Catastrophic Cascade of Failures in Interdependent Networks

Size: px
Start display at page:

Download "Catastrophic Cascade of Failures in Interdependent Networks"

Transcription

1 Catastrophic Cascade of Failures in Interdependent Networs Wor with: S. Buldyrev (NY) R. Parshani (BIU) G. Paul (BU) H. E. Stanley (BU) Nature 464, 1025 (2010 ) New results: Jia Shao (BU) R. Parshani (BIU) (PRL-in press) Electricity, Communication, Transport Social, Biological.. Shlomo Havlin Bar-Ilan University Israel Two types: Connectivity Dependency

2 Interacting Networs Until now studies focused on the case of a single networ which is isolated and does not interact or influenced by other systems. Such systems rarely occur in nature or in technology - analogous to non-interacting particles (molecules, spins). Results for interacting networs are surprisingly different from those of single networs.

3

4 Blacout in Italy (28 September 2003) Cyber ttacs- CNN Simul. 02/10 Internet SCD Power grid CSCDE OF FILURES Railway networ, health care systems, financial services, communication systems

5 Blacout in Italy (28 September 2003) SCD Power grid

6 Blacout in Italy (28 September 2003) SCD Power grid

7 Blacout in Italy (28 September 2003) SCD Power grid

8 Further Examples of Interdependent Networs ppear in all aspects of life, nature and technology Economy: Networs of bans, insurance companies, and firms interact and depend on each other. Networ Networ B Physiology: The human body can be regarded as inter-dependent networs. For example, the cardio-vascular networ system, the respiratory system, the brain networ, and the nervous system all depend on each other. Biology: specific cellular function is performed by a networ of interacting proteins. These networs depend on each other through proteins that perform several functions. Further examples: social networs, transportation networs etc. Failure in networ causes failure in B further failure in..cscdes What are the critical percolation thresholds for such interdependent networs? Size of cascade failures? MUTUL PERCOLTION Buldyrev, Parshani, Paul, Stanley, SH, Nature, 464, 1025 (2010)

9 Robustness of a single networ: Percolation Remove randomly (or targeted) a fraction nodes 1 p (ER) (SF) P Size of the largest connected component (cluster) ORDER PRMETER 1 ER: p = 1/ c λ SF, p ( ) (2 λ 3) : p FOR RNDOM REMOVL c = 0 very robust 2 nd order Broader degree-more robust P 0 0 pc Single 2 nd order 1 st order p p c Coupled Cascades, Sudden breadown 1

10 P RESUTS: THEORY and SIMULTIONS: ER Networs after n-cascades of failures Removing 1-p nodes in P p = 2.45 / < pc ER networ Single realizations n Catastrophic cascades just below p c p = f f f = c ( 1)/2 1/ (2 (1 )); e f f f = , p = / ; P = p (1 f ) c FIRST ORDER TRNSITION c 2 For a single networ p = 1/ c

11 Generalization of ER nown result Solution for two interdependent ER with ; B for >> B, p c and = 1/ P = 0 as in single ER p c P ( p ) c If B is fully connected NO further damage can occur to!!! / B

12 PDF of number of cascades n at criticality for ER of size N ln[p(n)] +1/4 ln N n N 1/4 N=1000 N=2000 N=8000 N=8000 N=16000 N=32000 N= nn -1/4

13 IN CONTRST TO SINGLE NETWORKS, COUPLED NETWORKS RE MORE VULNERBLE WHEN DEGREE DIST. IS BRODER ll with = 4 Buldyrev et al, Nature 2010

14 GENERLIZTION: PRTIL DEPENDENCE: Theory and Simulations P Parshani, Buldyrev, S.H. PRL (2010, in press) arxiv: Wea q=0.1: 2 nd Order Strong q=0.8: 1 st Order

15 Strong Coupling Wea Coupling P P q=0.8 q=0.1

16 nalogous to critical point in liquid-gas transition: PRTIL DEPENDENCE

17 Summary and Conclusions First statistical physics approach --mutual percolation-- for Interdependent Networs cascading failures Generalization to Partial Dependence: Strong coupling: first order phase transition; Wea: second order Generalization to Networ of Networs: n interdependent networs Larger n --- more vulnerable Extremely vulnerable, broader degree distribution - more robust in single networ becomes less robust in interacting networs Rich problem: different types of networs and interconnections. Buldyrev et al, NTURE (2010) Parshani et al, (PRL, in press); arxiv: Networ Networ B

