Homework 1. 0 for z L. Ae ikz + Be ikz for z 0 Ce κz + De κz for 0 < z < L Fe ikz

Size: px
Start display at page:

Download "Homework 1. 0 for z L. Ae ikz + Be ikz for z 0 Ce κz + De κz for 0 < z < L Fe ikz"

Transcription

1 Homework. Problem. Consider the tunneling problem with the potential barrier: for z (z) = > for < z < L for z L. Write the wavefunction as: ψ(z) = Ae ikz + Be ikz for z Ce κz + De κz for < z < L Fe ikz for z L, with k =(me) / / h, κ =[m( E)] / / h. a. Write the system of four equations expressing the continuity of the wavefunction and its derivative at z =and at z = L. b. Find the transmission coefficient, T = F / A. There s no need to solve the full system. Be creative. Hint: Multiply the equation expressing continuity of ψ at z =by ik and add and substract it from the equation expressing continuity of the derivatives at z =. Do a similar thing with the other two equations (by multiplying one by κ). Now it should be relatively easy to solve for F in terms of A alone. This gives you T. Solution. a. The equations expressing continuity of the wavefunction and its derivatives at z =and z = L are: ψ( ) = ψ( + ) A + B = C + D, () dψ( ) = dψ(+ ) ika ikb = κc κd, () dz dz ψ(l ) = ψ(l + ) Ce κl + De κl = Fe ikl, (3) ECE68 Spring

2 dψ(l ) = dψ(l+ ) κce κl κde κl = ikf e ikl. (4) dz dz b. Multiply Eq. () by ik,add and substract it from Eq. (): ika = (ik + κ)c +(ik κ)d, (5) ikb = (ik κ)c +(ik + κ)d. (6) Multiply Eq. (3) by κ,add and substract it from Eq. (4): κce κl = (ik + κ)fe ikl, (7) κde κl = (ik κ)fe ikl. (8) From Eqns. (7) and (8) we can express C and D in terms of F. Inserting these expressions into Eq. (5) we can finally express F in terms of A: so that the transmission coeficient is: ika = eikl F κ [(κ k )sinh(κl) + iκk cosh(κl)], (9) T = F A = 4κ k (κ k ) sinh (κl) + 4κ k cosh (κl). (). Problem. From the Schrödinger equation derive the continuity equation: ρ t + S =, where ρ = Ψ is the probability density and S = i h m [Ψ Ψ Ψ Ψ] is the probability density current. ECE68 Spring

3 Solution. By the definition of the probability density ρ: ρ t = t [ Ψ Ψ ] = Ψ t Ψ + Ψ Ψ t. Since Ψ/ t =/(i h)hψ and Ψ / t = /(i h)hψ, ρ t = i h (HΨ )Ψ + i h Ψ HΨ = [ h i h m Ψ Ψ ΨΨ h m Ψ Ψ + Ψ Ψ ]. But the second and fourth terms inside the square bracket cancel,so that: ρ t = i h [ Ψ Ψ Ψ ] Ψ m On the other hand,using the definition of the probability-flux S: S = i h m [Ψ Ψ Ψ Ψ ] = = i h m i h m. () [ Ψ Ψ + Ψ Ψ Ψ Ψ Ψ Ψ [ Ψ Ψ Ψ Ψ ]. () From Eqns. () and () we have ρ/ t = S,which is the desired result. 3. Problem. The Wentzel-Kramers-Brillouin (WKB) approximation to solve the Schrödinger equation consists in writing the solution of the time-independent problem: ] as h d ψ(x) m dx + (x)ψ(x) = Eψ(x), ψ(x) k / exp { i x k(x ) dx }, ECE68 Spring 3

4 where k(x) = {m[e (x)]} / / h. This is a good approximation if the potential (x) varies slowly (that is,it does not change much compared to the electron energy E when x varies over several de Broglie wavelengths). If E (x) <,the WKB wavefunction becomes ψ(x) k / exp { x } κ(x ) dx where now κ(x) = {m[ (x) E]} / / h. Let s now ignore the factor k / (which simply ensures continuity of probability current). Consider now the previous tunneling problem (problem ) and identify the WKB approximation to the transmission coefficient as: { } L T WKB = ψ(l) = exp κ(x ) dx. (3) Compare T WKB with the exact transmission coefficient T of the previous tunneling problem (problem ) in the limit in which κl >>. Solution. From Eq. () above,for κ>>lwe have sinh(κl) cosh(κl) e κl /,so, T 6κ k e κl (κ + k ). (4) On the other hand,from the WKB expression,eq. (3),we have trivially (since inside the barrier ( <x L) κ(x) =[m(e )] / / h is a constant independent of x): T WKB e κl. (5) Except for prefactors which we have ignored in the WKB expression,eq. (5) agrees with the exponential behavior of Eq. (4). ECE68 Spring 4

