IBIS2006 p.1/32

Size: px
Start display at page:

Download "IBIS2006 p.1/32"

Transcription

1 - #$ %'& -! "! IBIS2006 p.1/32

2 1. Introduction....!! IBIS2006 p.2/32 #$ %'&

3 Six Degrees of Separation 6 S.Milgram Physiology Today WWW 19 d = log 10 N R.Albert et al. Nature ! : #$ %'& IBIS2006 p.3/32

4 Examples: Internet and WWW Internet connectivity with selected backbone ISPs (CAIDA) Nature networks/ppt/sandiego.ppt/ #$ %'& IBIS2006 p.4/32

5 Scale-free networks SF : : : WWW P (k) k γ 2 < γ < 3 #$ %'& IBIS2006 p.5/32

6 q = 1 f Robustness IBIS2006 p.6/32 S s f #$ %'&

7 2. Generating function k. G 0 (x) def = k P (k)x k P (k) x λ λk P (k) = e k! G 0 (x) = k=0 P (k)x k = k = G 0(1) = k=0 [ ] d dx eλ(x 1) e λλk k! xk = e λ(x 1) x=1 = λ. #$ %'& IBIS2006 p.7/32

8 Generating function (cont.) k v v k kp (k)xk j jp (j) = x G 0(x) def G 0 (1) = xg 1 (x). 2 G 0 (G 1 (x)) = k P (k) [G 1 (x)] k. x x G1(x) G1(x) v v" x v (a) 1 step v (b) 2 step #$ %'& IBIS2006 p.8/32

9 3. Cluster size H 1 (x) = P 1 (s)x s s H 1 (x) = xg 1 (H 1 (x)) H 0 (x) = xg 0 (H 1 (x)). s = H 0(1) = 1 + G 0(1) 1 G 1 (1). N s G 1 (1) = 1 k2 / k = 2. #$ %'& IBIS2006 p.9/32

10 Cite Percolation q P (k) P ( k) = k= k P (k) k C kq k(1 q) k k k = k k P ( k) = n np (n)q = k q. k = 1: P (1) 1 C 1 q(1 q) 0 +P (2) 2 C 1 q(1 q) 2 1 +P (3) 3 C 1 q(1 q) k = 2: 2P (2) 2 C 2 q 2 (1 q) 0 +2P (3) 3 C 2 q 2 (1 q) k = 3: 3P (3) 3 C 3 q 3 (1 q) P (1)q +2P (2)q +3P (3)q +... IBIS2006 p.10/32

11 Cite Percolation (cont.) k 2 = k k 2 P ( k) = k 2 q 2 + k q(1 q). SF q c 2 = k 2 k = q c( k 2 k ) + k k q c = 1 k 2 / k 1. 2 < γ < 3 k 2 = k 2 P (k) k 2 γ q c 0: R.Cohen et al. PRL IBIS2006 p.11/32

12 4. Geographical constraints M.T.Gastner and M.E.J.Newman Euro.Phys. J. B 49(2) IBIS2006 p.12/32

13 4. Geographical constraints L M.T.Gastner and M.E.J.Newman Euro.Phys. J. B 49(2) IBIS2006 p.12/32

14 4. Geographical constraints L M.T.Gastner and M.E.J.Newman Euro.Phys. J. B 49(2) P (k) IBIS2006 p.12/32

15 Terminated Nodes q 1 (a) (b) H (1) def 1 (x) = 1 F 1 (1) + xf (1) 1 (H 1 (x)) F (1) 1 (x) def = q k kp (k)x k 2 = x 1 F 1 (x) : : q : k-2 q : k-2 (a) return (b) terminate IBIS2006 p.13/32

16 Effect of Cycles (a) H (m 1) 1 (x) = 1 F 1 (1) + xf (1) 1 (H 1 (x)) H (m 1 1) 1 (x) (b) n L (k) L 2 x nl... m1 m2 : : k nl (a) a cycle L.Huang et al. Europhys.Lett. 72(1) (b) nl-cycles IBIS2006 p.14/32

17 Effect of Cycles (cont.) H 1 (x) = 1 F 1 (1) + q k [H(m 1) 1 (x)h (m 2) 1 (x)] n L(k) [H 1 (x)] k 1 2n L(k) s = H 1 (1) s = q + 2 qm1 qm2 1 q q c = q 2 k kn L(k) k(k 1) 2 kn L (k) k ( 1 2 (q c ) m 1 (qc ) m 2 2(1 qc ) q c k(k 2) k ) IBIS2006 p.15/32

18 Effect of Triangles 3 m 1 = m 2 = 1 C(k) q c = k(k 1) ( 1 q c k k(k 2) k ) C(k) (k 1)2 2 : : : : q c > q IBIS2006 p.16/32

19 Geographical SF networks Random Apollonian: Delaunay-like SF: Delaunay Triangulation: = + 1st diagonal flip 2nd diagonal flip IBIS2006 p.17/32