18 RNDOM REMOVL PERCOLTION FRMEWORK p nodes left p ( ) p p p1 giant cluster giant cluster p ( ) p p p p ( ) p p p 1 nodes left p ( B p ) 1 p p 2 p ( p ) 2 p p 3 giant cluster p ( ) B p p p p ( B p ) 1 p1 p2 giant cluster

19 Theoretical pproach: Two Networs and B General recursive relations: p2m = pb( p2 m 1) p2 m 1; p2 m = pb( p2 m 1) p on B p = p ( p ) p ; p = p ( p ) p on 2m+ 1 2m 2m 2m+ 1 2m t the final stationar y stage: p = p = p + 2m 1 2m 2m+ 1 define x p and y p x= p( y) p and y= pb( x) p or x= p ( p ( x) p) p B 2m 1 2m

20 nalytical Results: using generating functions x= p ( p ( x) p) p 2 dp ( p ( x) p) dp ( x) dx dx B B 1= p p ( p) = 1 G [1 p(1 f )] 0 f = G [1 p(1 f ) 1 where G ( u) P ( ) u degree generating function 0 B and G ( u) P ( ) u / P ( ) brunching GF 1 SME EQUTIONS FOR NETWORK B Newman, PRE 66, (2002) Shao et al, PRE 80, (2009)

21 Theoretical pproach: Two Networs and B General recursive relations: x = p( y) p and y = pb ( x) p or x= p ( p ( x) p) p transcendental equation B 1 nalytical Results: using generating functions for different types of networs and B Newman, PRE 66, (2002) Shao et al, PRE 80, (2009) pp (pp B (x)) p=0.70 p=0.752 p=0.80 y=x First order x=p 2 x=p 0 =p x

22 Case of two ER networs of same mean degree P FIRST ORDER PHSE- TRNSITION f 1 1 f = exp ; pc = = / 2f 2 f(1 f) nalytical solution for two random networs with any distribution of degrees

The Extreme Vulnerability of Network of Networks

The Extreme Vulnerability of Network of Networks The Extreme Vulnerability of Network of Networks Shlomo Havlin Protein networks, Brain networks Bar-Ilan University Physiological systems Infrastructures Israel Cascading disaster-sudden collapse.. Two

More information

Networks as a tool for Complex systems

Networks as a tool for Complex systems Complex Networs Networ is a structure of N nodes and 2M lins (or M edges) Called also graph in Mathematics Many examples of networs Internet: nodes represent computers lins the connecting cables Social

More information

Percolation of networks with directed dependency links

Percolation of networks with directed dependency links Percolation of networs with directed dependency lins 9] to study the percolation phase transitions in a random networ A with both connectivity and directed dependency lins. Randomly removing a fraction

More information

Social Networks- Stanley Milgram (1967)

Social Networks- Stanley Milgram (1967) Complex Networs Networ is a structure of N nodes and 2M lins (or M edges) Called also graph in Mathematics Many examples of networs Internet: nodes represent computers lins the connecting cables Social

More information

Shlomo Havlin } Anomalous Transport in Scale-free Networks, López, et al,prl (2005) Bar-Ilan University. Reuven Cohen Tomer Kalisky Shay Carmi

Shlomo Havlin } Anomalous Transport in Scale-free Networks, López, et al,prl (2005) Bar-Ilan University. Reuven Cohen Tomer Kalisky Shay Carmi Anomalous Transport in Complex Networs Reuven Cohen Tomer Kalisy Shay Carmi Edoardo Lopez Gene Stanley Shlomo Havlin } } Bar-Ilan University Boston University Anomalous Transport in Scale-free Networs,

More information

Stability and topology of scale-free networks under attack and defense strategies

Stability and topology of scale-free networks under attack and defense strategies Stability and topology of scale-free networks under attack and defense strategies Lazaros K. Gallos, Reuven Cohen 2, Panos Argyrakis, Armin Bunde 3, and Shlomo Havlin 2 Department of Physics, University