5 4. Problem. Calculate the matrix element between two wavefunctions of the form ψ(k, r) = /eik r and ψ(k, r) = /eik r, and the pertubation potentials of the form: a. H e iq r b. H δ(r) c. H r d. H e r /r Polar coordinates are useful in c and d. Solution. In each case we must evaluate the integral /e ik r H(r) /eik r dr = e i(k k ) r H(r) dr. So: a. For H(r) = e iq r : e i(k k +q) r dr = δ(k k + q), thanks to the definition of the δ function. b. For H(r) = δ(r): e i(k k ) r δ(r) dr =. c. For H(r) = r,going to polar coordinates and assuming a spherical volume 4πR 3 /3= : e i(k k ) r r dr = π dφ π dθ sin θ drr i kr cos θ e r = ECE68 Spring 5

6 = π dr π d(cos θ) e i kr cos θ, where θ is the polar angle and we have assumed (without loss of generality) that the (polar) z-axis is along the direction of k k and k = k k. With a change of integration variable µ =cosθ,this can be written as: π i krµ dr ei krµ µ= µ= = π k dr sin( kr) r 4π π k in the limit R,since sin(x)/x = π/ (see any text of tables of integrals: The integral can be calculated rigorously by contour integrals in the complex plane). d. For H(r) = e r /r,going again to polar coordinates: e i(k k ) r e r /r dr = π dφ π π dθ sin θ drr e i kr cos θ e r/r = = π drr e r/r d(cos θ) e i kr cos θ. As before,let s set µ =cosθ: π R drr e r/r e i krµ µ= = π R drr sin( kr) e r/r. i krµ k µ= The last integral can be solved by replacing sin( kr) with e i kr and retaining only the imaginary part of the result. The integral is of the form: drre αr, ECE68 Spring 6

7 where α = /r + i k. Integrating by parts: drre αr = r α eαr R in the limit R. Therefore: π k drr sin( kr) e r/r = 4π [ k Im dr α eαr = r α eαr R + eαr α drre r(i k /r ) ] R = 4π = α, r ( /r + k ). 5. Problem. Extend the procedure followed on page 8 of the Notes to find the perturbed eigenvalues E n () to second order in α. Solution. Looking at page 8 of the Notes,if we equate terms of order α at the left- and right-hand side of the second equation,we have: H φ () n > + H φ() n > = E n φ () n > + E() n φ() n As done in the Notes,let s expand φ () n > and φ () n > over the (complete) basis ψ m >: > + E() n ψ n >. (6) φ () n > = m a () nm ψ m >, (7) and φ () n > = m a () nm ψ m >. (8) Insert now these expansions into Eq. (6): H m a () nm ψ m > + H m a () nm ψ m > = E n m a () nm ψ m > + E n () m a () nm ψ m > + E n () ψ n (9) ECE68 Spring 7

8 Let s now take the inner product of this equation with <ψ n : c () nn E n + m a () nm H nm = c () nn E n + a () nn E() n + E () n. () The first term on the lhs is equal to the first term on the rhs. Using now the fact that a () nm = H mn /(E n E m ) and E n () = H nn,we have: E () n = m n H mn H nm E n E m = m n H mn 6. Problem. Show in detail the equivalence between the two formulations of Bloch theorem: E n E m. () ψ(k, r + R l ) = e ik R l ψ(k, r), () and: where u k (r) is periodic: Solution. From Eq. (3): ψ(k, r) = e ik r u k (r), (3) u k (r + R l ) = u k (r). ψ(k, r + R l ) = e ik (r+r l ) u k (r + R l ). (4) By the periodicity of u, u k (r + R l )=u k (r),and from the previous equation: which is Eq. (). ψ(k, r + R l ) = e ik R le ik r u k (r) = e ik R l ψ(k, r), (5) ECE68 Spring 8

9 7. Problem. Find the reciprocal lattice vectors of the fcc lattice. As fundamental translation vectors use a = a (ˆx + ŷ), b = a (ŷ + ẑ), c = a (ẑ + ˆx). b. Find the volume of the primitive cell and the density of valence electrons in cm 3 for Si (a =.543 nm). c. Find the volume of the BZ. d. Using a computer program,list the first 5-to- G-vectors in order of increasing magnitude. Solution. a. Using the definition of reciprocal lattice vectors A, B,and C (see notes,page 36): A = π a (ˆx + ŷ ẑ), B = π a ( ˆx + ŷ + ẑ), C = π a (ˆx ŷ + ẑ). b. The volume of the primitive cell will be: a b c = a3 4. Since we have Si atoms in the primitive cell,each with 4 valence electrons,the electron density will be 3a 3 3 cm 3. c. The volume of the BZ will be: ( ) π 3 A B C = cm 3 a d. The G-vectors are of the form: G = l A + l B + l 3 C, where A, B,and C are the fundamental translation vectors in reciprocal space given above and l, l,and l 3 are integers. Therefore the first G-vectors are (in units of π/a): ECE68 Spring 9

10 the 8 vectors: the 6 vectors: the vectors: the 4 vectors: the 8 vectors:...etc. (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) of length 3; (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) of length 4; (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) of length 8; (3,, ) (3,, ) (3,, ) (3,, ) ( 3,, ) ( 3,, ) ( 3,, ) ( 3,, ) (, 3, ) (, 3, ) (, 3, ) (, 3,, ) (, 3, ) (, 3, ) (, 3, ) (, 3,, ) (,, 3) (,, 3) (,, 3) (,, 3) (,, 3) (,, 3) (,, 3) (,, 3) of length ; (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) (,, ) of length ; ECE68 Spring

