Introduction to Quantum Mechanics

Size: px
Start display at page:

Download "Introduction to Quantum Mechanics"

Transcription

1 Introduction to Quantum Mechanics INEL Solid State Devices - Spring 2012 Manuel Toledo January 23, 2012 Manuel Toledo Intro to QM 1/ 26

2 Outline 1 Review Time dependent Schrödinger equation Momentum operator Time-independent form of SE Free Particle 2 Electron Meeting a Potential Barrier 3 Tunneling 4 The Quantum Well Manuel Toledo Intro to QM 2/ 26

3 Time dependent Schrödinger equation Schrödinger equation Time dependent Schrödinger equation (SE): i Ψ t = 2m 2 Ψ+U(x,y,z)Ψ Manuel Toledo Intro to QM 3/ 26

4 Momentum operator Momentum operator r can be x, y or z. i r Expectation value of the momentum in the x direction: Energy operator: < p x >= Ψ V i i t Ψ x dv Manuel Toledo Intro to QM 4/ 26

5 Time-independent form of SE Time-independent form of SE 2 ψ + 2m (E U(x,y,z))ψ = 0 2 Manuel Toledo Intro to QM 5/ 26

6 Free Particle Free Particle Consider a particle of mass m in a 1D space that is isolated - infinitely far from other particles has total particle energy is E experiences no forces ( F = U = 0 ) and thus has constant potential energy (chosen to be 0). From the POV of QM to characterize the particle one must solve the time-independent Schrödinger equation d 2 ψ dx 2 + 2mE 2 ψ = 0 (1) Manuel Toledo Intro to QM 6/ 26

7 Free Particle For free particle, Ψ(x,t) = Ae i(kx E t) +Be i(kx+e t) The free particle wave-function is similar to a traveling wave. Manuel Toledo Intro to QM 7/ 26

8 Free Particle For free particle, Ψ(x,t) = Ae i(kx E t) +Be i(kx+e t) The free particle wave-function is similar to a traveling wave. If the particle moves in the x direction, B = 0. If it moves in the x direction, A = 0. Since, for a particle moving in the +x direction, ψ ψ = A A = constant for all values of x, one has equal probability of finding the particle anywhere. Manuel Toledo Intro to QM 7/ 26

9 Free Particle Momentum The particle s momentum is < p x > = = k ψ i dψ dx dx ψ ψdx = k = h λ = 2mE in agreement with classical mechanics. Manuel Toledo Intro to QM 8/ 26

10 Free Particle Wave-packet Example illustrating wafe-function superposition. (Taken from Craig Casey, 1999). Manuel Toledo Intro to QM 9/ 26

11 Potential barrier Consider a 1D potential with the shape shown below. U e - U=V 2 U=0 An electron approaching a potential barrier. We must now solve two equations. For x 0 the electron is free (U = 0), and the solution is the one found for a free particle: ψ = Ae ikx +Be ikx Manuel Toledo Intro to QM 10/ 26

12 For x > 0, U = V 2 and the SE becomes 2 ψ x 2 + 2m 2 (E V 2)ψ = 0 ψ = Ce ik 2x +De ik 2x where k 2 = 2m(E V 2) Manuel Toledo Intro to QM 11/ 26

13 and At x = 0, ψ must be continuous ψ(0 ) = ψ(0+) A+B = C +D Now consider a particle incident from the left. For this case, we can set D = 0 and get that A+B = C Because ψ x is also required to be continuous, ika ikb = ik 2 C or k(a B) = k 2 C, which can be expressed as C = k k 2 (A B). Manuel Toledo Intro to QM 12/ 26

14 Substituting in the previous expression yields A+B = k (A B) k ) 2 ) A (1 kk2 = B (1+ kk2 A k k 2 = B k +k 2 k 2 k 2 B A = k k 2 k +k 2 and C A = 2k k +k 2 Manuel Toledo Intro to QM 13/ 26

15 Observations: If E > V 2, both k and k 2 are real; solutions are oscillatory; B A = k k2 k+k 2 is finite! Thus, there is a finite probability that the barrier will reflect back the electron, causing it to turn back to the left. If E < V 2, k 2 = 2m(E V2) is imaginary; the wavefunction declines exponentially for x > 0. C A = 2k k+k 2 > 0 so there is a non-zero probability for the electron to penetrate the barrier! Manuel Toledo Intro to QM 14/ 26

16 Tunneling Consider an electron approaching the potential barrier of finite width: U e - U=V 2 U=0 W An electron approaching a finite-width potential barrier. Manuel Toledo Intro to QM 15/ 26

17 for x < 0 and for x > W ψ = free electron. for 0 x W, ψ = ψ 2 for a potential barrier. Thus, A + e ikx +A e ikx x < 0 ψ(x) = B + e ik2x +B e ik 2x 0 x W C + e ikx +C e ikx x > W where k = 2mE and k 2 = 2m(E V 2 ). Manuel Toledo Intro to QM 16/ 26