More information

Multiplexity in networks

Multiplexity in networks Multiplexity in networs Kwang-Il Goh Department of Physics Korea University Thans to: Kyu-Min Lee, Byungjoon Min, Won-u Cho, Jung Yeol Kim, Jeehye Choi, In-moo Kim, Charlie Brummitt (UC Davis), NRF Korea

More information

arxiv: v1 [physics.soc-ph] 15 Oct 2016

arxiv: v1 [physics.soc-ph] 15 Oct 2016 localized attack on clustering networks Gaogao Dong,, 2, Huifang Hao, Ruijin Du, Shuai Shao, H. Eugene. Stanley, 2 and Havlin Shlomo 3 Nonlinear Scientific Research Center, Faculty of Science, Jiangsu

More information

Estimation of Robustness of Interdependent Networks against Failure of Nodes

Estimation of Robustness of Interdependent Networks against Failure of Nodes Estimation of Robustness of Interdependent Networks against Failure of Nodes Srinjoy Chattopadhyay and Huaiyu Dai Department of Electrical and Computer Engineering, North Carolina State University. Email:

More information

arxiv: v1 [physics.soc-ph] 14 Jun 2013

arxiv: v1 [physics.soc-ph] 14 Jun 2013 Percolation of a general network of networks Jianxi Gao,,2 Sergey V. Buldyrev, 3 H. Eugene Stanley, 2 Xiaoming Xu, and Shlomo Havlin, 4 Department of Automation, Shanghai Jiao Tong University, 8 Dongchuan

More information

arxiv: v1 [physics.soc-ph] 5 Feb 2015

arxiv: v1 [physics.soc-ph] 5 Feb 2015 A Simplified Self-Consistent Probabilities Framewor to Characterize Percolation Phenomena on Interdependent Networs : An Overview Ling Feng, 1 Christopher Pineda Monterola, 1 and Yanqing Hu 2, arxiv:1502.01601v1

More information

Estimation of Robustness of Interdependent Networks against Node Failures

Estimation of Robustness of Interdependent Networks against Node Failures Estimation of Robustness of Interdependent Networks against Node Failures Srinjoy Chattopadhyay and Huaiyu Dai Department of Electrical and Computer Engineering, North Carolina State University Raleigh,

More information

arxiv:cond-mat/ v2 6 Aug 2002

arxiv:cond-mat/ v2 6 Aug 2002 Percolation in Directed Scale-Free Networs N. Schwartz, R. Cohen, D. ben-avraham, A.-L. Barabási and S. Havlin Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan, Israel Department

More information

Percolation in Complex Networks: Optimal Paths and Optimal Networks

Percolation in Complex Networks: Optimal Paths and Optimal Networks Percolation in Complex Networs: Optimal Paths and Optimal Networs Shlomo Havlin Bar-Ilan University Israel Complex Networs Networ is a structure of N nodes and 2M lins (or M edges) Called also graph in

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 24 Mar 2005

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 24 Mar 2005 APS/123-QED Scale-Free Networks Emerging from Weighted Random Graphs Tomer Kalisky, 1, Sameet Sreenivasan, 2 Lidia A. Braunstein, 2,3 arxiv:cond-mat/0503598v1 [cond-mat.dis-nn] 24 Mar 2005 Sergey V. Buldyrev,

More information

Optimal Allocation of Interconnecting Links in Cyber-Physical Systems: Interdependence, Cascading Failures and Robustness

Optimal Allocation of Interconnecting Links in Cyber-Physical Systems: Interdependence, Cascading Failures and Robustness Optimal Allocation of Interconnecting Links in Cyber-Physical Systems: Interdependence, Cascading Failures and Robustness arxiv:2698v2 [physics.data-an] 3 Apr 202 Osman Yağan, Dajun Qian, Junshan Zhang,

More information

The Beginning of Graph Theory. Theory and Applications of Complex Networks. Eulerian paths. Graph Theory. Class Three. College of the Atlantic

The Beginning of Graph Theory. Theory and Applications of Complex Networks. Eulerian paths. Graph Theory. Class Three. College of the Atlantic Theory and Applications of Complex Networs 1 Theory and Applications of Complex Networs 2 Theory and Applications of Complex Networs Class Three The Beginning of Graph Theory Leonhard Euler wonders, can