11 On the next pages I list the FORTRAN program used to generate G-vectors up to a magnitude of 59 and the output list. ECE68 Spring

Analogous comments can be made for the regions where E < V, wherein the solution to the Schrödinger equation for constant V is

Analogous comments can be made for the regions where E < V, wherein the solution to the Schrödinger equation for constant V is 8. WKB Approximation The WKB approximation, named after Wentzel, Kramers, and Brillouin, is a method for obtaining an approximate solution to a time-independent one-dimensional differential equation, in

More information

Contents. 1 Solutions to Chapter 1 Exercises 3. 2 Solutions to Chapter 2 Exercises Solutions to Chapter 3 Exercises 57

Contents. 1 Solutions to Chapter 1 Exercises 3. 2 Solutions to Chapter 2 Exercises Solutions to Chapter 3 Exercises 57 Contents 1 Solutions to Chapter 1 Exercises 3 Solutions to Chapter Exercises 43 3 Solutions to Chapter 3 Exercises 57 4 Solutions to Chapter 4 Exercises 77 5 Solutions to Chapter 5 Exercises 89 6 Solutions

More information

Schrödinger equation for the nuclear potential

Schrödinger equation for the nuclear potential Schrödinger equation for the nuclear potential Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 24, 2011 NUCS 342 (Lecture 4) January 24, 2011 1 / 32 Outline 1 One-dimensional

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

Physics 505 Homework No. 3 Solutions S3-1

Physics 505 Homework No. 3 Solutions S3-1 Physics 55 Homework No. 3 s S3-1 1. More on Bloch Functions. We showed in lecture that the wave function for the time independent Schroedinger equation with a periodic potential could e written as a Bloch

More information

Model Problems 09 - Ch.14 - Engel/ Particle in box - all texts. Consider E-M wave 1st wave: E 0 e i(kx ωt) = E 0 [cos (kx - ωt) i sin (kx - ωt)]

Model Problems 09 - Ch.14 - Engel/ Particle in box - all texts. Consider E-M wave 1st wave: E 0 e i(kx ωt) = E 0 [cos (kx - ωt) i sin (kx - ωt)] VI 15 Model Problems 09 - Ch.14 - Engel/ Particle in box - all texts Consider E-M wave 1st wave: E 0 e i(kx ωt) = E 0 [cos (kx - ωt) i sin (kx - ωt)] magnitude: k = π/λ ω = πc/λ =πν ν = c/λ moves in space

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Appendix B: The Transfer Matrix Method

Appendix B: The Transfer Matrix Method Y D Chong (218) PH441: Quantum Mechanics III Appendix B: The Transfer Matrix Method The transfer matrix method is a numerical method for solving the 1D Schrödinger equation, and other similar equations

More information

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work.

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work. QMI PRELIM 013 All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work. Problem 1 L = r p, p = i h ( ) (a) Show that L z = i h y x ; (cyclic

More information

Chemistry 432 Problem Set 4 Spring 2018 Solutions

Chemistry 432 Problem Set 4 Spring 2018 Solutions Chemistry 4 Problem Set 4 Spring 18 Solutions 1. V I II III a b c A one-dimensional particle of mass m is confined to move under the influence of the potential x a V V (x) = a < x b b x c elsewhere and

More information

if trap wave like violin string tied down at end standing wave

if trap wave like violin string tied down at end standing wave VI 15 Model Problems 9.5 Atkins / Particle in box all texts onsider E-M wave 1st wave: E 0 e i(kx ωt) = E 0 [cos (kx - ωt) i sin (kx - ωt)] magnitude: k = π/λ ω = πc/λ =πν ν = c/λ moves in space and time

More information

Topics covered: Green s function, Lippman-Schwinger Eq., T-matrix, Born Series.

Topics covered: Green s function, Lippman-Schwinger Eq., T-matrix, Born Series. PHYS85 Quantum Mechanics II, Sprin 00 HOMEWORK ASSIGNMENT 0 Topics covered: Green s function, Lippman-Schwiner Eq., T-matrix, Born Series.. T-matrix approach to one-dimensional scatterin: In this problem,

More information

Scattering in One Dimension

Scattering in One Dimension Chapter 4 The door beckoned, so he pushed through it. Even the street was better lit. He didn t know how, he just knew the patron seated at the corner table was his man. Spectacles, unkept hair, old sweater,

More information

Calculation of Reflection and Transmission Coefficients in scuff-transmission

Calculation of Reflection and Transmission Coefficients in scuff-transmission Calculation of Reflection and Transmission Coefficients in scuff-transmission Homer Reid May 9, 2015 Contents 1 The Setup 2 2 Scattering coefficients from surface currents 4 2.1 Computation of b(q).........................

More information

Supporting Information

Supporting Information Supporting Information A: Calculation of radial distribution functions To get an effective propagator in one dimension, we first transform 1) into spherical coordinates: x a = ρ sin θ cos φ, y = ρ sin

More information

Model Problems update Particle in box - all texts plus Tunneling, barriers, free particle - Tinoco (pp455-63), House Ch 3

Model Problems update Particle in box - all texts plus Tunneling, barriers, free particle - Tinoco (pp455-63), House Ch 3 VI 15 Model Problems update 010 - Particle in box - all texts plus Tunneling, barriers, free particle - Tinoco (pp455-63), House Ch 3 Consider E-M wave 1st wave: E 0 e i(kx ωt) = E 0 [cos (kx - ωt) i sin

More information

ECE 659, PRACTICE EXAM II Actual Exam Friday, Feb.21, 2014, FNY B124, PM CLOSED BOOK. = H nm. Actual Exam will have five questions.