20 Topological Structure RA DT RA+NN(one) 4 Y.Hayashi and J.Matsukubo PRE IBIS2006 p.18/32

21 Degree Distribution RA DT RA + NN (one) RA + NN (all) P(k) k RA: power law DT: lognormal RA+NN: power law with exponential cutoff (the deg. of hubs are reduced) IBIS2006 p.19/32

22 Randomly Rewired Nets : : : : : : : : : : : : : : : : Rewiring a pair of links with the same degree at each node Maslov et al. Physica A IBIS2006 p.20/32

23 Tolerance to Failures GC S/N s <s> RA RA+NN(one) RA+NN(all) DT RA RA+NN(one) RA+NN(all) DT <s> RA RA+NN(one) RA+NN(all) DT RA RA+NN(one) RA+NN(all) DT Relative size S/N f Relative size S/N f Fraction f of failures (a) geographical nets (RA: DT: RA+NN(one): +) Fraction f of failures (b) rewired nets IBIS2006 p.21/32

24 Damages by Failures Initial N=200 randomly removed 32 nodes RA DT IBIS2006 p.22/32

25 Tolerance to Attacks Relative size S/N <s> RA RA+NN(one) RA+NN(all) DT RA RA+NN(one) RA+NN(all) DT f Fraction f of attacks (a) geographical nets Relative size S/N RA RA+NN(one) RA+NN(all) DT f Fraction f of attacks <s> (b) rewired nets RA RA+NN(one) RA+NN(all) DT IBIS2006 p.23/32

26 Damages by Attacks Initial N=200 targeted attacks on 16 hubs RA DT RA IBIS2006 p.24/32

27 Damages by Attacks (cont.) Initial N=200 targeted attacks on 16 hubs RA+NN(one) RA+NN(all) 4 RA IBIS2006 p.25/32

28 8. Summary P (k) 1 qc = k 2 / k 1 qc 0 SF IBIS2006 p.26/32

29 A1. Random Apollonian Net Configuration: iterative subdivision of a randomly chosen triangle from an initial triangulation Initial triangulation Add a new node inside a chosen triangle Connect to its closest 3 nodes Some long-range links naturally appear in narrow collapsed triangles near the boundary edges Zhou Yan Wang Phys. Rev. E IBIS2006 p.27/32

30 A2. Voronoi and Delaunay Optimal triangulation in some geometric criteria: maximim angle minimax circumcircle short path length in the same order as the direct Euclidean dist. Dual Graph Consider the combination of RA (by triangulation on a plane) and DT to avoid the long-range links IBIS2006 p.28/32

31 A3. Efficient Routing Planar triangulation: reasonable math. abstraction of ad hoc net. (each triangle forms a service region) Moreover a memoryless no defeat and competitive online routing algorithm has been developed for such networks taking into account the face. Source Destination Bose and Morin SIAM J. of Comp. 33(4) 2004 IBIS2006 p.29/32

32 A4. Dense-get-denser Migration-in/out versus population density of Japanese prefectures in each year 1e+07 1e+06 "cum_in_1960" "cum_in_1965" "cum_in_1970" "cum_in_1975" "cum_in_1980" "cum_in_1985" "cum_in_1990" "cum_in_1995" "cum_in_2000" "cum_in_2003" 1e+07 1e+06 "cum_out_1960" "cum_out_1965" "cum_out_1970" "cum_out_1975" "cum_out_1980" "cum_out_1985" "cum_out_1990" "cum_out_1995" "cum_out_2000" "cum_out_2003" cum. migration-in cum. migration-out population density population density IBIS2006 p.30/32

33 A5. Classes of Geo. SF Nets Modulated BA: Π i k i l α rand. position of node SF on lattices: connect within r = A k 1/d i Space-filling: subdivision of a region (heterogeneous dist. of nodes) (a) BA (b) SFL (c) RAN Step 0 Step 1 Step 2 initial N0 nodes with m links assign a degree k initial trianglulation add new node saturated node select a node connect to the neighborhoods 1/2 in the radius r = A k add new node into a chosen triangle new m links : pref. attach. connect to its 3 nodes IBIS2006 p.31/32

34 A6. Planarity and Shortness class planarity of net shortness of links Modulated BA Manna 02 crossing links with disadvantaged Xulvi-Brunet 02 (not prohibited) long-range links SF on lattices ben-avraham 03 cross of regular long shortcuts Warren 02 links and shortcuts from hubs Space-filling Apollonian nets. by subdivision long-range links Doye 05 Zhou 04 of a selected region in narrow triangles IBIS2006 p.32/32

Numerical evaluation of the upper critical dimension of percolation in scale-free networks

Numerical evaluation of the upper critical dimension of percolation in scale-free networks umerical evaluation of the upper critical dimension of percolation in scale-free networks Zhenhua Wu, 1 Cecilia Lagorio, 2 Lidia A. Braunstein, 1,2 Reuven Cohen, 3 Shlomo Havlin, 3 and H. Eugene Stanley

More information

MATH6142 Complex Networks Exam 2016

MATH6142 Complex Networks Exam 2016 MATH642 Complex Networks Exam 26 Solution Problem a) The network is directed because the adjacency matrix is not symmetric. b) The network is shown in Figure. (4 marks)[unseen] 4 3 Figure : The directed