More information

ECS 253 / MAE 253, Lecture 15 May 17, I. Probability generating function recap

ECS 253 / MAE 253, Lecture 15 May 17, I. Probability generating function recap ECS 253 / MAE 253, Lecture 15 May 17, 2016 I. Probability generating function recap Part I. Ensemble approaches A. Master equations (Random graph evolution, cluster aggregation) B. Network configuration

More information

Emergent Phenomena on Complex Networks

Emergent Phenomena on Complex Networks Chapter 1 Emergent Phenomena on Complex Networks 1.0.1 More is different When many interacting elements give rise to a collective behavior that cannot be explained or predicted by considering them individually,

More information

Attacks on Correlated Peer-to-Peer Networks: An Analytical Study

Attacks on Correlated Peer-to-Peer Networks: An Analytical Study The First International Workshop on Security in Computers, Networking and Communications Attacks on Correlated Peer-to-Peer Networks: An Analytical Study Animesh Srivastava Department of CSE IIT Kharagpur,

More information

Attack Strategies on Complex Networks

Attack Strategies on Complex Networks Attack Strategies on Complex Networks Lazaros K. Gallos 1, Reuven Cohen 2, Fredrik Liljeros 3, Panos Argyrakis 1, Armin Bunde 4, and Shlomo Havlin 5 1 Department of Physics, University of Thessaloniki,

More information

Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks

Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks Maksim Kitsak, 1 Shlomo Havlin, 1,2 Gerald Paul, 1 Massimo Riccaboni, 3 Fabio Pammolli, 1,3,4 and H.

More information

Lecture 10. Under Attack!

Lecture 10. Under Attack! Lecture 10 Under Attack! Science of Complex Systems Tuesday Wednesday Thursday 11.15 am 12.15 pm 11.15 am 12.15 pm Feb. 26 Feb. 27 Feb. 28 Mar.4 Mar.5 Mar.6 Mar.11 Mar.12 Mar.13 Mar.18 Mar.19 Mar.20 Mar.25

More information

Cascades on interdependent networks

Cascades on interdependent networks Cascades on interdependent networks Raissa M. D Souza University of California, Davis Dept of CS, Dept of Mech. and Aero. Eng. Complexity Sciences Center External Professor, Santa Fe Institute A collection

More information

Numerical evaluation of the upper critical dimension of percolation in scale-free networks

Numerical evaluation of the upper critical dimension of percolation in scale-free networks umerical evaluation of the upper critical dimension of percolation in scale-free networks Zhenhua Wu, 1 Cecilia Lagorio, 2 Lidia A. Braunstein, 1,2 Reuven Cohen, 3 Shlomo Havlin, 3 and H. Eugene Stanley

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/30/17 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 2

More information

Spatio-temporal propagation of cascading overload failures

Spatio-temporal propagation of cascading overload failures Spatio-temporal propagation of cascading overload failures Zhao Jichang 1, Li Daqing 2, 3 *, Hillel Sanhedrai 4, Reuven Cohen 5, Shlomo Havlin 4 1. School of Economics and Management, Beihang University,

More information

Balancing System Survivability and Cost of Smart Grid via Modeling Cascading Failures

Balancing System Survivability and Cost of Smart Grid via Modeling Cascading Failures Balancing System Survivability and Cost of Smart Grid via Modeling Cascading Failures Zhen Huang, Cheng Wang, Milos Stojmenovic, Amiya Nayak Abstract As a typical emerging application of cyber physical

More information

Complex Networks, Course 303A, Spring, Prof. Peter Dodds

Complex Networks, Course 303A, Spring, Prof. Peter Dodds Complex Networks, Course 303A, Spring, 2009 Prof. Peter Dodds Department of Mathematics & Statistics University of Vermont Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

More information

TODAY S worldwide network infrastructure consists a web

TODAY S worldwide network infrastructure consists a web IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. X, XXXXXXX 202 Optimal Allocation of Interconnecting Links in Cyber-Physical Systems: Interdependence, Cascading Failures and Robustness

