Electricity and Magnetism. Electric Potential Energy and Voltage

Size: px
Start display at page:

Download "Electricity and Magnetism. Electric Potential Energy and Voltage"

Transcription

1 Electricity and Magnetism Electric Potential Energy and Voltage

2 Work and Potential Energy Recall from Mechanics that E mech = K + U is a conserved quantity for particles that interact via conservative forces and that for changes, E mech = K + U = 0. The change in potential energy is: U = U f U i = -W conservative force. If a particle moves a distance r while a constant force F is acting on it, then the work done is: W = F r = F r cos(θ), where θ is the angle between the force F and displacement r. There are three special cases: θ=0 0, θ=90 0, and θ= If the force is not constant, the work is: s f W = Fs d s = F d s s i f i 2

3 The Potential Energy in Two Uniform Fields The gravitational field g near the surface of the Earth is uniform. If a particle moves downward from y i to y f, the gravitational field will do a positive amount of work: Therefore: Wgrav = w r cos 0 = ( mg) y f yi = mg y U = U U = W = mg y grav f i grav Gravitational Potential Energy 3

4 The Potential Energy in Two Uniform Fields The gravitational field g near the surface of the Earth is uniform. If a particle moves downward from y i to y f, the gravitational field will do a positive amount of work: Therefore: Wgrav = w r cos 0 = ( mg) y f yi = mg y U = U U = W = mg y grav f i grav Gravitational Potential Energy Similarly, for displacements s in a uniform electric field E, with s parallel to E: Welec = F r cos 0 = ( qe) s f si ( + 1) = qe s U = U U = W = qe s elec f i elec Electric Potential Energy 4

5 Charges in an Electric Field One difference between a gravity field g and an electric field E is that a mass m interacting with g is always positive, while a charge q interacting with E may be either positive or negative. However, this is not a problem. A positive charge gains energy as it moves away from the positive plate of a parallel plate capacitor, while a negative charge gains energy as it moves away from the negative plate of the capacitor. In either case, the charge gains kinetic energy as its potential energy decreases. 5

6 6

7 Example: Conservation of Energy inside a Capacitor A 2.0 cm x 2.0 cm parallel plate capacitor with a 2.0 mm gap is charged to ±1.0 nc. (Later in the year we will see that the electric field between the plates is 2.83 x 10 5 N/C) First a proton, and then an electron, are released at the midpoint of the capacitor. (a) What is each particle s change in potential energy ( U elec ) from its release to its collision with a plate? (b) What is each particle s kinetic energy as it reaches the plate? 7

8 Example: Conservation of Energy inside a Capacitor A 2.0 cm x 2.0 cm parallel plate capacitor with a 2.0 mm gap is charged to ±1.0 nc. (Later in the year we will see that the electric field between the plates is 2.83 x 10 5 N/C) First a proton, and then an electron, are released at the midpoint of the capacitor. (a) What is each particle s change in potential energy ( U elec ) from its release to its collision with a plate? (b) What is each particle s kinetic energy as it reaches the plate? 8

9 Conceptual Question 1 The electric field of a positively charged rod (end view shown) causes a negative particle to orbit the rod in a closed circular path, as shown. What is the sign of the work done on the charged particle by the electric field of the rod? (A) positive; (B) zero; (C) negative; (D) not enough information to tell. 9

10 Voltage In Chapter 23 we introduced the concept of an electric field E, which can be though of as a normalized force, i.e., E = F/q, the field E that would produce a force F on some test charge q. We can similarly define the voltage V as a charge-normalized potential energy, i.e., V=U elec /q, the voltage V that would give a test charge q an electric potential energy U elec because it is in the field of some other source charges. Just like it is U that really matters and the actual values are arbitrary, it is changes in voltage V that we are going to be interested in. We define the unit of voltage as the volt: 1 volt = 1 V = 1 J/C = 1 N m/c. 10

11 What Good is the Voltage? Like the electric field E, the voltage V is an abstract idea. It offers an advantage, however, because it is a scalar quantity while E is a vector, yet the two can be converted to each other. It is useful because: - The voltage depends only on the charges and their geometries. The voltage is the ability of the source charges to have an interaction if a charge q shows up. The voltage is present in all space, whether or not a charge is there to experience it. - If we know the voltage V throughout a region of space, we ll immediately know the potential energy U=qV of any charge q that enters that region. 11

12 Example: Moving Through a Voltage Difference A proton (q = 1.6 x C, m = 1.67 x kg) with a speed of v i = 2 x10 5 m/s enters a region of space where source charges have created a voltage. (a) What is the proton s final speed v f after it has moved through a voltage difference of V=100 V? (b) What is v f if the proton is replaced by an electron? 12

13 The Voltage Inside a Parallel Plate Capacitor Consider a parallel-plate capacitor with E = 500 N/C, to right Find the voltage difference (potential difference) between the two plates. 13