More information

Mini course on Complex Networks

Mini course on Complex Networks Mini course on Complex Networks Massimo Ostilli 1 1 UFSC, Florianopolis, Brazil September 2017 Dep. de Fisica Organization of The Mini Course Day 1: Basic Topology of Equilibrium Networks Day 2: Percolation

More information

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence ECS 289 F / MAE 298, Lecture 15 May 20, 2014 Diffusion, Cascades and Influence Diffusion and cascades in networks (Nodes in one of two states) Viruses (human and computer) contact processes epidemic thresholds

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

ECS 253 / MAE 253, Lecture 15 May 17, I. Probability generating function recap

ECS 253 / MAE 253, Lecture 15 May 17, I. Probability generating function recap ECS 253 / MAE 253, Lecture 15 May 17, 2016 I. Probability generating function recap Part I. Ensemble approaches A. Master equations (Random graph evolution, cluster aggregation) B. Network configuration

More information

Stability and topology of scale-free networks under attack and defense strategies

Stability and topology of scale-free networks under attack and defense strategies Stability and topology of scale-free networks under attack and defense strategies Lazaros K. Gallos, Reuven Cohen 2, Panos Argyrakis, Armin Bunde 3, and Shlomo Havlin 2 Department of Physics, University

More information

MAE 298, Lecture 4 April 9, Exploring network robustness

MAE 298, Lecture 4 April 9, Exploring network robustness MAE 298, Lecture 4 April 9, 2006 Switzerland Germany Spain Italy Japan Netherlands Russian Federation Sweden UK USA Unknown Exploring network robustness What is a power law? (Also called a Pareto Distribution

More information

Random Networks. Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds

Random Networks. Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks CSYS/MATH 303, Spring, 2011 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under the

More information

The Extreme Vulnerability of Network of Networks

The Extreme Vulnerability of Network of Networks The Extreme Vulnerability of Network of Networks Shlomo Havlin Protein networks, Brain networks Bar-Ilan University Physiological systems Infrastructures Israel Cascading disaster-sudden collapse.. Two

More information

Percolation in Complex Networks: Optimal Paths and Optimal Networks

Percolation in Complex Networks: Optimal Paths and Optimal Networks Percolation in Complex Networs: Optimal Paths and Optimal Networs Shlomo Havlin Bar-Ilan University Israel Complex Networs Networ is a structure of N nodes and 2M lins (or M edges) Called also graph in

More information

Random Networks. Complex Networks, CSYS/MATH 303, Spring, Prof. Peter Dodds

Random Networks. Complex Networks, CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks, CSYS/MATH 303, Spring, 2010 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under

More information

Attack Strategies on Complex Networks

Attack Strategies on Complex Networks Attack Strategies on Complex Networks Lazaros K. Gallos 1, Reuven Cohen 2, Fredrik Liljeros 3, Panos Argyrakis 1, Armin Bunde 4, and Shlomo Havlin 5 1 Department of Physics, University of Thessaloniki,

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 4 May 2000

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 4 May 2000 Topology of evolving networks: local events and universality arxiv:cond-mat/0005085v1 [cond-mat.dis-nn] 4 May 2000 Réka Albert and Albert-László Barabási Department of Physics, University of Notre-Dame,

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/30/17 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 2

More information

INCT2012 Complex Networks, Long-Range Interactions and Nonextensive Statistics

INCT2012 Complex Networks, Long-Range Interactions and Nonextensive Statistics Complex Networks, Long-Range Interactions and Nonextensive Statistics L. R. da Silva UFRN DFTE Natal Brazil 04/05/12 1 OUR GOALS Growth of an asymptotically scale-free network including metrics. Growth

More information

Spanning trees on the Sierpinski gasket

Spanning trees on the Sierpinski gasket Spanning trees on the Sierpinski gasket Shu-Chiuan Chang (1997-2002) Department of Physics National Cheng Kung University Tainan 70101, Taiwan and Physics Division National Center for Theoretical Science

More information

Self-organized scale-free networks

Self-organized scale-free networks Self-organized scale-free networks Kwangho Park and Ying-Cheng Lai Departments of Electrical Engineering, Arizona State University, Tempe, Arizona 85287, USA Nong Ye Department of Industrial Engineering,

More information

ECS 289 / MAE 298, Lecture 7 April 22, Percolation and Epidemiology on Networks, Part 2 Searching on networks

ECS 289 / MAE 298, Lecture 7 April 22, Percolation and Epidemiology on Networks, Part 2 Searching on networks ECS 289 / MAE 298, Lecture 7 April 22, 2014 Percolation and Epidemiology on Networks, Part 2 Searching on networks 28 project pitches turned in Announcements We are compiling them into one file to share

More information

Evolutionary Games on Networks. Wen-Xu Wang and G Ron Chen Center for Chaos and Complex Networks

Evolutionary Games on Networks. Wen-Xu Wang and G Ron Chen Center for Chaos and Complex Networks Evolutionary Games on Networks Wen-Xu Wang and G Ron Chen Center for Chaos and Complex Networks Email: wenxuw@gmail.com; wxwang@cityu.edu.hk Cooperative behavior among selfish individuals Evolutionary