ECE 659, PRACTICE EXAM II Actual Exam Friday, Feb.21, 2014, FNY B124, PM CLOSED BOOK. = H nm. Actual Exam will have five questions. 1 ECE 659, PRACTICE EXAM II Actual Exam Friday, Feb.1, 014, FNY B14, 330-40PM CLOSED BOOK Useful relation h( k ) = H nm [ ] e +i k.( r m r n ) Actual Exam will have five questions. The following questions

More information

1 Schrödinger s Equation

1 Schrödinger s Equation Physical Electronics Quantum Mechanics Handout April 10, 003 1 Schrödinger s Equation One-Dimensional, Time-Dependent version Schrödinger s equation originates from conservation of energy. h Ψ m x + V

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics The Reciprocal Lattice M.P. Vaughan Overview Overview of the reciprocal lattice Periodic functions Reciprocal lattice vectors Bloch functions k-space Dispersion

More information

Løsningsforslag Eksamen 18. desember 2003 TFY4250 Atom- og molekylfysikk og FY2045 Innføring i kvantemekanikk

Løsningsforslag Eksamen 18. desember 2003 TFY4250 Atom- og molekylfysikk og FY2045 Innføring i kvantemekanikk Eksamen TFY450 18. desember 003 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 18. desember 003 TFY450 Atom- og molekylfysikk og FY045 Innføring i kvantemekanikk a. With Ĥ = ˆK + V = h + V (x),

More information

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008 Problem Set 1 Due: Friday, Aug 29th, 2008 Course page: http://www.physics.wustl.edu/~alford/p217/ Review of complex numbers. See appendix K of the textbook. 1. Consider complex numbers z = 1.5 + 0.5i and

More information

Physics 220. Exam #2. May 23 May 30, 2014

Physics 220. Exam #2. May 23 May 30, 2014 Physics 0 Exam # May 3 May 30, 014 Name Please read and follow these instructions carefully: Read all problems carefully before attempting to solve them. Your work must be legible, with clear organization,

More information

CHAPTER 8 The Quantum Theory of Motion

CHAPTER 8 The Quantum Theory of Motion I. Translational motion. CHAPTER 8 The Quantum Theory of Motion A. Single particle in free space, 1-D. 1. Schrodinger eqn H ψ = Eψ! 2 2m d 2 dx 2 ψ = Eψ ; no boundary conditions 2. General solution: ψ

More information

Electrons in a periodic potential

Electrons in a periodic potential Electrons in a periodic potential How electrons move in a periodic potential, like that of a semiconductor? A semiconductor, like Si, consists of a regular array of atoms arranged in a crystal lattice.

More information

MP464: Solid State Physics Problem Sheet

MP464: Solid State Physics Problem Sheet MP464: Solid State Physics Problem Sheet 1 Write down primitive lattice vectors for the -dimensional rectangular lattice, with sides a and b in the x and y-directions respectively, and a face-centred rectangular

More information

Introduction to Quantum Mechanics

Introduction to Quantum Mechanics Introduction to Quantum Mechanics INEL 5209 - Solid State Devices - Spring 2012 Manuel Toledo January 23, 2012 Manuel Toledo Intro to QM 1/ 26 Outline 1 Review Time dependent Schrödinger equation Momentum

More information

8.04 Spring 2013 April 09, 2013 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators. Uφ u = uφ u

8.04 Spring 2013 April 09, 2013 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators. Uφ u = uφ u Problem Set 7 Solutions 8.4 Spring 13 April 9, 13 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators (a) (3 points) Suppose φ u is an eigenfunction of U with eigenvalue u,

More information

Lecture 5. Potentials

Lecture 5. Potentials Lecture 5 Potentials 51 52 LECTURE 5. POTENTIALS 5.1 Potentials In this lecture we will solve Schrödinger s equation for some simple one-dimensional potentials, and discuss the physical interpretation

More information

Lecture 4 (19/10/2012)

Lecture 4 (19/10/2012) 4B5: Nanotechnology & Quantum Phenomena Michaelmas term 2012 Dr C Durkan cd229@eng.cam.ac.uk www.eng.cam.ac.uk/~cd229/ Lecture 4 (19/10/2012) Boundary-value problems in Quantum Mechanics - 2 Bound states

More information

Physics 218 Quantum Mechanics I Assignment 6

Physics 218 Quantum Mechanics I Assignment 6 Physics 218 Quantum Mechanics I Assignment 6 Logan A. Morrison February 17, 2016 Problem 1 A non-relativistic beam of particles each with mass, m, and energy, E, which you can treat as a plane wave, is

More information

Scattering in one dimension

Scattering in one dimension Scattering in one dimension Oleg Tchernyshyov Department of Physics and Astronomy, Johns Hopkins University I INTRODUCTION This writeup accompanies a numerical simulation of particle scattering in one