14 Graphical Representations of Electric Potential V x = = ( ) = 1 d d C V Es d x VC This linear relation can be represented as a graph, a set of equipotential surfaces, a contour plot, or a 3-D elevation graph. 14

15 Field Lines and Contour Lines Field lines and equipotential contour lines are the most widely used representations to simultaneously show the E field and the electric potential. The figure shows the field lines and equipotential contours for a parallel plate capacitor. Remember that both field lines and contours are virtual representations, not real objects, and that their spacing, etc, is a matter of choice. 15

16 Field Lines and Contour Lines For a constant electric field, if you know the voltage difference between two points, and how far apart the two points are, you can calculate the magnitude of the electric field from: E V = x To get the direction, just remember that the voltage decreases as you move in the direction that the electric field points. 16

17 Field Lines and Contour Lines If the electric field is not constant, you can use this method to estimate the strength of the electric field as long as x is small (the smaller x is, the closer E is to being constant in that interval). or more exactly E E V x lim V = = x 0 x dv dx We will use this method when we return to this topic and look at the parts that require calculus. 17

18 EField Java Field-Line Applet A special Java applet for plotting electric field lines, E-field gradients, and equipotential surfaces of any arrangement of point charges can be found at: The result looks like this: You must have a Java application available in order to run this applet. You are encouraged to use it to gain a better feeling for electric fields And equipotential lines. 18

19 Rules for Equipotentials 1. Equipotentials never intersect other equipotentials. (Why?) 2. The surface of any static conductor is an equipotential surface. The conductor volume is all at the same potential. 3. Field line cross equipotential surfaces at right angles. (Why?) 4. Close equipotentials indicate a strong electric field. The voltage V decreases in the direction in which the electric field E points, i.e., energetically downhill. 5. For any system with a net charge, the equipotential surfaces become spheres at large distances. 19

20 Conceptual Question 2 Which ranking of the voltages at points a-e is correct? (Ignore edge effects.) (a) V a >V b >V c >V d >V e (b) V a >V b =V c >V d =V e (c) V a =V b >V c >V d =V e (d) V a =V b =V c =V d =V e (e) V b >V a >V c >V e >V d 20

21 Conceptual Question 3 A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron from the negative side. Which feels the larger electric force? 1) proton 2) electron 3) both feel the same force 4) neither there is no force 5) they feel the same magnitude force but opposite direction Electron electron proton - Proton + E

22 Conceptual Question 4 A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron from the negative side. Which has the larger acceleration? 1) proton 2) electron 3) both feel the same acceleration 4) neither there is no acceleration 5) they feel the same magnitude acceleration but opposite direction Electron electron proton - Proton + E

23 Conceptual Question 5 A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron from the negative side. When it strikes the opposite plate, which one has more KE? 1) proton 2) electron 3) both acquire the same KE 4) neither there is no change of KE 5) they both acquire the same KE but with opposite signs Electron electron proton - Proton + E

24 Conceptual Question 6 Which requires you to do the most work to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance from P. 1) P 1 2) P 2 3) P 3 4) P 4 5) all require the same amount of work P E 4

25 Conceptual Question 7 Which requires you to do zero work to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance from P. 1) P 1 2) P 2 3) P 3 4) P 4 5) all require the same amount of work P E 4

26 The voltage of a point charge (letting the voltage be zero infinitely away from the charges) is given by: V The Voltage of a Point Charge kq 1 q = = Example: q = 1 nc, r = 1 cm; r 4πε r We will show that this equation is correct using calculus later in the year. For now we are just interested in using it. 0 V = kq r ( C) ( Nm /C ) ( m) = = 900 V You would use the given equation to find the voltage at this point due to the source charge q. 26

27 Conceptual Question 8 Which ranking of the potential differences is correct? (a) V 12 > V 23 > V 13 (b) V 12 < V 23 < V 31 (c) V 12 < V 23 = V 13 (d) V 12 = V 23 > V 13 (e) V 12 = V 23 = V 13 27

28 Visualizing the Voltage of a Point Charge The potential of a point charge can be represented as a graph, a set of equipotential surfaces, a contour map, or a 3-D elevation graph. Usually it is represented by a graph or a contour map, possibly with field lines. + 28

29 Conceptual Question 9 Which two points are at the same potential (voltage)? 1) A and C 2) B and E 3) B and D 4) C and E 5) no pair A C B E Q D

30 The Voltage of Many Charges The principle of superposition allows us to calculate the voltages created by many point charges and then add the up. Since the voltage V is a scalar quantity, the superposition of potentials is simpler than the superposition of fields. V = i kq r i i 30

31 Example: The Voltage of Two Charges What is the voltage at point p? Let V = 0 at r = p 31

Electric Fields Part 1: Coulomb s Law

Electric Fields Part 1: Coulomb s Law Electric Fields Part 1: Coulomb s Law F F Last modified: 07/02/2018 Contents Links Electric Charge & Coulomb s Law Electric Charge Coulomb s Law Example 1: Coulomb s Law Electric Field Electric Field Vector

More information

A Uniform Gravitational Field

A Uniform Gravitational Field A Uniform Gravitational Field We could define a gravitational field in much the same way we have defined the electric field: E = F on q q, g = F on m m (note that m/s 2 = N/kg) The gravitational field

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9.