More information

Dependence of conductance on percolation backbone mass

Dependence of conductance on percolation backbone mass PHYSICAL REVIEW E VOLUME 61, NUMBER 4 APRIL 2000 Dependence of conductance on percolation backbone mass Gerald Paul, 1, * Sergey V. Buldyrev, 1 Nikolay V. Dokholyan, 1, Shlomo Havlin, 2 Peter R. King,

More information

Science Course Descriptions

Science Course Descriptions BIOLOGY I (L) 3024 (BIO I) Biology I is a course based on the following core topics: cellular chemistry, structure and reproduction; matter cycles and energy transfer; interdependence of organisms; molecular

More information

Fractal dimensions ofpercolating networks

Fractal dimensions ofpercolating networks Available online at www.sciencedirect.com Physica A 336 (2004) 6 13 www.elsevier.com/locate/physa Fractal dimensions ofpercolating networks Reuven Cohen a;b;, Shlomo Havlin b a Department of Computer Science

More information

A scrisisofblackouts1, congestions2 and bankruptcies3 have demonstrated, localized perturbation in

A scrisisofblackouts1, congestions2 and bankruptcies3 have demonstrated, localized perturbation in OPEN SUBJECT AREAS: COMPLEX NETWORKS APPLIED PHYSICS Received 26 March 2014 Accepted 2 June 2014 Published 20 June 2014 Correspondence and requests for materials should be addressed to L.D. (li.daqing.biu@

More information

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence ECS 289 F / MAE 298, Lecture 15 May 20, 2014 Diffusion, Cascades and Influence Diffusion and cascades in networks (Nodes in one of two states) Viruses (human and computer) contact processes epidemic thresholds

More information

Cascading failures in interdependent systems under a flow redistribution model

Cascading failures in interdependent systems under a flow redistribution model Cascading failures in interdependent systems under a flow redistribution model Yingrui Zhuang, Alex Arenas, 2 and Osman Yağan, Department of ECE, Carnegie Mellon University, Pittsburgh, PA 523 USA 2 Departament

More information

BOSTON UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES. Dissertation TRANSPORT AND PERCOLATION IN COMPLEX NETWORKS GUANLIANG LI

BOSTON UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES. Dissertation TRANSPORT AND PERCOLATION IN COMPLEX NETWORKS GUANLIANG LI BOSTON UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES Dissertation TRANSPORT AND PERCOLATION IN COMPLEX NETWORKS by GUANLIANG LI B.S., University of Science and Technology of China, 2003 Submitted in

More information

Network Science: Principles and Applications

Network Science: Principles and Applications Network Science: Principles and Applications CS 695 - Fall 2016 Amarda Shehu,Fei Li [amarda, lifei](at)gmu.edu Department of Computer Science George Mason University 1 Outline of Today s Class 2 Robustness

More information

Reaction/Aggregation Processes. Clément Sire

Reaction/Aggregation Processes. Clément Sire Reaction/Aggregation Processes Clément Sire Laboratoire de Physique Théorique CNRS & Université Paul Sabatier Toulouse, France www.lpt.ups-tlse.fr A Few Classical Examples Ubiquitous in physics and chemistry

More information

Identification of K Most Vulnerable Nodes in Multi-layered Network Using a New Model of Interdependency

Identification of K Most Vulnerable Nodes in Multi-layered Network Using a New Model of Interdependency Identification of K Most Vulnerable Nodes in Multi-layered Network Using a New Model of Interdependency Arunabha Sen, Anisha Mazumder, Joydeep Banerjee, Arun Das and Randy Compton Computer Science and

More information

Multi-Stage Complex Contagions in Random Multiplex Networks

Multi-Stage Complex Contagions in Random Multiplex Networks Multi-Stage Complex Contagions in Random Multiplex Networks Yong Zhuang and Osman Yağan Department of ECE, Carnegie Mellon University, Pittsburgh, PA 523, USA (Dated: July 4, 28) In this work, we aim to

More information

Fragility and anomalous susceptibility of weakly interacting

Fragility and anomalous susceptibility of weakly interacting Fragility and anomalous susceptibility of weakly interacting networks Giacomo Rapisardi 1,, Alex Arenas 2, Guido Caldarelli 1,3, Giulio Cimini 1,3 1 IMT School for Advanced Studies, 55100 Lucca, Italy