More information

Complex networks: an introduction

Complex networks: an introduction Alain Barrat Complex networks: an introduction CPT, Marseille, France ISI, Turin, Italy http://www.cpt.univ-mrs.fr/~barrat http://cxnets.googlepages.com Plan of the lecture I. INTRODUCTION II. I. Networks:

More information

Network Science: Principles and Applications

Network Science: Principles and Applications Network Science: Principles and Applications CS 695 - Fall 2016 Amarda Shehu,Fei Li [amarda, lifei](at)gmu.edu Department of Computer Science George Mason University 1 Outline of Today s Class 2 Robustness

More information

6.207/14.15: Networks Lecture 12: Generalized Random Graphs

6.207/14.15: Networks Lecture 12: Generalized Random Graphs 6.207/14.15: Networks Lecture 12: Generalized Random Graphs 1 Outline Small-world model Growing random networks Power-law degree distributions: Rich-Get-Richer effects Models: Uniform attachment model

More information

arxiv: v1 [physics.soc-ph] 14 Jun 2013

arxiv: v1 [physics.soc-ph] 14 Jun 2013 Percolation of a general network of networks Jianxi Gao,,2 Sergey V. Buldyrev, 3 H. Eugene Stanley, 2 Xiaoming Xu, and Shlomo Havlin, 4 Department of Automation, Shanghai Jiao Tong University, 8 Dongchuan

More information

Evolution of a social network: The role of cultural diversity

Evolution of a social network: The role of cultural diversity PHYSICAL REVIEW E 73, 016135 2006 Evolution of a social network: The role of cultural diversity A. Grabowski 1, * and R. A. Kosiński 1,2, 1 Central Institute for Labour Protection National Research Institute,

More information

Geographical Embedding of Scale-Free Networks

Geographical Embedding of Scale-Free Networks Geographical Embedding of Scale-Free Networks Daniel ben-avraham a,, Alejandro F. Rozenfeld b, Reuven Cohen b, Shlomo Havlin b, a Department of Physics, Clarkson University, Potsdam, New York 13699-5820,

More information

Understanding spatial connectivity of individuals with non-uniform population density

Understanding spatial connectivity of individuals with non-uniform population density 367, 3321 3329 doi:10.1098/rsta.2009.0089 Understanding spatial connectivity of individuals with non-uniform population density BY PU WANG 1,2 AND MARTA C. GONZÁLEZ 1, * 1 Center for Complex Network Research,

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 29 Apr 2008

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 29 Apr 2008 Self-similarity in Fractal and Non-fractal Networks arxiv:cond-mat/0605587v2 [cond-mat.stat-mech] 29 Apr 2008 J. S. Kim, B. Kahng, and D. Kim Center for Theoretical Physics & Frontier Physics Research

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

Fractal dimensions ofpercolating networks

Fractal dimensions ofpercolating networks Available online at www.sciencedirect.com Physica A 336 (2004) 6 13 www.elsevier.com/locate/physa Fractal dimensions ofpercolating networks Reuven Cohen a;b;, Shlomo Havlin b a Department of Computer Science

More information

Groups of vertices and Core-periphery structure. By: Ralucca Gera, Applied math department, Naval Postgraduate School Monterey, CA, USA

Groups of vertices and Core-periphery structure. By: Ralucca Gera, Applied math department, Naval Postgraduate School Monterey, CA, USA Groups of vertices and Core-periphery structure By: Ralucca Gera, Applied math department, Naval Postgraduate School Monterey, CA, USA Mostly observed real networks have: Why? Heavy tail (powerlaw most

More information

Complex (Biological) Networks

Complex (Biological) Networks Complex (Biological) Networks Today: Measuring Network Topology Thursday: Analyzing Metabolic Networks Elhanan Borenstein Some slides are based on slides from courses given by Roded Sharan and Tomer Shlomi

More information

Average Range and Network Synchronizability

Average Range and Network Synchronizability Commun. Theor. Phys. (Beijing, China) 53 (2010) pp. 115 120 c Chinese Physical Society and IOP Publishing Ltd Vol. 53, No. 1, January 15, 2010 Average Range and Network Synchronizability LIU Chao ( ),

More information

Integration. Tuesday, December 3, 13

Integration. Tuesday, December 3, 13 4 Integration 4.3 Riemann Sums and Definite Integrals Objectives n Understand the definition of a Riemann sum. n Evaluate a definite integral using properties of definite integrals. 3 Riemann Sums 4 Riemann

More information

Critical behavior of blind spots in sensor networks

Critical behavior of blind spots in sensor networks CHAOS 17, 023132 2007 Critical behavior of blind spots in sensor networks Liang Huang Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287 Ying-Cheng Lai Department of Electrical

More information

Social Networks- Stanley Milgram (1967)

Social Networks- Stanley Milgram (1967) Complex Networs Networ is a structure of N nodes and 2M lins (or M edges) Called also graph in Mathematics Many examples of networs Internet: nodes represent computers lins the connecting cables Social