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9. Electrostatics 1) electric charge: 2 types of electric charge: positive and negative 2) charging by friction: transfer of electrons from one object to another 3) positive object: lack of electrons negative

More information

PHYSICS 1/23/2019. Chapter 25 Lecture. Chapter 25 The Electric Potential. Chapter 25 Preview

PHYSICS 1/23/2019. Chapter 25 Lecture. Chapter 25 The Electric Potential. Chapter 25 Preview PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 25 Lecture RANDALL D. KNIGHT Chapter 25 The Electric Potential IN THIS CHAPTER, you will learn to use the electric potential and electric

More information

Question 16.1a Electric Potential Energy I

Question 16.1a Electric Potential Energy I Question 16.1a Electric Potential Energy I A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron

More information

Agenda for Today. Elements of Physics II. Conductors and Insulators Movement of charges Conservation of charge Static electricity Electroscope

Agenda for Today. Elements of Physics II. Conductors and Insulators Movement of charges Conservation of charge Static electricity Electroscope Physics 132: Lecture e 5 Elements of Physics II Agenda for Today Conductors and Insulators Movement of charges Conservation of charge Static electricity Electroscope Physics 201: Lecture 1, Pg 1 Problem

More information

Question 20.1a Electric Potential Energy I

Question 20.1a Electric Potential Energy I Question 20.1a Electric Potential Energy I A proton and an electron are in a constant electric field created by oppositely charged plates. You release the proton from the positive side and the electron

More information

Chapter 16 Electrical Energy Capacitance. HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51

Chapter 16 Electrical Energy Capacitance. HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51 Chapter 16 Electrical Energy Capacitance HW: 1, 2, 3, 5, 7, 12, 13, 17, 21, 25, 27 33, 35, 37a, 43, 45, 49, 51 Electrical Potential Reminder from physics 1: Work done by a conservative force, depends only

More information

Electric Potential Energy

Electric Potential Energy Electric Potential Energy the electric potential energy of two charges depends on the distance between the charges when two like charges are an infinite distance apart, the potential energy is zero An

More information

Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance from P.

Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance from P. week 4 Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance from P. 1) P 1 2) P 2 3) P 3 4) P 4 5) all require the same amount of work

More information

Electric Potential (Chapter 25)

Electric Potential (Chapter 25) Electric Potential (Chapter 25) Electric potential energy, U Electric potential energy in a constant field Conservation of energy Electric potential, V Relation to the electric field strength The potential

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapter 25 Electric Potential Electric Potential Electromagnetism has been connected to the study of forces in previous chapters. In this chapter, electromagnetism will be linked to energy. By using an

More information

Topic 10: Fields - AHL 10.1 Describing fields

Topic 10: Fields - AHL 10.1 Describing fields Topic 10.1 is an extension of Topics 5.1 and 6.2. Essential idea: Electric charges and masses each influence the space around them and that influence can be represented through the concept of fields. Nature

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. The diagram below shows two positive charges of magnitude Q and 2Q. Which vector best represents the direction of the electric field at point P, which is equidistant from

More information

CHAPTER 19 - ELECTRIC POTENTIAL ENERGY AND ELECTRIC POTENTIAL. Sections 1-5

CHAPTER 19 - ELECTRIC POTENTIAL ENERGY AND ELECTRIC POTENTIAL. Sections 1-5 CHAPTER 19 - ELECTRIC POTENTIAL ENERGY AND ELECTRIC POTENTIAL Sections 1-5 Objectives: After completing this unit, you should be able to: Understand an apply the concepts of electric potential energy,

More information

SPH 4U: Unit 3 - Electric and Magnetic Fields

SPH 4U: Unit 3 - Electric and Magnetic Fields Name: Class: _ Date: _ SPH 4U: Unit 3 - Electric and Magnetic Fields Modified True/False (1 point each) Indicate whether the statement is true or false. If false, change the identified word or phrase to

More information

Electric Charge and Electric Field AP Physics 4 Lecture Notes

Electric Charge and Electric Field AP Physics 4 Lecture Notes Electric Charge and Electric Field AP Physics 4 Lecture Notes Coulomb s Law The Electric Field Field Lines Electric Fields and Conductors Coulomb s law: Coulomb s Law Force (N) F F F k r F F F r Charge

More information

Los Altos Physics Honors. Electrostatics: Electric Fields, Electric Forces, Electric Potentials and. Electric Potential Energy.