18 If an electron approaches the barrier from the left, C = 0. Rather than proceeding to match the wave-functions and its derivative at x = 0 and x = W to determine the relation between coefficients explicitly, we will just express the result in terms of the transmission coefficient, defined as T = C + 2 A + Manuel Toledo Intro to QM 17/ 26

19 For E > V 2, T = 1+ 1 V 2 2 4E(E V 2 ) S2 where S = sin(k 2 W). Notice that this equals unity for any barrier width for which k 2 W = nπ, where n is any integer. For E < V 2, T = where S = sinh(ik 2 W) V 2 2 4E(V 2 E) S2 h Manuel Toledo Intro to QM 18/ 26

20 ψ for the tunneling example. Observe that an electron with E < V 2 have a finite probability of penetrating the barrier. W Manuel Toledo Intro to QM 19/ 26

21 Quantum Well U V W x A one-dimensional quantum well. Manuel Toledo Intro to QM 20/ 26

22 Trial wave-functions: A 1 e αx +B 1 e αx x < 0 ψ(x) = A 0 sin(kx)+b 0 cos(kx) 0 x W A 2 e αx +B 2 e αx x > W where and 2m(V1 E) α = 2mE k = Manuel Toledo Intro to QM 21/ 26

23 Observe that if E > V 1, α is imaginary and the corresponding exponential terms in the wave-function are oscillatory. if E < V 1, ψ should decay as it penetrates the barrier, and vanish far from it. This behavior requires that B 1 = A 2 = 0 The resulting wave-function is, A 1 e αx x < 0 ψ(x) = A 0 sin(kx)+b 0 cos(kx) 0 x W B 2 e αx x > W Manuel Toledo Intro to QM 22/ 26

24 Continuity boundary conditions at x = 0 and x = W: ψ(0 ) = ψ(0+) ψ(w ) = ψ(w+) Solution is: dψ dψ (0 ) = dx dx (0+) dψ dψ (W ) = dx dx (W+) A 1 = B 0 B 0 = k α A 0 A 0 sin(kw)+b 0 cos(kw) = B 2 e αw k(a 0 cos(kw) B 0 sin(kw)) = αb 2 e αw Manuel Toledo Intro to QM 23/ 26

25 Solving B 2, substituting and rearranging: A 0 (kcos(kw) +αsin(kw)) B 0 (ksin(kw) αcos(kw)) = 0 After eliminating A 0 and B 0, tan(kw) = 2kα k 2 α 2 In terms of a normalized energy ξ = E/V 1, and using kw = 2mE = W 2mV 1 E V 1 = Wa ξ where a = 2mV1, and that 2kα k 2 α 2 = 2 ξ(1 ξ) 2ξ 1 Manuel Toledo Intro to QM 24/ 26

26 The solution becomes Observe that: tan(wa ξ) = 2 ξ(1 ξ) 2ξ 1 The tangent of θ increases from 0 at θ = 0 to + at θ = π/2; it then jumps discontinuously to and increases again to 0 at θ = π. This behavior repeats with a period π. Manuel Toledo Intro to QM 25/ 26

27 Comparison of the two sides of the result obtained for the quantum well, for Wa = 4π. The two expressions intercept at four energy levels, for which the particle is confined in the well. Manuel Toledo Intro to QM 26/ 26

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall. Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Summary of Chapter 38 In Quantum Mechanics particles are represented by wave functions Ψ. The absolute square of the wave function Ψ 2

More information

Lecture 5. Potentials

Lecture 5. Potentials Lecture 5 Potentials 51 52 LECTURE 5. POTENTIALS 5.1 Potentials In this lecture we will solve Schrödinger s equation for some simple one-dimensional potentials, and discuss the physical interpretation

More information

Quantum Mechanical Tunneling

Quantum Mechanical Tunneling The square barrier: Quantum Mechanical Tunneling Behaviour of a classical ball rolling towards a hill (potential barrier): If the ball has energy E less than the potential energy barrier (U=mgy), then

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 Not all chemicals are bad. Without chemicals such as hydrogen and oxygen, for example, there would be no way to make water, a vital ingredient in beer. -Dave Barry David J. Starling Penn State Hazleton

More information

Analogous comments can be made for the regions where E < V, wherein the solution to the Schrödinger equation for constant V is

Analogous comments can be made for the regions where E < V, wherein the solution to the Schrödinger equation for constant V is 8. WKB Approximation The WKB approximation, named after Wentzel, Kramers, and Brillouin, is a method for obtaining an approximate solution to a time-independent one-dimensional differential equation, in

More information

Quantum Mechanics. The Schrödinger equation. Erwin Schrödinger

Quantum Mechanics. The Schrödinger equation. Erwin Schrödinger Quantum Mechanics The Schrödinger equation Erwin Schrödinger The Nobel Prize in Physics 1933 "for the discovery of new productive forms of atomic theory" The Schrödinger Equation in One Dimension Time-Independent

More information

Physics 218 Quantum Mechanics I Assignment 6

Physics 218 Quantum Mechanics I Assignment 6 Physics 218 Quantum Mechanics I Assignment 6 Logan A. Morrison February 17, 2016 Problem 1 A non-relativistic beam of particles each with mass, m, and energy, E, which you can treat as a plane wave, is

More information

Final Exam: Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall.