More information

P3317 HW from Lecture 15 and Recitation 8

P3317 HW from Lecture 15 and Recitation 8 P3317 HW from Lecture 15 and Recitation 8 Due Oct 23, 218 Problem 1. Variational Energy of Helium Here we will estimate the ground state energy of Helium. Helium has two electrons circling around a nucleus

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 8, February 3, 2006 & L "

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 8, February 3, 2006 & L Chem 352/452 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 26 Christopher J. Cramer Lecture 8, February 3, 26 Solved Homework (Homework for grading is also due today) Evaluate

More information

221B Lecture Notes Notes on Spherical Bessel Functions

221B Lecture Notes Notes on Spherical Bessel Functions Definitions B Lecture Notes Notes on Spherical Bessel Functions We would like to solve the free Schrödinger equation [ h d l(l + ) r R(r) = h k R(r). () m r dr r m R(r) is the radial wave function ψ( x)

More information

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11 MATH35 - QUANTUM MECHANICS - SOLUTION SHEET. The Hamiltonian for a particle of mass m moving in three dimensions under the influence of a three-dimensional harmonic oscillator potential is Ĥ = h m + mω

More information

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension In these notes we examine Bloch s theorem and band structure in problems with periodic potentials, as a part of our survey

More information

Quantum Mechanical Tunneling

Quantum Mechanical Tunneling Chemistry 460 all 07 Dr Jean M Standard September 8, 07 Quantum Mechanical Tunneling Definition of Tunneling Tunneling is defined to be penetration of the wavefunction into a classically forbidden region

More information

Variational Method for Calculating Electronic Structure in Periodic Lattices

Variational Method for Calculating Electronic Structure in Periodic Lattices Variational Method for Calculating Electronic Structure in Periodic Lattices Zhenbin Wang, PID: A53083720 December 5, 2017 Abstract Walter Kohn was awarded the Buckley Prize in 1961 for his seminal contributions

More information

PH575 Spring Lecture #13 Free electron theory: Sutton Ch. 7 pp 132 -> 144; Kittel Ch. 6. 3/2 " # % & D( E) = V E 1/2. 2π 2.

PH575 Spring Lecture #13 Free electron theory: Sutton Ch. 7 pp 132 -> 144; Kittel Ch. 6. 3/2  # % & D( E) = V E 1/2. 2π 2. PH575 Spring 2014 Lecture #13 Free electron theory: Sutton Ch. 7 pp 132 -> 144; Kittel Ch. 6. E( k) = 2 k 2 D( E) = V 2π 2 " # $ 2 3/2 % & ' E 1/2 Assumption: electrons metal do not interact with each

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

QM1 - Tutorial 5 Scattering

QM1 - Tutorial 5 Scattering QM1 - Tutorial 5 Scattering Yaakov Yudkin 3 November 017 Contents 1 Potential Barrier 1 1.1 Set Up of the Problem and Solution...................................... 1 1. How to Solve: Split Up Space..........................................

More information

Quantum Mechanics: A Paradigms Approach David H. McIntyre. 27 July Corrections to the 1 st printing

Quantum Mechanics: A Paradigms Approach David H. McIntyre. 27 July Corrections to the 1 st printing Quantum Mechanics: A Paradigms Approach David H. McIntyre 7 July 6 Corrections to the st printing page xxi, last paragraph before "The End", nd line: Change "become" to "became". page, first line after

More information

Applied Nuclear Physics Homework #2

Applied Nuclear Physics Homework #2 22.101 Applied Nuclear Physics Homework #2 Author: Lulu Li Professor: Bilge Yildiz, Paola Cappellaro, Ju Li, Sidney Yip Oct. 7, 2011 2 1. Answers: Refer to p16-17 on Krane, or 2.35 in Griffith. (a) x

More information

11 Quantum theory: introduction and principles

11 Quantum theory: introduction and principles Part 2: Structure Quantum theory: introduction and principles Solutions to exercises E.b E.2b E.3b E.4b E.5b E.6b Discussion questions A successful theory of black-body radiation must be able to explain

More information

1. The infinite square well

1. The infinite square well PHY3011 Wells and Barriers page 1 of 17 1. The infinite square well First we will revise the infinite square well which you did at level 2. Instead of the well extending from 0 to a, in all of the following

More information

Waves and the Schroedinger Equation

Waves and the Schroedinger Equation Waves and the Schroedinger Equation 5 april 010 1 The Wave Equation We have seen from previous discussions that the wave-particle duality of matter requires we describe entities through some wave-form

More information

An α decay is a nuclear transformation in which a nucleus reduces its energy by emitting an α-particle. Z 2 X N He 2, A X X + α.