More information

Shlomo Havlin } Anomalous Transport in Scale-free Networks, López, et al,prl (2005) Bar-Ilan University. Reuven Cohen Tomer Kalisky Shay Carmi

Shlomo Havlin } Anomalous Transport in Scale-free Networks, López, et al,prl (2005) Bar-Ilan University. Reuven Cohen Tomer Kalisky Shay Carmi Anomalous Transport in Complex Networs Reuven Cohen Tomer Kalisy Shay Carmi Edoardo Lopez Gene Stanley Shlomo Havlin } } Bar-Ilan University Boston University Anomalous Transport in Scale-free Networs,

More information

Universal robustness characteristic of weighted networks against cascading failure

Universal robustness characteristic of weighted networks against cascading failure PHYSICAL REVIEW E 77, 06101 008 Universal robustness characteristic of weighted networks against cascading failure Wen-Xu Wang* and Guanrong Chen Department of Electronic Engineering, City University of

More information

Lecture 10. Under Attack!

Lecture 10. Under Attack! Lecture 10 Under Attack! Science of Complex Systems Tuesday Wednesday Thursday 11.15 am 12.15 pm 11.15 am 12.15 pm Feb. 26 Feb. 27 Feb. 28 Mar.4 Mar.5 Mar.6 Mar.11 Mar.12 Mar.13 Mar.18 Mar.19 Mar.20 Mar.25

More information

Synchronization Transitions in Complex Networks

Synchronization Transitions in Complex Networks Synchronization Transitions in Complex Networks Y. Moreno 1,2,3 1 Institute for Biocomputation and Physics of Complex Systems (BIFI) University of Zaragoza, Zaragoza 50018, Spain 2 Department of Theoretical

More information

arxiv: v1 [physics.soc-ph] 23 May 2010

arxiv: v1 [physics.soc-ph] 23 May 2010 Dynamics on Spatial Networks and the Effect of Distance Coarse graining An Zeng, Dong Zhou, Yanqing Hu, Ying Fan, Zengru Di Department of Systems Science, School of Management and Center for Complexity

More information

Scale-Free Networks. Outline. Redner & Krapivisky s model. Superlinear attachment kernels. References. References. Scale-Free Networks

Scale-Free Networks. Outline. Redner & Krapivisky s model. Superlinear attachment kernels. References. References. Scale-Free Networks Outline Complex, CSYS/MATH 303, Spring, 200 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under the

More information

poster presented at: Complex Networks: from Biology to Information Technology Pula (CA), Italy, July 2-6, 2007

poster presented at: Complex Networks: from Biology to Information Technology Pula (CA), Italy, July 2-6, 2007 poster presented at: Complex Networks: from Biology to Information Technology Pula (CA), Italy, July 2-6, 2007 What network analysis can reveal about tourism destinations Rodolfo Baggio Master in Economics

More information

Optimal contact process on complex networks

Optimal contact process on complex networks Optimal contact process on complex networks Rui Yang, 1 Tao Zhou, 2,3 Yan-Bo Xie, 2 Ying-Cheng Lai, 1,4 and Bing-Hong Wang 2 1 Department of Electrical Engineering, Arizona State University, Tempe, Arizona

More information

Model for cascading failures with adaptive defense in complex networks

Model for cascading failures with adaptive defense in complex networks Model for cascading failures with adaptive defense in complex networks Hu Ke( 胡柯 ), Hu Tao( 胡涛 ) and Tang Yi( 唐翌 ) Department of Physics and Institute of Modern Physics, Xiangtan University, Xiangtan 411105,

More information

Good Triangulations. Jean-Daniel Boissonnat DataShape, INRIA

Good Triangulations. Jean-Daniel Boissonnat DataShape, INRIA Good Triangulations Jean-Daniel Boissonnat DataShape, INRIA http://www-sop.inria.fr/geometrica Algorithmic Geometry Good Triangulations J-D. Boissonnat 1 / 29 Definition and existence of nets Definition

More information

Networks as a tool for Complex systems

Networks as a tool for Complex systems Complex Networs Networ is a structure of N nodes and 2M lins (or M edges) Called also graph in Mathematics Many examples of networs Internet: nodes represent computers lins the connecting cables Social

More information

Tight Stretch Factors for L 1 - and L -Delaunay Triangulations

Tight Stretch Factors for L 1 - and L -Delaunay Triangulations Tight Stretch Factors for L - and L -Delaunay Triangulations Nicolas Bonichon a, Cyril Gavoille a,, Nicolas Hanusse b, Ljubomir Perković c,2, a LaBRI - INRIA Bordeaux Sud-Ouest - University of Bordeaux,

More information

Adventures in random graphs: Models, structures and algorithms

Adventures in random graphs: Models, structures and algorithms BCAM January 2011 1 Adventures in random graphs: Models, structures and algorithms Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM January 2011 2 LECTURE

More information

arxiv: v1 [physics.soc-ph] 27 Dec 2013

arxiv: v1 [physics.soc-ph] 27 Dec 2013 Spatially embedded growing small-world networks arxiv:1312.7165v1 [physics.soc-ph] 27 Dec 2013 Ari Zitin, 1 Alex Gorowara, 1 Shane Squires, 1, 2 1, 2, 3 Mark Herrera, Thomas M. Antonsen, 1, 2, 4 Michelle

