is h 4 so h h 4 h 4

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. (a) The diagram below shows a narrow beam of electrons produced by attracting electrons emitted from a filament wire to a metal plate which has a small hole in it. (i) Why

More information

System of objects (particles)

System of objects (particles) Today Ch 6, Momentum and Collisions System of particles Elastic vs. inelastic collision Elastic collision in 1D Collision in 2D Center of mass Motion of system of particles (Motion of center of mass) 1

More information

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system).

2. Determine the excess charge on the outer surface of the outer sphere (a distance c from the center of the system). Use the following to answer question 1. Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation. 1. Which combination of charges will yield

More information

1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of

1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of 1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of 1 1 (A) 2 (B) 2 (C) 1 (D) 2 (E) 2 2. A railroad flatcar of mass 2,000 kilograms rolls

More information

UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE

UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE FIRST YEAR END-OF-YEAR EXAMINATION SUBJECT: PHYSICS DATE: JUNE 2010 LEVEL: INTERMEDIATE TIME: 09.00h to 12.00h Show ALL working Write units where appropriate

More information

Physics 102: Lecture 23

Physics 102: Lecture 23 Physics 102: Lecture 23 De Broglie Waves & Compton Scattering Place exam revisions in box at front of room either now or at end of lecture Physics 102: Lecture 23, Slide 1 Exam 3 Monday April 21! Material

More information

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object.

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object. HOLT CH 6 notes Objectives :Compare the momentum of different moving objects. Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an

More information

Revision Guide. Chapter 7 Quantum Behaviour

Revision Guide. Chapter 7 Quantum Behaviour Revision Guide Chapter 7 Quantum Behaviour Contents CONTENTS... 2 REVISION CHECKLIST... 3 REVISION NOTES... 4 QUANTUM BEHAVIOUR... 4 Random arrival of photons... 4 Photoelectric effect... 5 PHASE AN PHASORS...

More information

Hints to help with selected problems. Draw a free-body diagram of the situation and then a component triangle. 1.5a

Hints to help with selected problems. Draw a free-body diagram of the situation and then a component triangle. 1.5a Hints to help with selected problems 10. Determine the acceleration of a 34 kg block along a frictionless inclined plane with a 35.0 o slope (i.e., gradient). [5.6 m/s 2 down] Draw a freebody diagram of

More information

The collision is elastic (KE is conserved)

The collision is elastic (KE is conserved) 004 HKAL Physics MC Suggested Solution Let F s : force acting on the object Q by the spring F t : force on the object Q by the thread W: weight of the object Q Vertical balance: F s cos = W.(i) Horizontal

More information

minimum wavelength of X-rays produced by 30 kv electrons.

minimum wavelength of X-rays produced by 30 kv electrons. Question 11.1: Find the maximum frequency, and minimum wavelength of X-rays produced by 30 kv electrons. Potential of the electrons, V = 30 kv = 3 10 4 V Hence, energy of the electrons, E = 3 10 4 ev Where,

More information

Exam 3--PHYS 101--F15

Exam 3--PHYS 101--F15 Name: Exam 3--PHYS 0--F5 Multiple Choice Identify the choice that best completes the statement or answers the question.. It takes 00 m to stop a car initially moving at 25.0 m/s. The distance required

More information

MOCK cet paper II 2012 (PHYSICS)

MOCK cet paper II 2012 (PHYSICS) MOCK cet paper II 2012 (PHYSICS) 1. The equations of two sound waves are given by Y 1 = 3 sin 100πt and Y 2 = 4 Sin 150 πt. The ratio of the intensities of sound produced in the medium is 1)1:2 2) 1:4

More information

Paper 2. Section B : Atomic World

Paper 2. Section B : Atomic World Paper 2 Section B : Atomic World Q.2 Multiple-choice questions A B C D 2.1 25.19 15.78 9.18 49.68 2.2 25.79 20.39 41.97 11.72 2.3 18.35 9.76 48.84 22.65 2.4 9.27 18.87 27.90 43.50 2.5 63.47 4.28 10.99

More information

Physics 2135 Exam 3 April 18, 2017

Physics 2135 Exam 3 April 18, 2017 Physics 2135 Exam 3 April 18, 2017 Exam Total / 200 Printed Name: Rec. Sec. Letter: Solutions for problems 6 to 10 must start from official starting equations. Show your work to receive credit for your

More information

8. Use of calculators is not permitted. However, you may ask log table for Mathematical tables.

8. Use of calculators is not permitted. However, you may ask log table for Mathematical tables. 1. All questions are compulsory. 2. Q. 1 to 5 are Very short Answer type questions (1 Mark each. ) 3. Q. 6 to 12 are short Answer type questions. (2 Marks each. ) 4. Q. 13 to 24 are short answer questions

More information

Magnetic force and magnetic fields

Magnetic force and magnetic fields magnetar Magnetic force and magnetic fields Feb 28, 2012 Magnetic field Iron filings may be used to show the pattern of the magnetic field lines. A compass can be used to trace the field lines. The lines

More information