An α decay is a nuclear transformation in which a nucleus reduces its energy by emitting an α-particle. Z 2 X N He 2, A X X + α. Chapter 14 α Decay Note to students and other readers: This Chapter is intended to supplement Chapter 8 of Krane s excellent book, Introductory Nuclear Physics. Kindly read the relevant sections in Krane

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x ] =

More information

Foundations of quantum mechanics

Foundations of quantum mechanics CHAPTER 4 Foundations of quantum mechanics de Broglie s Ansatz, the basis of Schrödinger s equation, operators, complex numbers and functions, momentum, free particle wavefunctions, expectation values

More information

QUANTUM MECHANICS A (SPA 5319) The Finite Square Well

QUANTUM MECHANICS A (SPA 5319) The Finite Square Well QUANTUM MECHANICS A (SPA 5319) The Finite Square Well We have already solved the problem of the infinite square well. Let us now solve the more realistic finite square well problem. Consider the potential

More information

8.04 Quantum Physics Lecture XV One-dimensional potentials: potential step Figure I: Potential step of height V 0. The particle is incident from the left with energy E. We analyze a time independent situation

More information

QM I Exercise Sheet 2

QM I Exercise Sheet 2 QM I Exercise Sheet 2 D. Müller, Y. Ulrich http://www.physik.uzh.ch/de/lehre/phy33/hs207.html HS 7 Prof. A. Signer Issued: 3.0.207 Due: 0./2.0.207 Exercise : Finite Square Well (5 Pts.) Consider a particle

More information

1 One-dimensional lattice

1 One-dimensional lattice 1 One-dimensional lattice 1.1 Gap formation in the nearly free electron model Periodic potential Bloch function x = n e iπn/ax 1 n= ψ k x = e ika u k x u k x = c nk e iπn/ax 3 n= Schrödinger equation [

More information

Electrons in Crystals. Chris J. Pickard

Electrons in Crystals. Chris J. Pickard Electrons in Crystals Chris J. Pickard Electrons in Crystals The electrons in a crystal experience a potential with the periodicity of the Bravais lattice: U(r + R) = U(r) The scale of the periodicity

More information

Electromagnetism Answers to Problem Set 9 Spring 2006

Electromagnetism Answers to Problem Set 9 Spring 2006 Electromagnetism 70006 Answers to Problem et 9 pring 006. Jackson Prob. 5.: Reformulate the Biot-avart law in terms of the solid angle subtended at the point of observation by the current-carrying circuit.

More information

Comparison of Finite Differences and WKB Method for Approximating Tunneling Times of the One Dimensional Schrödinger Equation Student: Yael Elmatad

Comparison of Finite Differences and WKB Method for Approximating Tunneling Times of the One Dimensional Schrödinger Equation Student: Yael Elmatad Comparison of Finite Differences and WKB Method for Approximating Tunneling Times of the One Dimensional Schrödinger Equation Student: Yael Elmatad Overview The goal of this research was to examine the

More information

Lecture 3. Energy bands in solids. 3.1 Bloch theorem

Lecture 3. Energy bands in solids. 3.1 Bloch theorem Lecture 3 Energy bands in solids In this lecture we will go beyond the free electron gas approximation by considering that in a real material electrons live inside the lattice formed by the ions (Fig.

More information

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3 Review of Fundamental Equations Supplementary notes on Section. and.3 Introduction of the velocity potential: irrotational motion: ω = u = identity in the vector analysis: ϕ u = ϕ Basic conservation principles:

More information

Model Problems update Particle in box - all texts plus Tunneling, barriers, free particle Atkins (p ), House Ch 3

Model Problems update Particle in box - all texts plus Tunneling, barriers, free particle Atkins (p ), House Ch 3 VI 15 Model Problems update 01 - Particle in box - all texts plus Tunneling, barriers, free particle Atkins (p.33-337), ouse h 3 onsider E-M wave first (complex function, learn e ix form) E 0 e i(kx ωt)

More information

Nearly Free Electron Gas model - I

Nearly Free Electron Gas model - I Nearly Free Electron Gas model - I Contents 1 Free electron gas model summary 1 2 Electron effective mass 3 2.1 FEG model for sodium...................... 4 3 Nearly free electron model 5 3.1 Primitive

More information

PHYS 771, Quantum Mechanics, Final Exam, Fall 2011 Instructor: Dr. A. G. Petukhov. Solutions

PHYS 771, Quantum Mechanics, Final Exam, Fall 2011 Instructor: Dr. A. G. Petukhov. Solutions PHYS 771, Quantum Mechanics, Final Exam, Fall 11 Instructor: Dr. A. G. Petukhov Solutions 1. Apply WKB approximation to a particle moving in a potential 1 V x) = mω x x > otherwise Find eigenfunctions,

More information

Electrons in periodic potential

Electrons in periodic potential Chapter 9 Electrons in periodic potential The computation of electronic states in a solid is a nontrivial problem. A great simplification can be achieved if the solid is a crystal, i.e. if it can be described

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

Physics 505 Homework No. 12 Solutions S12-1

Physics 505 Homework No. 12 Solutions S12-1 Physics 55 Homework No. 1 s S1-1 1. 1D ionization. This problem is from the January, 7, prelims. Consider a nonrelativistic mass m particle with coordinate x in one dimension that is subject to an attractive

More information

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree

We do not derive F = ma; we conclude F = ma by induction from. a large series of observations. We use it as long as its predictions agree THE SCHRÖDINGER EQUATION (A REVIEW) We do not derive F = ma; we conclude F = ma by induction from a large series of observations. We use it as long as its predictions agree with our experiments. As with

More information

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators Basic Formulas 17-1-1 Division of Material Science Hans Weer The de Broglie wave length λ = h p The Schrödinger equation Hψr,t = i h t ψr,t Stationary states Hψr,t = Eψr,t Collection of formulae Quantum