Final Exam: Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Final Exam: Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Chapter 38 Quantum Mechanics Units of Chapter 38 38-1 Quantum Mechanics A New Theory 37-2 The Wave Function and Its Interpretation; the

More information

QM1 - Tutorial 5 Scattering

QM1 - Tutorial 5 Scattering QM1 - Tutorial 5 Scattering Yaakov Yudkin 3 November 017 Contents 1 Potential Barrier 1 1.1 Set Up of the Problem and Solution...................................... 1 1. How to Solve: Split Up Space..........................................

More information

Schrödinger equation for the nuclear potential

Schrödinger equation for the nuclear potential Schrödinger equation for the nuclear potential Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 24, 2011 NUCS 342 (Lecture 4) January 24, 2011 1 / 32 Outline 1 One-dimensional

More information

QM I Exercise Sheet 2

QM I Exercise Sheet 2 QM I Exercise Sheet 2 D. Müller, Y. Ulrich http://www.physik.uzh.ch/de/lehre/phy33/hs207.html HS 7 Prof. A. Signer Issued: 3.0.207 Due: 0./2.0.207 Exercise : Finite Square Well (5 Pts.) Consider a particle

More information

PHYS 3313 Section 001 Lecture #20

PHYS 3313 Section 001 Lecture #20 PHYS 3313 Section 001 ecture #0 Monday, April 10, 017 Dr. Amir Farbin Infinite Square-well Potential Finite Square Well Potential Penetration Depth Degeneracy Simple Harmonic Oscillator 1 Announcements

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

Quantum Mechanical Tunneling

Quantum Mechanical Tunneling Chemistry 460 all 07 Dr Jean M Standard September 8, 07 Quantum Mechanical Tunneling Definition of Tunneling Tunneling is defined to be penetration of the wavefunction into a classically forbidden region

More information

Probability and Normalization

Probability and Normalization Probability and Normalization Although we don t know exactly where the particle might be inside the box, we know that it has to be in the box. This means that, ψ ( x) dx = 1 (normalization condition) L

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 All the fifty years of conscious brooding have brought me no closer to answer the question, What are light quanta? Of course today every rascal thinks he knows the answer, but he is deluding himself. -Albert

More information

4E : The Quantum Universe. Lecture 19, May 3 Vivek Sharma

4E : The Quantum Universe. Lecture 19, May 3 Vivek Sharma 4E : The Quantum Universe Lecture 19, May 3 Vivek Sharma modphys@hepmail.ucsd.edu Ceparated in Coppertino Oxide layer Wire #1 Wire # Q: Cu wires are seperated by insulating Oxide layer. Modeling the Oxide

More information

Appendix B: The Transfer Matrix Method

Appendix B: The Transfer Matrix Method Y D Chong (218) PH441: Quantum Mechanics III Appendix B: The Transfer Matrix Method The transfer matrix method is a numerical method for solving the 1D Schrödinger equation, and other similar equations

More information

Scattering in one dimension

Scattering in one dimension Scattering in one dimension Oleg Tchernyshyov Department of Physics and Astronomy, Johns Hopkins University I INTRODUCTION This writeup accompanies a numerical simulation of particle scattering in one

More information

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work.

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work. QMI PRELIM 013 All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work. Problem 1 L = r p, p = i h ( ) (a) Show that L z = i h y x ; (cyclic

More information

Lecture 4: Solution of Schrodinger Equation

Lecture 4: Solution of Schrodinger Equation NCN www.nanohub.org EE 66: Solid State Devices Lecture 4: Solution of Schrodinger Equation Muhammad Ashraful Alam alam@purdue.edu Alam ECE 66 S9 1 Outline 1) Time independent independent Schrodinger Equation

More information

Quiz 6: Modern Physics Solution

Quiz 6: Modern Physics Solution Quiz 6: Modern Physics Solution Name: Attempt all questions. Some universal constants: Roll no: h = Planck s constant = 6.63 10 34 Js = Reduced Planck s constant = 1.06 10 34 Js 1eV = 1.6 10 19 J d 2 TDSE

More information

Physics 505 Homework No. 4 Solutions S4-1

Physics 505 Homework No. 4 Solutions S4-1 Physics 505 Homework No 4 s S4- From Prelims, January 2, 2007 Electron with effective mass An electron is moving in one dimension in a potential V (x) = 0 for x > 0 and V (x) = V 0 > 0 for x < 0 The region