Los Altos Physics Honors. Electrostatics: Electric Fields, Electric Forces, Electric Potentials and. Electric Potential Energy. Los Altos Physics Honors Electrostatics: Electric Fields, Electric Forces, Electric Potentials and Electric Potential Energy Workbook adam.randall@mvla.net www.laphysics.com dls.mvla.net/los_altos Spring

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 2 Electrostatics Electric flux and Gauss s law Electrical energy potential difference and electric potential potential energy of charged conductors http://www.physics.wayne.edu/~alan/

More information

What will the electric field be like inside the cavity?

What will the electric field be like inside the cavity? What will the electric field be like inside the cavity? 1. There is no charge inside the gaussian surface so E = 0 2. There is no net flux through the surface but there is an E field 3. Gauss s law doesn

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapter 25 Electric Potential Electric Potential Electromagnetism has been connected to the study of forces in previous chapters. In this chapter, electromagnetism will be linked to energy. By using an

More information

Electrical Potential Energy and Electric Potential (Chapter 29)

Electrical Potential Energy and Electric Potential (Chapter 29) Electrical Potential Energy and Electric Potential (Chapter 29) A Refresher Course on Gravity and Mechanical Energy Total mechanical energy: E mech = K + U, K= 1 2 mv2,u = potential energy f W = F!" ids

More information

Chapter 23 Electric Potential (Voltage)

Chapter 23 Electric Potential (Voltage) Chapter 23 Electric Potential (Voltage) Electric potential energy Recall how a conservative force is related to the potential energy associated with that force: The electric potential energy: Change in

More information

Objects can be charged by rubbing

Objects can be charged by rubbing Electrostatics Objects can be charged by rubbing Charge comes in two types, positive and negative; like charges repel and opposite charges attract Electric charge is conserved the arithmetic sum of the

More information

Electric Potential Energy Chapter 16

Electric Potential Energy Chapter 16 Electric Potential Energy Chapter 16 Electric Energy and Capacitance Sections: 1, 2, 4, 6, 7, 8, 9 The electrostatic force is a conservative force It is possible to define an electrical potential energy

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 4 Electrostatics Electric flux and Gauss s law Electrical energy potential difference and electric potential potential energy of charged conductors http://www.physics.wayne.edu/~apetrov/phy2140/

More information

Some differences: Some basic similarities: Charges. Electrons vs. Protons 3/25/12. Chapters 22-25: Electromagnetism!

Some differences: Some basic similarities: Charges. Electrons vs. Protons 3/25/12. Chapters 22-25: Electromagnetism! Chapters 22-25: Electromagnetism! Electric Force vs. Gravitational Force What properties does the gravitational force depend on? What properties does the electric force depend on? F grav = G*m 1 *m 2 /d

More information

A 12-V battery does 1200 J of work transferring charge. How much charge is transferred? A source of 1.0 µc is meters is from a positive test

A 12-V battery does 1200 J of work transferring charge. How much charge is transferred? A source of 1.0 µc is meters is from a positive test 1 A source of 1.0 µc is 0.030 meters is from a positive test charge of 2.0 µc. (a) What is the force on the test charge? (b) What is the potential energy of the test charge? (c) What is the strength of

More information

PHYSICS - Electrostatics

PHYSICS - Electrostatics PHYSICS - Electrostatics Electrostatics, or electricity at rest, involves electric charges, the forces between them, and their behavior in materials. 22.1 Electrical Forces and Charges The fundamental

More information

Chapter 19 Electric Potential and Electric Field Sunday, January 31, Key concepts:

Chapter 19 Electric Potential and Electric Field Sunday, January 31, Key concepts: Chapter 19 Electric Potential and Electric Field Sunday, January 31, 2010 10:37 PM Key concepts: electric potential electric potential energy the electron-volt (ev), a convenient unit of energy when dealing

More information

Handout 3: Electric potential and electric potential energy. Electric potential

Handout 3: Electric potential and electric potential energy. Electric potential Handout 3: Electric potential and electric potential energy Electric potential Consider a charge + fixed in space as in Figure. Electric potential V at any point in space is defined as the work done by

More information

You should be able to demonstrate and show your understanding of:

You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 6: Field and Particle Physics You should be able to demonstrate and show your understanding of: 6.1: Fields (Charge and Field) Field: A potential gradient Field Strength: Indicates

More information

Chapter 17. Electric Potential Energy and the Electric Potential

Chapter 17. Electric Potential Energy and the Electric Potential Chapter 17 Electric Potential Energy and the Electric Potential Consider gravity near the surface of the Earth The gravitational field is uniform. This means it always points in the same direction with

More information

Electric Potential Energy & Electric Potential

Electric Potential Energy & Electric Potential Electric Potential Energy & Electric Potential Consider the following scenario. F E F E pt.a If we release the ve charge from pt.a The ELECTRIC FIELD produced by the ve charge pulls the ve charge to the

More information

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer "none of the above" may can be a valid answer

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer none of the above may can be a valid answer Multiple Choice: choose the best answer "none of the above" may can be a valid answer The (attempted) demonstration in class with the pith balls and a variety of materials indicated that () there are two