More information

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008 Home Problem Set #1 Due : September 10 (Wed), 008 1. Answer the following questions related to the wave-particle duality. (a) When an electron (mass m) is moving with the velocity of υ, what is the wave

More information

Quantum Mechanical Tunneling

Quantum Mechanical Tunneling The square barrier: Quantum Mechanical Tunneling Behaviour of a classical ball rolling towards a hill (potential barrier): If the ball has energy E less than the potential energy barrier (U=mgy), then

More information

7.4. Why we have two different types of materials: conductors and insulators?

7.4. Why we have two different types of materials: conductors and insulators? Phys463.nb 55 7.3.5. Folding, Reduced Brillouin zone and extended Brillouin zone for free particles without lattices In the presence of a lattice, we can also unfold the extended Brillouin zone to get

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Prof. Boris Altshuler April, 20 Lecture 2. Scattering Theory Reviewed Remember what we have covered so far for scattering theory. We separated the Hamiltonian similar to the way in

More information

WKB Approximation in 3D

WKB Approximation in 3D 1 WKB Approximation in 3D We see solutions ψr of the stationary Schrodinger equations for a spinless particle of energy E: 2 2m 2 ψ + V rψ = Eψ At rst, we just rewrite the Schrodinger equation in the following

More information

Electronic Structure of Crystalline Solids

Electronic Structure of Crystalline Solids Electronic Structure of Crystalline Solids Computing the electronic structure of electrons in solid materials (insulators, conductors, semiconductors, superconductors) is in general a very difficult problem

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

1 What s the big deal?

1 What s the big deal? This note is written for a talk given at the graduate student seminar, titled how to solve quantum mechanics with x 4 potential. What s the big deal? The subject of interest is quantum mechanics in an

More information

r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4

r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4 Variational calculations for Hydrogen and Helium Recall the variational principle See Chapter 16 of the textbook The variational theorem states that for a Hermitian operator H with the smallest eigenvalue

More information

Physics 215b: Problem Set 5

Physics 215b: Problem Set 5 Physics 25b: Problem Set 5 Prof. Matthew Fisher Solutions prepared by: James Sully April 3, 203 Please let me know if you encounter any typos in the solutions. Problem 20 Let us write the wavefunction

More information

Physics 505 Homework No. 1 Solutions S1-1

Physics 505 Homework No. 1 Solutions S1-1 Physics 505 Homework No s S- Some Preliminaries Assume A and B are Hermitian operators (a) Show that (AB) B A dx φ ABψ dx (A φ) Bψ dx (B (A φ)) ψ dx (B A φ) ψ End (b) Show that AB [A, B]/2+{A, B}/2 where

More information

Lecture 4: Basic elements of band theory

Lecture 4: Basic elements of band theory Phys 769 Selected Topics in Condensed Matter Physics Summer 010 Lecture 4: Basic elements of band theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 Introduction Most matter, in particular most insulating

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 19: Motion of Electronic Wavepackets Outline Review of Last Time Detailed Look at the Translation Operator Electronic Wavepackets Effective Mass Theorem

More information

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 505 MIDTERM EXAMINATION. October 25, 2012, 11:00am 12:20pm, Jadwin Hall A06 SOLUTIONS

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 505 MIDTERM EXAMINATION. October 25, 2012, 11:00am 12:20pm, Jadwin Hall A06 SOLUTIONS PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 505 MIDTERM EXAMINATION October 25, 2012, 11:00am 12:20pm, Jadwin Hall A06 SOLUTIONS This exam contains two problems. Work both problems. They count equally

More information

Quantum Mechanics in One Dimension. Solutions of Selected Problems

Quantum Mechanics in One Dimension. Solutions of Selected Problems Chapter 6 Quantum Mechanics in One Dimension. Solutions of Selected Problems 6.1 Problem 6.13 (In the text book) A proton is confined to moving in a one-dimensional box of width.2 nm. (a) Find the lowest

More information

Christophe De Beule. Graphical interpretation of the Schrödinger equation

Christophe De Beule. Graphical interpretation of the Schrödinger equation Christophe De Beule Graphical interpretation of the Schrödinger equation Outline Schrödinger equation Relation between the kinetic energy and wave function curvature. Classically allowed and forbidden

More information

Lecture 11 March 1, 2010

Lecture 11 March 1, 2010 Physics 54, Spring 21 Lecture 11 March 1, 21 Last time we mentioned scattering removes power from beam. Today we treat this more generally, to find the optical theorem: the relationship of the index of

More information

Chapter 6. Q. Suppose we put a delta-function bump in the center of the infinite square well: H = αδ(x a/2) (1)

Chapter 6. Q. Suppose we put a delta-function bump in the center of the infinite square well: H = αδ(x a/2) (1) Tor Kjellsson Stockholm University Chapter 6 6. Q. Suppose we put a delta-function bump in the center of the infinite square well: where α is a constant. H = αδ(x a/ ( a Find the first-order correction

More information

Chemistry 532 Problem Set 7 Spring 2012 Solutions

Chemistry 532 Problem Set 7 Spring 2012 Solutions Chemistry 53 Problem Set 7 Spring 01 Solutions 1. The study of the time-independent Schrödinger equation for a one-dimensional particle subject to the potential function leads to the differential equation