More information

1. The infinite square well

1. The infinite square well PHY3011 Wells and Barriers page 1 of 17 1. The infinite square well First we will revise the infinite square well which you did at level 2. Instead of the well extending from 0 to a, in all of the following

More information

Quantum Theory. Thornton and Rex, Ch. 6

Quantum Theory. Thornton and Rex, Ch. 6 Quantum Theory Thornton and Rex, Ch. 6 Matter can behave like waves. 1) What is the wave equation? 2) How do we interpret the wave function y(x,t)? Light Waves Plane wave: y(x,t) = A cos(kx-wt) wave (w,k)

More information

Ammonia molecule, from Chapter 9 of the Feynman Lectures, Vol 3. Example of a 2-state system, with a small energy difference between the symmetric

Ammonia molecule, from Chapter 9 of the Feynman Lectures, Vol 3. Example of a 2-state system, with a small energy difference between the symmetric Ammonia molecule, from Chapter 9 of the Feynman Lectures, Vol 3. Eample of a -state system, with a small energy difference between the symmetric and antisymmetric combinations of states and. This energy

More information

ECE606: Solid State Devices Lecture 3

ECE606: Solid State Devices Lecture 3 ECE66: Solid State Devices Lecture 3 Gerhard Klimeck gekco@purdue.edu Motivation Periodic Structure E Time-independent Schrodinger Equation ħ d Ψ dψ + U ( x) Ψ = iħ m dx dt Assume Ψ( x, t) = ψ( x) e iet/

More information

Topic 4: The Finite Potential Well

Topic 4: The Finite Potential Well Topic 4: The Finite Potential Well Outline: The quantum well The finite potential well (FPW) Even parity solutions of the TISE in the FPW Odd parity solutions of the TISE in the FPW Tunnelling into classically

More information

The Schrödinger Wave Equation

The Schrödinger Wave Equation Chapter 6 The Schrödinger Wave Equation So far, we have made a lot of progress concerning the properties of, and interpretation of the wave function, but as yet we have had very little to say about how

More information

Notes on Quantum Mechanics

Notes on Quantum Mechanics Notes on Quantum Mechanics Kevin S. Huang Contents 1 The Wave Function 1 1.1 The Schrodinger Equation............................ 1 1. Probability.................................... 1.3 Normalization...................................

More information

PHYS 3220 PhET Quantum Tunneling Tutorial

PHYS 3220 PhET Quantum Tunneling Tutorial PHYS 3220 PhET Quantum Tunneling Tutorial Part I: Mathematical Introduction Recall that the Schrödinger Equation is i Ψ(x,t) t = ĤΨ(x, t). Usually this is solved by first assuming that Ψ(x, t) = ψ(x)φ(t),

More information

Chapter 17: Resonant transmission and Ramsauer Townsend. 1 Resonant transmission in a square well 1. 2 The Ramsauer Townsend Effect 3

Chapter 17: Resonant transmission and Ramsauer Townsend. 1 Resonant transmission in a square well 1. 2 The Ramsauer Townsend Effect 3 Contents Chapter 17: Resonant transmission and Ramsauer Townsend B. Zwiebach April 6, 016 1 Resonant transmission in a square well 1 The Ramsauer Townsend Effect 3 1 Resonant transmission in a square well

More information

1 Schrödinger s Equation

1 Schrödinger s Equation Physical Electronics Quantum Mechanics Handout April 10, 003 1 Schrödinger s Equation One-Dimensional, Time-Dependent version Schrödinger s equation originates from conservation of energy. h Ψ m x + V

More information

8.04 Spring 2013 April 09, 2013 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators. Uφ u = uφ u

8.04 Spring 2013 April 09, 2013 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators. Uφ u = uφ u Problem Set 7 Solutions 8.4 Spring 13 April 9, 13 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators (a) (3 points) Suppose φ u is an eigenfunction of U with eigenvalue u,

More information

Chapter. 5 Bound States: Simple Case

Chapter. 5 Bound States: Simple Case Announcement Course webpage http://highenergy.phys.ttu.edu/~slee/2402/ Textbook PHYS-2402 Lecture 12 HW3 (due 3/2) 13, 15, 20, 31, 36, 41, 48, 53, 63, 66 ***** Exam: 3/12 Ch.2, 3, 4, 5 Feb. 26, 2015 Physics

More information

Løsningsforslag Eksamen 18. desember 2003 TFY4250 Atom- og molekylfysikk og FY2045 Innføring i kvantemekanikk

Løsningsforslag Eksamen 18. desember 2003 TFY4250 Atom- og molekylfysikk og FY2045 Innføring i kvantemekanikk Eksamen TFY450 18. desember 003 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 18. desember 003 TFY450 Atom- og molekylfysikk og FY045 Innføring i kvantemekanikk a. With Ĥ = ˆK + V = h + V (x),

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

to the potential V to get V + V 0 0Ψ. Let Ψ ( x,t ) =ψ x dx 2

to the potential V to get V + V 0 0Ψ. Let Ψ ( x,t ) =ψ x dx 2 Physics 0 Homework # Spring 017 Due Wednesday, 4/1/17 1. Griffith s 1.8 We start with by adding V 0 to the potential V to get V + V 0. The Schrödinger equation reads: i! dψ dt =! d Ψ m dx + VΨ + V 0Ψ.