More information

Electrostatics. Typeset by FoilTEX 1

Electrostatics. Typeset by FoilTEX 1 Electrostatics Typeset by FoilTEX 1 Question 1 A plastic rod is rubbed and touched to a small metal ball. After this the rod is observed to repel the ball. Which of the following is correct? 1. The force

More information

1. The diagram shows the electric field lines produced by an electrostatic focussing device.

1. The diagram shows the electric field lines produced by an electrostatic focussing device. 1. The diagram shows the electric field lines produced by an electrostatic focussing device. Which one of the following diagrams best shows the corresponding equipotential lines? The electric field lines

More information

Physics 1202: Lecture 3 Today s Agenda

Physics 1202: Lecture 3 Today s Agenda Physics 1202: Lecture 3 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #1: On Masterphysics: due this coming Friday Go to the syllabus

More information

Introduction to Charges. BCLN PHYSICS 12 - Rev. Sept/2012

Introduction to Charges. BCLN PHYSICS 12 - Rev. Sept/2012 Electrostatics ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The Pre-Reading is marked, based on effort, completeness, and neatness (not accuracy). The rest of the

More information

PHYSICS 12 NAME: Electrostatics Review

PHYSICS 12 NAME: Electrostatics Review NAME: Electrostatics Review 1. The diagram below shows two positive charges of magnitude Q and 2Q. Which vector best represents the direction of the electric field at point P, which is equidistant from

More information

MTE1 results. Mean 75% = 90/120

MTE1 results. Mean 75% = 90/120 MTE1 results Mean 75% = 90/120 Scores available at Learn@UW, your TAs have exams If your score is an F or a D, talk to us and your TAs for suggestions on how to improve From last times Electric charges

More information

Chapter Assignment Solutions

Chapter Assignment Solutions Chapter 20-21 Assignment Solutions Table of Contents Page 558 #22, 24, 29, 31, 36, 37, 40, 43-48... 1 Lightning Worksheet (Transparency 20-4)... 4 Page 584 #42-46, 58-61, 66-69, 76-79, 84-86... 5 Chapter

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 5 Electrostatics Electrical energy potential difference and electric potential potential energy of charged conductors Capacitance and capacitors http://www.physics.wayne.edu/~apetrov/phy2140/

More information

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below AP Physics Study Guide Chapter 17 Electric Potential and Energy Name Circle the vector quantities below and underline the scalar quantities below electric potential electric field electric potential energy

More information

Electric Potential Practice Problems

Electric Potential Practice Problems Electric Potential Practice Problems AP Physics Name Multiple Choice 1. A negative charge is placed on a conducting sphere. Which statement is true about the charge distribution (A) Concentrated at the

More information

21.4 Electric Field and Electric Forces

21.4 Electric Field and Electric Forces 21.4 Electric Field and Electric Forces How do charged particles interact in empty space? How do they know the presence of each other? What goes on in the space between them? Body A produces an electric

More information

47 CHARGE. 1. What are the basic particles of charge?

47 CHARGE. 1. What are the basic particles of charge? 47 CHARGE 1. What are the basic particles of charge? 2. There are three variables for charge listed to the right. Tell the typical circumstances when each is used. 3. Charge What are the units of charge?

More information

1. Four equal and positive charges +q are arranged as shown on figure 1.

1. Four equal and positive charges +q are arranged as shown on figure 1. AP Physics C Coulomb s Law Free Response Problems 1. Four equal and positive charges +q are arranged as shown on figure 1. a. Calculate the net electric field at the center of square. b. Calculate the

More information

Chapter 21 Electric Potential

Chapter 21 Electric Potential Chapter 21 Electric Potential Chapter Goal: To calculate and use the electric potential and electric potential energy. Slide 21-1 Chapter 21 Preview Looking Ahead Text: p. 665 Slide 21-2 Review of Potential

More information

Electric Potential II

Electric Potential II Electric Potential II Physics 2415 Lecture 7 Michael Fowler, UVa Today s Topics Field lines and equipotentials Partial derivatives Potential along a line from two charges Electric breakdown of air Potential

More information

Chapter 22 Electric Potential (Voltage)

Chapter 22 Electric Potential (Voltage) Chapter 22 Electric Potential (Voltage) Question 29.5 Work and Electric Potential I Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance

More information

Electric Potential. Capacitors (Chapters 28, 29)

Electric Potential. Capacitors (Chapters 28, 29) Electric Potential. Capacitors (Chapters 28, 29) Electric potential energy, U Electric potential energy in a constant field Conservation of energy Electric potential, V Relation to the electric field strength

More information

Chapter 19 Electric Potential Energy and Electric Potential Sunday, January 31, Key concepts:

Chapter 19 Electric Potential Energy and Electric Potential Sunday, January 31, Key concepts: Chapter 19 Electric Potential Energy and Electric Potential Sunday, January 31, 2010 10:37 PM Key concepts: electric potential electric potential energy the electron-volt (ev), a convenient unit of energy

More information

Electric Potential Lecture 5

Electric Potential Lecture 5 Chapter 23 Electric Potential Lecture 5 Dr. Armen Kocharian Electrical Potential Energy When a test charge is placed in an electric field, it experiences a force F = q o E The force is conservative ds

More information

Electric Potential Energy & Electric Potential

Electric Potential Energy & Electric Potential Electric Potential Energy & Electric Potential Consider the following scenario. F E F E pt.a If we release the ve charge from pt.a The ELECTRIC FIELD produced by the ve charge pulls the ve charge to the

More information

week 2 In a uniform electric field in empty space, a 4 C charge is placed and it feels an electrical force of 12 N. If this charge is removed and a 6 C charge is placed at that point instead, what

More information

P Q 2 = -3.0 x 10-6 C

P Q 2 = -3.0 x 10-6 C 1. Which one of the following represents correct units for electric field strength? A. T B. N/C C. J / C D. N m 2 /C 2 2. The diagram below shows two positive charges of magnitude Q and 2Q. P Q 2Q Which

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Part 1: Electric Force Review of Vectors Review your vectors! You should know how to convert from polar form to component form and vice versa add and subtract vectors multiply vectors by scalars Find

More information

Exam 1--PHYS 102--S14

Exam 1--PHYS 102--S14 Class: Date: Exam 1--PHYS 102--S14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The magnitude of the charge on an electron is approximately: a. 10-23

More information

12/15/2015. Newton per Coulomb N/C. vector. A model of the mechanism for electrostatic interactions. The Electric Field

12/15/2015. Newton per Coulomb N/C. vector. A model of the mechanism for electrostatic interactions. The Electric Field Chapter 15 Lecture The Electric Field A model of the mechanism for electrostatic interactions A model for electric interactions, suggested by Michael Faraday, involves some sort of electric disturbance

More information

AP Physics B Notes: Ch 16: Electric Potential Name:

AP Physics B Notes: Ch 16: Electric Potential Name: AP Physics B Notes: Ch 16: Electric Potential Name: Excess Charges on Conductors Where does the excess charge reside on a charged conductor? What conditions would produce high positive electrical potential

More information

Finishing Chapter 26 on dipoles.. Electric Potential Energy of: Point Charges Dipoles Electric Potential: V Voltage: ΔV

Finishing Chapter 26 on dipoles.. Electric Potential Energy of: Point Charges Dipoles Electric Potential: V Voltage: ΔV PHY132 Introduction to Physics II Class 11 Outline: Finishing Chapter 26 on dipoles.. Electric Potential Energy of: Point Charges Dipoles Electric Potential: V Voltage: ΔV QuickCheck 26.13 Which dipole

More information

Electrostatics Notes 2 Electric Field on a Single Charge

Electrostatics Notes 2 Electric Field on a Single Charge Electrostatics Notes 2 Electric Field on a Single Charge There are many similarities between gravitational and electrostatic forces. One such similarity is that both forces can be exerted on objects that

More information

The Electric Potential

The Electric Potential Lecture 6 Chapter 25 The Electric Potential Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 25: Section 25.4-7 Electric Potential Quantities

More information

Physics 222, Spring 2010 Quiz 3, Form: A

Physics 222, Spring 2010 Quiz 3, Form: A Physics 222, Spring 2010 Quiz 3, Form: A Name: Date: Instructions You must sketch correct pictures and vectors, you must show all calculations, and you must explain all answers for full credit. Neatness

More information

PHYS 221 General Physics II

PHYS 221 General Physics II PHYS 221 General Physics II Elec. Potential Energy, Voltage, Equipotentials Spring 2015 Assigned Reading: 18.1 18.3 Lecture 4 Review: Gauss Law Last Lecture E q enc o E EAcos Gauss Law Very useful to determine

More information

Section 1: Electric Fields

Section 1: Electric Fields PHY 132 Outline of Lecture Notes i Section 1: Electric Fields A property called charge is part of the basic nature of protons and electrons. Large scale objects become charged by gaining or losing electrons.

More information

SPH4U Sample Test - Electric & Magnetic Fields

SPH4U Sample Test - Electric & Magnetic Fields SPH4U Sample Test - Electric & Magnetic Fields Modified True/False Indicate whether the sentence or statement is true or false. If false, change the identified word or phrase to make the sentence or statement

More information

ELECTROSTATIC FIELDS

ELECTROSTATIC FIELDS ELECTROSTATIC FIELDS Electric charge Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. A body can become charged if it loses or

More information

Turn in scantron You keep these question sheets

Turn in scantron You keep these question sheets Exam 1 on FEB. 20. 2018 - Physics 106 R. Schad YOUR NAME ¼À Turn in scantron You keep these question sheets 1) Electric flux through a spherical surface of radius 1m dueto a charge inside [which is the