More information

Complex (Biological) Networks

Complex (Biological) Networks Complex (Biological) Networks Today: Measuring Network Topology Thursday: Analyzing Metabolic Networks Elhanan Borenstein Some slides are based on slides from courses given by Roded Sharan and Tomer Shlomi

More information

Critical behavior of blind spots in sensor networks

Critical behavior of blind spots in sensor networks Critical behavior of blind spots in sensor networks Liang Huang, Ying-Cheng Lai,, Kwangho Park, Junshan Zhang, and Zhifeng Hu Department of Electrical Engineering, Arizona State University, Tempe, Arizona

More information

Stochastic Models in Computer Science A Tutorial

Stochastic Models in Computer Science A Tutorial Stochastic Models in Computer Science A Tutorial Dr. Snehanshu Saha Department of Computer Science PESIT BSC, Bengaluru WCI 2015 - August 10 to August 13 1 Introduction 2 Random Variable 3 Introduction

More information

Lecture VI Introduction to complex networks. Santo Fortunato

Lecture VI Introduction to complex networks. Santo Fortunato Lecture VI Introduction to complex networks Santo Fortunato Plan of the course I. Networks: definitions, characteristics, basic concepts in graph theory II. III. IV. Real world networks: basic properties

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 12 Jun 2004

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 12 Jun 2004 Apollonian networks José S. Andrade Jr. and Hans J. Herrmann Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil. arxiv:cond-mat/0406295v1 [cond-mat.dis-nn] 12 Jun

More information

Characteristics of Small World Networks

Characteristics of Small World Networks Characteristics of Small World Networks Petter Holme 20th April 2001 References: [1.] D. J. Watts and S. H. Strogatz, Collective Dynamics of Small-World Networks, Nature 393, 440 (1998). [2.] D. J. Watts,

More information

Value of β β = 0 0< β < 1 β = 1 1< β Definition of β-skeleton p 1 L p 2 p 1 p 2 r p 1 p 2 r p 1 p 2 r r = L 2β L r = 2 Lβ r = 2 Example of neighborhoo

Value of β β = 0 0< β < 1 β = 1 1< β Definition of β-skeleton p 1 L p 2 p 1 p 2 r p 1 p 2 r p 1 p 2 r r = L 2β L r = 2 Lβ r = 2 Example of neighborhoo Road Network Analysis using Geometric Graphs of β-skeleton T. Osaragi 1, Y. Hiraga 2 1 Tokyo Institute of Technology, 2-12-1-W8-10 O-okayama, Meguro-ku, Tokyo 152-8552 Telephone: +81-(0)3-5734-3162 Fax:

More information

Cascades on interdependent networks

Cascades on interdependent networks Cascades on interdependent networks Raissa M. D Souza University of California, Davis Dept of CS, Dept of Mech. and Aero. Eng. Complexity Sciences Center External Professor, Santa Fe Institute A collection

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

Structural properties of urban street patterns and the Multiple Centrality Assessment

Structural properties of urban street patterns and the Multiple Centrality Assessment Structural properties of urban street patterns and the Multiple Centrality Assessment Alessio Cardillo Department of Physics and Astronomy Università degli studi di Catania Complex Networks - Equilibrium

More information

Networks: Lectures 9 & 10 Random graphs

Networks: Lectures 9 & 10 Random graphs Networks: Lectures 9 & 10 Random graphs Heather A Harrington Mathematical Institute University of Oxford HT 2017 What you re in for Week 1: Introduction and basic concepts Week 2: Small worlds Week 3:

More information

Catastrophic Cascade of Failures in Interdependent Networks

Catastrophic Cascade of Failures in Interdependent Networks Catastrophic Cascade of Failures in Interdependent Networs Wor with: S. Buldyrev (NY) R. Parshani (BIU) G. Paul (BU) H. E. Stanley (BU) Nature 464, 1025 (2010 ) New results: Jia Shao (BU) R. Parshani (BIU)

More information

Topology and correlations in structured scale-free networks

Topology and correlations in structured scale-free networks Topology and correlations in structured scale-free networks Alexei Vázquez, 1 Marián Boguñá, 2 Yamir Moreno, 3 Romualdo Pastor-Satorras, 4 and Alessandro Vespignani 5 1 International School for Advanced

More information

Numerical analysis of dissipation of pore water pressure using Natural Element Method

Numerical analysis of dissipation of pore water pressure using Natural Element Method Bulletin of Environment, Pharmacology and Life Sciences Bull. Env.Pharmacol. Life Sci., Vol 4 [Spl issue 1] 2015: 371-375 2014 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal

More information

Chapter 4. RWs on Fractals and Networks.