More information

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case:

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: The Schrodinger Equation and Postulates Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about

More information

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet Mathematical Tripos Part IB Michaelmas Term 2015 Quantum Mechanics Dr. J.M. Evans Example Sheet 1 Values of some physical constants are given on the supplementary sheet 1. Whenasampleofpotassiumisilluminatedwithlightofwavelength3

More information

Foundations of quantum mechanics

Foundations of quantum mechanics CHAPTER 4 Foundations of quantum mechanics de Broglie s Ansatz, the basis of Schrödinger s equation, operators, complex numbers and functions, momentum, free particle wavefunctions, expectation values

More information

Chapter 8 Chapter 8 Quantum Theory: Techniques and Applications (Part II)

Chapter 8 Chapter 8 Quantum Theory: Techniques and Applications (Part II) Chapter 8 Chapter 8 Quantum Theory: Techniques and Applications (Part II) The Particle in the Box and the Real World, Phys. Chem. nd Ed. T. Engel, P. Reid (Ch.16) Objectives Importance of the concept for

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 6.2 6.3 6.4 6.5 6.6 6.7 The Schrödinger Wave Equation Expectation Values Infinite Square-Well Potential Finite Square-Well Potential Three-Dimensional Infinite-Potential

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices EE321 Fall 2015 September 28, 2015 Semiconductor Physics and Devices Weiwen Zou ( 邹卫文 ) Ph.D., Associate Prof. State Key Lab of advanced optical communication systems and networks, Dept. of Electronic

More information

Module 40: Tunneling Lecture 40: Step potentials

Module 40: Tunneling Lecture 40: Step potentials Module 40: Tunneling Lecture 40: Step potentials V E I II III 0 x a Figure 40.1: A particle of energy E is incident on a step potential of hight V > E as shown in Figure 40.1. The step potential extends

More information

Quantum Mechanics in One Dimension. Solutions of Selected Problems

Quantum Mechanics in One Dimension. Solutions of Selected Problems Chapter 6 Quantum Mechanics in One Dimension. Solutions of Selected Problems 6.1 Problem 6.13 (In the text book) A proton is confined to moving in a one-dimensional box of width.2 nm. (a) Find the lowest

More information

Scattering in One Dimension

Scattering in One Dimension Chapter 4 The door beckoned, so he pushed through it. Even the street was better lit. He didn t know how, he just knew the patron seated at the corner table was his man. Spectacles, unkept hair, old sweater,

More information

Quantum Physics Lecture 8

Quantum Physics Lecture 8 Quantum Physics ecture 8 Steady state Schroedinger Equation (SSSE): eigenvalue & eigenfunction particle in a box re-visited Wavefunctions and energy states normalisation probability density Expectation

More information

8.04 Quantum Physics Lecture XV One-dimensional potentials: potential step Figure I: Potential step of height V 0. The particle is incident from the left with energy E. We analyze a time independent situation

More information

Tunneling via a barrier faster than light

Tunneling via a barrier faster than light Tunneling via a barrier faster than light Submitted by: Evgeniy Kogan Numerous theories contradict to each other in their predictions for the tunneling time. 1 The Wigner time delay Consider particle which

More information

Section 4: Harmonic Oscillator and Free Particles Solutions

Section 4: Harmonic Oscillator and Free Particles Solutions Physics 143a: Quantum Mechanics I Section 4: Harmonic Oscillator and Free Particles Solutions Spring 015, Harvard Here is a summary of the most important points from the recent lectures, relevant for either

More information

Chemistry 432 Problem Set 4 Spring 2018 Solutions

Chemistry 432 Problem Set 4 Spring 2018 Solutions Chemistry 4 Problem Set 4 Spring 18 Solutions 1. V I II III a b c A one-dimensional particle of mass m is confined to move under the influence of the potential x a V V (x) = a < x b b x c elsewhere and

More information

* = 2 = Probability distribution function. probability of finding a particle near a given point x,y,z at a time t

* = 2 = Probability distribution function. probability of finding a particle near a given point x,y,z at a time t Quantum Mechanics Wave functions and the Schrodinger equation Particles behave like waves, so they can be described with a wave function (x,y,z,t) A stationary state has a definite energy, and can be written

More information

Bound and Scattering Solutions for a Delta Potential

Bound and Scattering Solutions for a Delta Potential Physics 342 Lecture 11 Bound and Scattering Solutions for a Delta Potential Lecture 11 Physics 342 Quantum Mechanics I Wednesday, February 20th, 2008 We understand that free particle solutions are meant