More information

Solution. ANSWERS - AP Physics Multiple Choice Practice Electrostatics. Answer

Solution. ANSWERS - AP Physics Multiple Choice Practice Electrostatics. Answer NSWRS - P Physics Multiple hoice Practice lectrostatics Solution nswer 1. y definition. Since charge is free to move around on/in a conductor, excess charges will repel each other to the outer surface

More information

What You Already Know

What You Already Know What You Already Know Coulomb s law Electric fields Gauss law Electric fields for several configurations Point Line Plane (nonconducting) Sheet (conducting) Ring (along axis) Disk (along axis) Sphere Cylinder

More information

Class XII Chapter 1 Electric Charges And Fields Physics

Class XII Chapter 1 Electric Charges And Fields Physics Class XII Chapter 1 Electric Charges And Fields Physics Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Answer: Repulsive

More information

[1] (b) State one difference and one similarity between the electric field of a point charge and the gravitational field of a point mass....

[1] (b) State one difference and one similarity between the electric field of a point charge and the gravitational field of a point mass.... 1 (a) An electric field always exists around a charged particle. Explain what is meant by an electric field.... [1] (b) State one difference and one similarity between the electric field of a point charge

More information

Chapter 1 The Electric Force

Chapter 1 The Electric Force Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

More information

Physics 2112 Unit 6: Electric Potential

Physics 2112 Unit 6: Electric Potential Physics 2112 Unit 6: Electric Potential Today s Concept: Electric Potential (Defined in terms of Path Integral of Electric Field) Unit 6, Slide 1 Stuff you asked about: I am very confused about the integrals

More information

PHYS102 Previous Exam Problems. Electric Potential

PHYS102 Previous Exam Problems. Electric Potential PHYS102 Previous Exam Problems CHAPTER 24 Electric Potential Electric potential energy of a point charge Calculating electric potential from electric field Electric potential of point charges Calculating

More information

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References

Coulomb s Law. Phys102 Lecture 2. Key Points. Coulomb s Law The electric field (E is a vector!) References Phys102 Lecture 2 Phys102 Lecture 2-1 Coulomb s Law Key Points Coulomb s Law The electric field (E is a vector!) References SFU Ed: 21-5,6,7,8,9,10. 6 th Ed: 16-6,7,8,9,+. Phys102 Lecture 2 Phys102 Lecture

More information

Electrostatics so far

Electrostatics so far Electrostatics so far F = 1 2 1 2 2 Electric Force b/n q and q : qq 1 2 kq Electric Field E due to q : E = 1 1 r 2 kq q r q e = 1.6 x10-19 C k = 9 x 10 9 Nm 2 /C 2 Tesla Envy http://www.youtube.com/watch?v=jl

More information

Electric Fields Electric charges exert forces on each other when they are a distance apart. The word Electric field is used to explain this action at

Electric Fields Electric charges exert forces on each other when they are a distance apart. The word Electric field is used to explain this action at Electricity & Magnetism Electric Fields Marline Kurishingal Electric Fields Electric charges exert forces on each other when they are a distance apart. The word Electric field is used to explain this action

More information

Electric Potential. Chapter 23. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman

Electric Potential. Chapter 23. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Chapter 23 Electric Potential PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by Reza Khanbabaie Goals for Chapter 23 Reminder about gravitational

More information

What You Already Know

What You Already Know What You Already Know Coulomb s law Electric fields Gauss law Electric fields for several configurations Point Line Plane (nonconducting) Sheet (conducting) Ring (along axis) Disk (along axis) Sphere Cylinder

More information

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( )

= C. on q 1 to the left. Using Coulomb s law, on q 2 to the right, and the charge q 2 exerts a force F 2 on 1 ( ) Phsics Solutions to Chapter 5 5.. Model: Use the charge model. Solve: (a) In the process of charging b rubbing, electrons are removed from one material and transferred to the other because the are relativel

More information

Electric Potential. David J. Starling Penn State Hazleton PHYS 212. Electricity is really just organized lightning. - George Carlin.

Electric Potential. David J. Starling Penn State Hazleton PHYS 212. Electricity is really just organized lightning. - George Carlin. Electricity is really just organized lightning. - George Carlin David J. Starling Penn State Hazleton PHYS 212 Since the electric force is so similar to gravity, might it be conservative? Yes! If we move

More information

Chapter 15: The Electric Field

Chapter 15: The Electric Field Chapter 15: The Electric Field Section 15.1: A Model of the Mechanisms for Electrostatic Interactions Action-At-A-Distance How can Object A affect Object B if they are not literally touching? Well, it's

More information

Ch 25 Electric Potential! Electric Energy, Electric Potential!