More information

Modern Physics for Scientists and Engineers Instructors Solutions. Joseph N. Burchett

Modern Physics for Scientists and Engineers Instructors Solutions. Joseph N. Burchett Modern Physics for Scientists and Engineers Instructors Solutions Joseph N. Burchett January 1, 011 Introduction - Solutions 1. We are given a spherical distribution of charge and asked to calculate the

More information

Lecture 6. Tight-binding model

Lecture 6. Tight-binding model Lecture 6 Tight-binding model In Lecture 3 we discussed the Krönig-Penny model and we have seen that, depending on the strength of the potential barrier inside the unit cell, the electrons can behave like

More information

1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2

1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2 15 Harmonic Oscillator 1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2 2mdx + 1 2 2 kx2 (15.1) where k is the force

More information

= ( Prove the nonexistence of electron in the nucleus on the basis of uncertainty principle.

= ( Prove the nonexistence of electron in the nucleus on the basis of uncertainty principle. Worked out examples (Quantum mechanics). A microscope, using photons, is employed to locate an electron in an atom within a distance of. Å. What is the uncertainty in the momentum of the electron located

More information

Wave diffraction and the reciprocal lattice

Wave diffraction and the reciprocal lattice Wave diffraction and the reciprocal lattice Dept of Phys M.C. Chang Braggs theory of diffraction Reciprocal lattice von Laue s theory of diffraction Braggs view of the diffraction (1912, father and son)

More information

Double Well Potential: Perturbation Theory, Tunneling, WKB (beyond instantons)

Double Well Potential: Perturbation Theory, Tunneling, WKB (beyond instantons) Potential: Perturbation Theory, Tunneling, WKB (beyond instantons) May 17, 2009 Outline One-dimensional Anharmonic Oscillator Perturbation Theory of Non-linealization Method Hydrogen in Magnetic Field

More information

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum Chapter 2 The Hydrogen atom In the previous chapter we gave a quick overview of the Bohr model, which is only really valid in the semiclassical limit. cf. section 1.7.) We now begin our task in earnest

More information

Resonant Tunneling in Quantum Field Theory

Resonant Tunneling in Quantum Field Theory Resonant Tunneling in Quantum Field Theory Dan Wohns Cornell University work in progress with S.-H. Henry Tye September 18, 2009 Dan Wohns Resonant Tunneling in Quantum Field Theory 1/36 Resonant Tunneling

More information

4E : The Quantum Universe. Lecture 19, May 3 Vivek Sharma

4E : The Quantum Universe. Lecture 19, May 3 Vivek Sharma 4E : The Quantum Universe Lecture 19, May 3 Vivek Sharma modphys@hepmail.ucsd.edu Ceparated in Coppertino Oxide layer Wire #1 Wire # Q: Cu wires are seperated by insulating Oxide layer. Modeling the Oxide

More information

Section 4: Harmonic Oscillator and Free Particles Solutions

Section 4: Harmonic Oscillator and Free Particles Solutions Physics 143a: Quantum Mechanics I Section 4: Harmonic Oscillator and Free Particles Solutions Spring 015, Harvard Here is a summary of the most important points from the recent lectures, relevant for either

More information

XI. INTRODUCTION TO QUANTUM MECHANICS. C. Cohen-Tannoudji et al., Quantum Mechanics I, Wiley. Outline: Electromagnetic waves and photons

XI. INTRODUCTION TO QUANTUM MECHANICS. C. Cohen-Tannoudji et al., Quantum Mechanics I, Wiley. Outline: Electromagnetic waves and photons XI. INTRODUCTION TO QUANTUM MECHANICS C. Cohen-Tannoudji et al., Quantum Mechanics I, Wiley. Outline: Electromagnetic waves and photons Material particles and matter waves Quantum description of a particle:

More information

Physics 443, Solutions to PS 8

Physics 443, Solutions to PS 8 Physics 443, Solutions to PS 8.Griffiths 5.7. For notational simplicity, we define ψ. = ψa, ψ 2. = ψb, ψ 3. = ψ c. Then we can write: Distinguishable ψ({x i }) = Bosons ψ({x i }) = Fermions ψ({x i }) =

More information

Let b be the distance of closest approach between the trajectory of the center of the moving ball and the center of the stationary one.

Let b be the distance of closest approach between the trajectory of the center of the moving ball and the center of the stationary one. Scattering Classical model As a model for the classical approach to collision, consider the case of a billiard ball colliding with a stationary one. The scattering direction quite clearly depends rather

More information

221B Lecture Notes Scattering Theory II

221B Lecture Notes Scattering Theory II 22B Lecture Notes Scattering Theory II Born Approximation Lippmann Schwinger equation ψ = φ + V ψ, () E H 0 + iɛ is an exact equation for the scattering problem, but it still is an equation to be solved

More information

Nearly Free Electron Gas model - II

Nearly Free Electron Gas model - II Nearly Free Electron Gas model - II Contents 1 Lattice scattering 1 1.1 Bloch waves............................ 2 1.2 Band gap formation........................ 3 1.3 Electron group velocity and effective

More information