More information

Physics 486 Discussion 5 Piecewise Potentials

Physics 486 Discussion 5 Piecewise Potentials Physics 486 Discussion 5 Piecewise Potentials Problem 1 : Infinite Potential Well Checkpoints 1 Consider the infinite well potential V(x) = 0 for 0 < x < 1 elsewhere. (a) First, think classically. Potential

More information

Applied Nuclear Physics Homework #2

Applied Nuclear Physics Homework #2 22.101 Applied Nuclear Physics Homework #2 Author: Lulu Li Professor: Bilge Yildiz, Paola Cappellaro, Ju Li, Sidney Yip Oct. 7, 2011 2 1. Answers: Refer to p16-17 on Krane, or 2.35 in Griffith. (a) x

More information

Review of Quantum Mechanics, cont.

Review of Quantum Mechanics, cont. Review of Quantum Mechanics, cont. 1 Probabilities In analogy to the development of a wave intensity from a wave amplitude, the probability of a particle with a wave packet amplitude, ψ, between x and

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

The potential is minimum at the positive ion sites and maximum between the two ions.

The potential is minimum at the positive ion sites and maximum between the two ions. 1. Bloch theorem: - A crystalline solid consists of a lattice, which is composed of a large number of ion cores at regular intervals, and the conduction electrons that can move freely through out the lattice.

More information

The Schrödinger Equation in One Dimension

The Schrödinger Equation in One Dimension The Schrödinger Equation in One Dimension Introduction We have defined a comple wave function Ψ(, t) for a particle and interpreted it such that Ψ ( r, t d gives the probability that the particle is at

More information

Transmission across potential wells and barriers

Transmission across potential wells and barriers 3 Transmission across potential wells and barriers The physics of transmission and tunneling of waves and particles across different media has wide applications. In geometrical optics, certain phenomenon

More information

PHYSICS 4750 Physics of Modern Materials Chapter 5: The Band Theory of Solids

PHYSICS 4750 Physics of Modern Materials Chapter 5: The Band Theory of Solids PHYSICS 4750 Physics of Modern Materials Chapter 5: The Band Theory of Solids 1. Introduction We have seen that when the electrons in two hydrogen atoms interact, their energy levels will split, i.e.,

More information

QUANTUM MECHANICS A (SPA 5319) The Finite Square Well

QUANTUM MECHANICS A (SPA 5319) The Finite Square Well QUANTUM MECHANICS A (SPA 5319) The Finite Square Well We have already solved the problem of the infinite square well. Let us now solve the more realistic finite square well problem. Consider the potential

More information

Lecture 10: Solving the Time-Independent Schrödinger Equation. 1 Stationary States 1. 2 Solving for Energy Eigenstates 3

Lecture 10: Solving the Time-Independent Schrödinger Equation. 1 Stationary States 1. 2 Solving for Energy Eigenstates 3 Contents Lecture 1: Solving the Time-Independent Schrödinger Equation B. Zwiebach March 14, 16 1 Stationary States 1 Solving for Energy Eigenstates 3 3 Free particle on a circle. 6 1 Stationary States

More information

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6. Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite- 6.6 Simple Harmonic

More information

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box

Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box 561 Fall 017 Lecture #5 page 1 Last time: Lecture #5: Begin Quantum Mechanics: Free Particle and Particle in a 1D Box 1-D Wave equation u x = 1 u v t * u(x,t): displacements as function of x,t * nd -order:

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

Model Problems 09 - Ch.14 - Engel/ Particle in box - all texts. Consider E-M wave 1st wave: E 0 e i(kx ωt) = E 0 [cos (kx - ωt) i sin (kx - ωt)]

Model Problems 09 - Ch.14 - Engel/ Particle in box - all texts. Consider E-M wave 1st wave: E 0 e i(kx ωt) = E 0 [cos (kx - ωt) i sin (kx - ωt)] VI 15 Model Problems 09 - Ch.14 - Engel/ Particle in box - all texts Consider E-M wave 1st wave: E 0 e i(kx ωt) = E 0 [cos (kx - ωt) i sin (kx - ωt)] magnitude: k = π/λ ω = πc/λ =πν ν = c/λ moves in space

More information

It illustrates quantum mechanical principals. It illustrates the use of differential eqns. & boundary conditions to solve for ψ

It illustrates quantum mechanical principals. It illustrates the use of differential eqns. & boundary conditions to solve for ψ MODEL SYSTEM: PARTICLE IN A BOX Important because: It illustrates quantum mechanical principals It illustrates the use of differential eqns. & boundary conditions to solve for ψ It shows how discrete energy

More information

Summary of Last Time Barrier Potential/Tunneling Case I: E<V 0 Describes alpha-decay (Details are in the lecture note; go over it yourself!!) Case II:

Summary of Last Time Barrier Potential/Tunneling Case I: E<V 0 Describes alpha-decay (Details are in the lecture note; go over it yourself!!) Case II: Quantum Mechanics and Atomic Physics Lecture 8: Scattering & Operators and Expectation Values http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh Summary of Last Time Barrier Potential/Tunneling Case

More information

Chapter 38. Photons and Matter Waves

Chapter 38. Photons and Matter Waves Chapter 38 Photons and Matter Waves The sub-atomic world behaves very differently from the world of our ordinary experiences. Quantum physics deals with this strange world and has successfully answered

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

Tentamen i Kvantfysik I

Tentamen i Kvantfysik I Karlstads Universitet Fysik Lösningar Tentamen i Kvantfysik I [ VT 7, FYGB7] Datum: 7-6-7 Tid: 4 9 Lärare: Jürgen Fuchs Tel: 54-7 87 Total poäng: 5 Godkänd / 3: 5 Väl godkänd: 375 4: 335 5: 4 Tentan består

More information

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1.

Lecture 7. 1 Wavepackets and Uncertainty 1. 2 Wavepacket Shape Changes 4. 3 Time evolution of a free wave packet 6. 1 Φ(k)e ikx dk. (1. Lecture 7 B. Zwiebach February 8, 06 Contents Wavepackets and Uncertainty Wavepacket Shape Changes 4 3 Time evolution of a free wave packet 6 Wavepackets and Uncertainty A wavepacket is a superposition

More information

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator

Modern Physics. Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator Modern Physics Unit 3: Operators, Tunneling and Wave Packets Lecture 3.3: The Momentum Operator Ron Reifenberger Professor of Physics Purdue University 1 There are many operators in QM H Ψ= EΨ, or ˆop

More information

Physics 220. Exam #2. May 23 May 30, 2014

Physics 220. Exam #2. May 23 May 30, 2014 Physics 0 Exam # May 3 May 30, 014 Name Please read and follow these instructions carefully: Read all problems carefully before attempting to solve them. Your work must be legible, with clear organization,

More information

Quantum Theory. Thornton and Rex, Ch. 6

Quantum Theory. Thornton and Rex, Ch. 6 Quantum Theory Thornton and Rex, Ch. 6 Matter can behave like waves. 1) What is the wave equation? 2) How do we interpret the wave function y(x,t)? Light Waves Plane wave: y(x,t) = A cos(kx-wt) wave (w,k)

More information

Quantum Mechanics I - Session 9

Quantum Mechanics I - Session 9 Quantum Mechanics I - Session 9 May 5, 15 1 Infinite potential well In class, you discussed the infinite potential well, i.e. { if < x < V (x) = else (1) You found the permitted energies are discrete:

More information

if trap wave like violin string tied down at end standing wave

if trap wave like violin string tied down at end standing wave VI 15 Model Problems 9.5 Atkins / Particle in box all texts onsider E-M wave 1st wave: E 0 e i(kx ωt) = E 0 [cos (kx - ωt) i sin (kx - ωt)] magnitude: k = π/λ ω = πc/λ =πν ν = c/λ moves in space and time

More information

CHM 671. Homework set # 4. 2) Do problems 2.3, 2.4, 2.8, 2.9, 2.10, 2.12, 2.15 and 2.19 in the book.

CHM 671. Homework set # 4. 2) Do problems 2.3, 2.4, 2.8, 2.9, 2.10, 2.12, 2.15 and 2.19 in the book. CHM 67 Homework set # 4 Due: Thursday, September 28 th ) Read Chapter 2 in the 4 th edition Atkins & Friedman's Molecular Quantum Mechanics book. 2) Do problems 2.3, 2.4, 2.8, 2.9, 2.0, 2.2, 2.5 and 2.9

More information

Time Evolution in Diffusion and Quantum Mechanics. Paul Hughes & Daniel Martin

Time Evolution in Diffusion and Quantum Mechanics. Paul Hughes & Daniel Martin Time Evolution in Diffusion and Quantum Mechanics Paul Hughes & Daniel Martin April 29, 2005 Abstract The Diffusion and Time dependent Schrödinger equations were solved using both a Fourier based method

More information

Scattering at a quantum barrier

Scattering at a quantum barrier Scattering at a quantum barrier John Robinson Department of Physics UMIST October 5, 004 Abstract Electron scattering is widely employed to determine the structures of quantum systems, with the electron

More information

Physics 280 Quantum Mechanics Lecture III

Physics 280 Quantum Mechanics Lecture III Summer 2016 1 1 Department of Physics Drexel University August 17, 2016 Announcements Homework: practice final online by Friday morning Announcements Homework: practice final online by Friday morning Two

More information

1 Orders of Magnitude

1 Orders of Magnitude Quantum Mechanics M.T. 00 J.F. Wheater Problems These problems cover all the material we will be studying in the lectures this term. The Synopsis tells you which problems are associated with which lectures.