Ch 25 Electric Potential! Electric Energy, Electric Potential! Ch 25 Electric Potential Electric Energy, Electric Potential Energy concepts are going to be extremely important to us as we consider the behavior of charges in electric fields. How do energy concepts

More information

4 pt. (in J) 3.A

4 pt. (in J) 3.A Mark Reeves - Physics 22, Fall 2011 1 A point charge of mass 0.0699 kg and charge q = +6.87 µc is suspended by a thread between the vertical parallel plates of a parallel-plate capacitor, as shown in the

More information

Chapter 12 Electrostatic Phenomena

Chapter 12 Electrostatic Phenomena Chapter 12 Electrostatic Phenomena 1. History Electric Charge The ancient Greeks noticed that if you rubbed amber (petrified tree resin) on fur, then the amber would have a property that it could attract

More information

Chapter 19 Electric Charges, Forces, and Fields

Chapter 19 Electric Charges, Forces, and Fields Chapter 19 Electric Charges, Forces, and Fields Outline 19-1 Electric Charge 19-2 Insulators and Conductors 19-3 Coulomb s Law 19-4 The Electric Field 19-5 Electric Field Lines 19-6 Shield and Charging

More information

Chapter 2. Electric Fields Field Intensity Due to a Point Charge

Chapter 2. Electric Fields Field Intensity Due to a Point Charge Chapter 2 Electric Fields An electric field exists in a region if electrical forces are exerted on charged bodies in that region. The direction of an electric field at a point is the direction in which

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are primarily conceptual questions designed to see whether you understand the main concepts of the chapter. 1. (a) If the electric field at a particular point is

More information

Some differences: Some basic similarities: Charges. Electrons vs. Protons 4/3/15. Chapters 22-25: Electromagnetism!

Some differences: Some basic similarities: Charges. Electrons vs. Protons 4/3/15. Chapters 22-25: Electromagnetism! Chapters 22-25: Electromagnetism! Electric Force vs. Gravitational Force What properties does the gravitational force depend on? What properties does the electric force depend on? F grav = Gm 1 m 2 /d

More information

On the other hand, if we measured the potential difference between A and C we would get 0 V.

On the other hand, if we measured the potential difference between A and C we would get 0 V. DAY 3 Summary of Topics Covered in Today s Lecture The Gradient U g = -g. r and U E = -E. r. Since these equations will give us change in potential if we know field strength and distance, couldn t we calculate

More information

Physics 1051 Lecture 14. Electric Potential. Physics General Physics II Oscillations, Waves and Magnetism

Physics 1051 Lecture 14. Electric Potential. Physics General Physics II Oscillations, Waves and Magnetism Physics 1051 Lecture 14 Electric Potential Lecture 14 - Contents 20.0 Describing Electric Phenomenon using Electric Potential 20.1 Electric Potential Difference and Electric Potential 20.2 Potential Difference

More information

Electric Force and Coulombs Law

Electric Force and Coulombs Law Electric Force and Coulombs Law 1 Coulombs law is an inverse squared law prove this graphically / experimentally 2 NOTE: THIS IS ONLY FOR POINT CHARGES. Schematics I.) +5C 3C II.) Q Q 3 III.) more than

More information

EX. Potential for uniformly charged thin ring

EX. Potential for uniformly charged thin ring EX. Potential for uniformly charged thin ring Q dq r R dφ 0 V ( Z ) =? z kdq Q Q V =, dq = Rdϕ = dϕ Q r 2πR 2π 2π k Q 0 = d ϕ 0 r 2π kq 0 2π = 0 d ϕ 2π r kq 0 = r kq 0 = 2 2 R + z EX. Potential for uniformly

More information

Motion of Charged Particles in Electric Fields. Part A Motion of a charged particle due to the presence of another charged particle

Motion of Charged Particles in Electric Fields. Part A Motion of a charged particle due to the presence of another charged particle Motion of Charged Particles in Electric Fields We will be looking at two situations in which a charged particle is moving in an electric field. The first situation occurs when the motion of the charged

More information

Algebra Based Physics Electric Field, Potential Energy and Voltage

Algebra Based Physics Electric Field, Potential Energy and Voltage 1 Algebra Based Physics Electric Field, Potential Energy and Voltage 2016 04 19 www.njctl.org 2 Electric Field, Potential Energy and Voltage Click on the topic to go to that section Electric Field *Electric

More information

Ch 25 Electric Potential

Ch 25 Electric Potential Ch 25 Electric Potential Electric Energy, Electric Potential Energy concepts are going to be extremely important to us as we consider the behavior of charges in electric fields. How do energy concepts

More information

Exam 1 Solutions. The ratio of forces is 1.0, as can be seen from Coulomb s law or Newton s third law.

Exam 1 Solutions. The ratio of forces is 1.0, as can be seen from Coulomb s law or Newton s third law. Prof. Eugene Dunnam Prof. Paul Avery Feb. 6, 007 Exam 1 Solutions 1. A charge Q 1 and a charge Q = 1000Q 1 are located 5 cm apart. The ratio of the electrostatic force on Q 1 to that on Q is: (1) none

More information