Chapter 4. RWs on Fractals and Networks. Chapter 4. RWs on Fractals and Networks. 1. RWs on Deterministic Fractals. 2. Linear Excitation on Disordered lattice; Fracton; Spectral dimension 3. RWs on disordered lattice 4. Random Resistor Network

More information

Network models: random graphs

Network models: random graphs Network models: random graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis

More information

Enumeration of spanning trees in a pseudofractal scale-free web. and Shuigeng Zhou

Enumeration of spanning trees in a pseudofractal scale-free web. and Shuigeng Zhou epl draft Enumeration of spanning trees in a pseudofractal scale-free web Zhongzhi Zhang 1,2 (a), Hongxiao Liu 1,2, Bin Wu 1,2 1,2 (b) and Shuigeng Zhou 1 School of Computer Science, Fudan University,

More information

Geometric Spanners With Small Chromatic Number

Geometric Spanners With Small Chromatic Number Geometric Spanners With Small Chromatic Number Prosenjit Bose 1, Paz Carmi 1, Mathieu Couture 1, Anil Maheshwari 1, Michiel Smid 1, and Norbert Zeh 2 1 School of Computer Science, Carleton University 2

More information

Connected spatial random networks

Connected spatial random networks February 4, 2010 Proximity graphs Network distance Proximity graphs Network distance L =1.25 d =2.5 Punctured lattice L =1.32 d =3 L =1.50 d =3 L =1.61 d =3 L =2.00 d =4 Square lattice L =2.71 d =5 L =2.83

More information

A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free

A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free Commun. Theor. Phys. (Beijing, China) 46 (2006) pp. 1011 1016 c International Academic Publishers Vol. 46, No. 6, December 15, 2006 A Modified Earthquake Model Based on Generalized Barabási Albert Scale-Free

More information

Cascading failure spreading on weighted heterogeneous networks

Cascading failure spreading on weighted heterogeneous networks Cascading failure spreading on weighted heterogeneous networks Zhi-Xi Wu, Gang Peng, Wen-Xu Wang, Sammy Chan, and Eric Wing-Ming Wong Department of Electronic Engineering, City University of Hong Kong,

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 24 Mar 2005

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 24 Mar 2005 APS/123-QED Scale-Free Networks Emerging from Weighted Random Graphs Tomer Kalisky, 1, Sameet Sreenivasan, 2 Lidia A. Braunstein, 2,3 arxiv:cond-mat/0503598v1 [cond-mat.dis-nn] 24 Mar 2005 Sergey V. Buldyrev,

More information

Solutions: Problem Set 4 Math 201B, Winter 2007

Solutions: Problem Set 4 Math 201B, Winter 2007 Solutions: Problem Set 4 Math 2B, Winter 27 Problem. (a Define f : by { x /2 if < x

More information

arxiv: v1 [math.st] 1 Nov 2017

arxiv: v1 [math.st] 1 Nov 2017 ASSESSING THE RELIABILITY POLYNOMIAL BASED ON PERCOLATION THEORY arxiv:1711.00303v1 [math.st] 1 Nov 2017 SAJADI, FARKHONDEH A. Department of Statistics, University of Isfahan, Isfahan 81744,Iran; f.sajadi@sci.ui.ac.ir

More information

arxiv:cond-mat/ v2 6 Aug 2002

arxiv:cond-mat/ v2 6 Aug 2002 Percolation in Directed Scale-Free Networs N. Schwartz, R. Cohen, D. ben-avraham, A.-L. Barabási and S. Havlin Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan, Israel Department

More information

The architecture of complexity: the structure and dynamics of complex networks.

The architecture of complexity: the structure and dynamics of complex networks. SMR.1656-36 School and Workshop on Structure and Function of Complex Networks 16-28 May 2005 ------------------------------------------------------------------------------------------------------------------------

More information

V 5 Robustness and Modularity

V 5 Robustness and Modularity Bioinformatics 3 V 5 Robustness and Modularity Mon, Oct 29, 2012 Network Robustness Network = set of connections Failure events: loss of edges loss of nodes (together with their edges) loss of connectivity

More information

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

201B, Winter 11, Professor John Hunter Homework 9 Solutions

201B, Winter 11, Professor John Hunter Homework 9 Solutions 2B, Winter, Professor John Hunter Homework 9 Solutions. If A : H H is a bounded, self-adjoint linear operator, show that A n = A n for every n N. (You can use the results proved in class.) Proof. Let A

More information

Generating and analyzing spatial social networks

Generating and analyzing spatial social networks Comput Math Organ Theory DOI 10.1007/s10588-016-9232-2 MANUSCRIPT Generating and analyzing spatial social networks Meysam Alizadeh 1,2 Claudio Cioffi-Revilla 1,2 Andrew Crooks 1,2 Springer Science+Business

More information

Absence of depletion zone effects for the trapping reaction in complex networks

Absence of depletion zone effects for the trapping reaction in complex networks Absence of depletion zone effects for the trapping reaction in complex networks Aristotelis Kittas* and Panos Argyrakis Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki,

More information

1 Review of Probability

1 Review of Probability 1 Review of Probability Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.) of a random variable X is denoted by F (x) = P (X x), < x

More information

arxiv: v2 [cond-mat.dis-nn] 21 Jun 2016

arxiv: v2 [cond-mat.dis-nn] 21 Jun 2016 J Stat Phys manuscript No. (will be inserted by the editor) Spectral properties of unimodular lattice triangulations Benedikt Krüger Ella Schmidt Klaus Mecke arxiv:3.265v2 [cond-mat.dis-nn] 21 Jun 2 Received:

More information

Analysis of Robust PCA via Local Incoherence

Analysis of Robust PCA via Local Incoherence Analysis of Robust PCA via Local Incoherence Huishuai Zhang Department of EECS Syracuse University Syracuse, NY 3244 hzhan23@syr.edu Yi Zhou Department of EECS Syracuse University Syracuse, NY 3244 yzhou35@syr.edu

More information

Minimum spanning trees of weighted scale-free networks

Minimum spanning trees of weighted scale-free networks EUROPHYSICS LETTERS 15 October 2005 Europhys. Lett., 72 (2), pp. 308 314 (2005) DOI: 10.1209/epl/i2005-10232-x Minimum spanning trees of weighted scale-free networks P. J. Macdonald, E. Almaas and A.-L.

More information

Erzsébet Ravasz Advisor: Albert-László Barabási

Erzsébet Ravasz Advisor: Albert-László Barabási Hierarchical Networks Erzsébet Ravasz Advisor: Albert-László Barabási Introduction to networks How to model complex networks? Clustering and hierarchy Hierarchical organization of cellular metabolism The

More information

arxiv:cond-mat/ v1 3 Sep 2004

arxiv:cond-mat/ v1 3 Sep 2004 Effects of Community Structure on Search and Ranking in Information Networks Huafeng Xie 1,3, Koon-Kiu Yan 2,3, Sergei Maslov 3 1 New Media Lab, The Graduate Center, CUNY New York, NY 10016, USA 2 Department

More information

Quantum computers still work with 25% of their qubits missing

Quantum computers still work with 25% of their qubits missing Quantum computers still work with 25% of their qubits missing Sean Barrett Tom Stace (UQ) Phys. Rev. Lett. 102, 200501(2009) Phys. Rev. A 81, 022317 (2010) Phys. Rev. Lett. 105, 200502 (2010) Outline Loss/leakage

More information

Midterm Exam 1 (Solutions)

Midterm Exam 1 (Solutions) EECS 6 Probability and Random Processes University of California, Berkeley: Spring 07 Kannan Ramchandran February 3, 07 Midterm Exam (Solutions) Last name First name SID Name of student on your left: Name

More information

Introduction to Probability. Ariel Yadin. Lecture 10. Proposition Let X be a discrete random variable, with range R and density f X.

Introduction to Probability. Ariel Yadin. Lecture 10. Proposition Let X be a discrete random variable, with range R and density f X. Introduction to Probability Ariel Yadin Lecture 1 1. Expectation - Discrete Case Proposition 1.1. Let X be a discrete random variable, with range R and density f X. Then, *** Jan. 3 *** Expectation for

More information

arxiv: v2 [physics.soc-ph] 15 Nov 2017

arxiv: v2 [physics.soc-ph] 15 Nov 2017 arxiv:1702.00239v2 [physics.soc-ph] 15 Nov 2017 Mean Field Analysis of Algorithms for Scale-free Networks in Molecular Biology S Konini and EJ Janse van Rensburg Department of Mathematics and Statistics,

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 20, 2012 Introduction Introduction The world of the model-builder

More information

Networks and stability

Networks and stability Networks and stability Part 1B. Network topology Peter Csermely www.weaklink.sote.hu csermelypeter@yahoo.com 1. network topology 2. network dynamics 3. examples for networks 4. synthesis (complex equilibria,

More information

Discrete Differential Geometry. Discrete Laplace-Beltrami operator and discrete conformal mappings.

Discrete Differential Geometry. Discrete Laplace-Beltrami operator and discrete conformal mappings. Discrete differential geometry. Discrete Laplace-Beltrami operator and discrete conformal mappings. Technische Universität Berlin Geometric Methods in Classical and Quantum Lattice Systems, Caputh, September

More information

5.5 Special Rights. A Solidify Understanding Task

5.5 Special Rights. A Solidify Understanding Task SECONDARY MATH III // MODULE 5 MODELING WITH GEOMETRY 5.5 In previous courses you have studied the Pythagorean theorem and right triangle trigonometry. Both of these mathematical tools are useful when

More information

arxiv: v1 [physics.soc-ph] 15 Oct 2016

arxiv: v1 [physics.soc-ph] 15 Oct 2016 localized attack on clustering networks Gaogao Dong,, 2, Huifang Hao, Ruijin Du, Shuai Shao, H. Eugene. Stanley, 2 and Havlin Shlomo 3 Nonlinear Scientific Research Center, Faculty of Science, Jiangsu

More information

Measuring the shape of degree distributions

Measuring the shape of degree distributions Measuring the shape of degree distributions Dr Jennifer Badham Visiting Fellow SEIT, UNSW Canberra research@criticalconnections.com.au Overview Context What does shape mean for degree distribution Why

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 6, No. 1, pp. 63~67 (200) J O U R N A L O Ceramic Processing Research Crystal structure extraction in materials using Euclidean Voronoi diagram and angular

More information