More information

Chapter 18: Scattering in one dimension. 1 Scattering in One Dimension Time Delay An Example... 5

Chapter 18: Scattering in one dimension. 1 Scattering in One Dimension Time Delay An Example... 5 Chapter 18: Scattering in one dimension B. Zwiebach April 26, 2016 Contents 1 Scattering in One Dimension 1 1.1 Time Delay.......................................... 4 1.2 An Example..........................................

More information

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R.

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R. A vast time bubble has been projected into the future to the precise moment of the end of the universe. This is, of course, impossible. --D. Adams, The Hitchhiker s Guide to the Galaxy There is light at

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 8, February 3, 2006 & L "

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 8, February 3, 2006 & L Chem 352/452 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 26 Christopher J. Cramer Lecture 8, February 3, 26 Solved Homework (Homework for grading is also due today) Evaluate

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Final Exam - Solutions PHYS/ECE Fall 2011

Final Exam - Solutions PHYS/ECE Fall 2011 Final Exam - Solutions PHYS/ECE 34 - Fall 211 Problem 1 Cosmic Rays The telescope array project in Millard County, UT can detect cosmic rays with energies up to E 1 2 ev. The cosmic rays are of unknown

More information

Quantum Mechanics: Particles in Potentials

Quantum Mechanics: Particles in Potentials Quantum Mechanics: Particles in Potentials 3 april 2010 I. Applications of the Postulates of Quantum Mechanics Now that some of the machinery of quantum mechanics has been assembled, one can begin to apply

More information

CHAPTER 36. 1* True or false: Boundary conditions on the wave function lead to energy quantization. True

CHAPTER 36. 1* True or false: Boundary conditions on the wave function lead to energy quantization. True CHAPTER 36 * True or false: Boundary conditions on the we function lead to energy quantization. True Sketch (a) the we function and (b) the probability distribution for the n 4 state for the finite squarewell

More information

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time. Electron in a Box A wave packet in a square well (an electron in a box) changing with time. Last Time: Light Wave model: Interference pattern is in terms of wave intensity Photon model: Interference in

More information

Ae ikx Be ikx. Quantum theory: techniques and applications

Ae ikx Be ikx. Quantum theory: techniques and applications Quantum theory: techniques and applications There exist three basic modes of motion: translation, vibration, and rotation. All three play an important role in chemistry because they are ways in which molecules

More information

Wave Phenomena Physics 15c. Lecture 11 Dispersion

Wave Phenomena Physics 15c. Lecture 11 Dispersion Wave Phenomena Physics 15c Lecture 11 Dispersion What We Did Last Time Defined Fourier transform f (t) = F(ω)e iωt dω F(ω) = 1 2π f(t) and F(w) represent a function in time and frequency domains Analyzed

More information

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 3 Notes

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 3 Notes 3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Outline 1. Schr dinger: Eigenfunction Problems & Operator Properties 2. Piecewise Function/Continuity Review -Scattering from

More information

arxiv: v1 [quant-ph] 24 Apr 2014 I. INTRODUCTION

arxiv: v1 [quant-ph] 24 Apr 2014 I. INTRODUCTION Angular Tunneling Effect Cássio Lima 1, Jorge Henrique Sales 1, A. T. Suzuki 2. 1 Universidade Estadual de Santa Cruz, Departamento de Ciências Exatas e Tecnológicas, 45662-000 - Ilhéus, BA, Brasil and

More information

Physics 43 Chapter 41 Homework #11 Key

Physics 43 Chapter 41 Homework #11 Key Physics 43 Chapter 4 Homework # Key π sin. A particle in an infinitely deep square well has a wave function given by ( ) for and zero otherwise. Determine the epectation value of. Determine the probability

More information

XI. INTRODUCTION TO QUANTUM MECHANICS. C. Cohen-Tannoudji et al., Quantum Mechanics I, Wiley. Outline: Electromagnetic waves and photons

XI. INTRODUCTION TO QUANTUM MECHANICS. C. Cohen-Tannoudji et al., Quantum Mechanics I, Wiley. Outline: Electromagnetic waves and photons XI. INTRODUCTION TO QUANTUM MECHANICS C. Cohen-Tannoudji et al., Quantum Mechanics I, Wiley. Outline: Electromagnetic waves and photons Material particles and matter waves Quantum description of a particle:

More information

Chap. 3. Elementary Quantum Physics

Chap. 3. Elementary Quantum Physics Chap. 3. Elementary Quantum Physics 3.1 Photons - Light: e.m "waves" - interference, diffraction, refraction, reflection with y E y Velocity = c Direction of Propagation z B z Fig. 3.1: The classical view

More information

1.1 A Scattering Experiment

1.1 A Scattering Experiment 1 Transfer Matrix In this chapter we introduce and discuss a mathematical method for the analysis of the wave propagation in one-dimensional systems. The method uses the transfer matrix and is commonly

More information