More information

Network Interdependence and Information Dynamics in Cyber-Physical. Systems. Dajun Qian

Network Interdependence and Information Dynamics in Cyber-Physical. Systems. Dajun Qian Network Interdependence and Information Dynamics in Cyber-Physical Systems by Dajun Qian A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved

More information

Random Networks. Complex Networks, CSYS/MATH 303, Spring, Prof. Peter Dodds

Random Networks. Complex Networks, CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks, CSYS/MATH 303, Spring, 2010 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under

More information

IBIS2006 p.1/32

IBIS2006 p.1/32 - yhayashi@jaist.ac.jp #$ %'& -! "! IBIS2006 p.1/32 1. Introduction....!! IBIS2006 p.2/32 #$ %'& Six Degrees of Separation 6 S.Milgram Physiology Today 2 1967. WWW 19 d = 0.35 + 2 log 10 N R.Albert et

More information

A LINE GRAPH as a model of a social network

A LINE GRAPH as a model of a social network A LINE GRAPH as a model of a social networ Małgorzata Krawczy, Lev Muchni, Anna Mańa-Krasoń, Krzysztof Kułaowsi AGH Kraów Stern School of Business of NY University outline - ideas, definitions, milestones

More information

arxiv:physics/ v2 [physics.soc-ph] 19 Feb 2007

arxiv:physics/ v2 [physics.soc-ph] 19 Feb 2007 Betweenness Centrality of Fractal and Non-Fractal Scale-Free Model Networks and Tests on Real Networks Maksim Kitsak, 1 Shlomo Havlin, 1,2 Gerald Paul, 1 Massimo arxiv:physics/0702001v2 [physics.soc-ph]

More information

Resistance distribution in the hopping percolation model

Resistance distribution in the hopping percolation model Resistance distribution in the hopping percolation model Yakov M. Strelniker, Shlomo Havlin, Richard Berkovits, and Aviad Frydman Minerva Center, Jack and Pearl Resnick Institute of Advanced Technology,

More information

arxiv:cond-mat/ v3 [cond-mat.dis-nn] 10 Dec 2003

arxiv:cond-mat/ v3 [cond-mat.dis-nn] 10 Dec 2003 Efficient Immunization Strategies for Computer Networs and Populations Reuven Cohen, Shlomo Havlin, and Daniel ben-avraham 2 Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan, 529,

More information

arxiv: v1 [math.st] 1 Nov 2017

arxiv: v1 [math.st] 1 Nov 2017 ASSESSING THE RELIABILITY POLYNOMIAL BASED ON PERCOLATION THEORY arxiv:1711.00303v1 [math.st] 1 Nov 2017 SAJADI, FARKHONDEH A. Department of Statistics, University of Isfahan, Isfahan 81744,Iran; f.sajadi@sci.ui.ac.ir

More information

Switch of critical percolation modes in dynamical city traffic

Switch of critical percolation modes in dynamical city traffic Switch of critical percolation modes in dynamical city traffic Guanwen Zeng 1,2, Daqing Li 1,2,*, Liang Gao 3, Ziyou Gao 3, Shlomo Havlin 4 1 School of Reliability and Systems Engineering, Beihang University,

More information

Analysis of Biological Networks: Network Robustness and Evolution

Analysis of Biological Networks: Network Robustness and Evolution Analysis of Biological Networks: Network Robustness and Evolution Lecturer: Roded Sharan Scribers: Sasha Medvedovsky and Eitan Hirsh Lecture 14, February 2, 2006 1 Introduction The chapter is divided into

More information

Random Networks. Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds

Random Networks. Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks CSYS/MATH 303, Spring, 2011 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under the

More information

Comparative analysis of transport communication networks and q-type statistics

Comparative analysis of transport communication networks and q-type statistics Comparative analysis of transport communication networs and -type statistics B. R. Gadjiev and T. B. Progulova International University for Nature, Society and Man, 9 Universitetsaya Street, 498 Dubna,

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

Universal dependence of distances on nodes degrees in complex networks

Universal dependence of distances on nodes degrees in complex networks Universal dependence of distances on nodes degrees in complex networs Janusz A. Hołyst, Julian Sieniewicz, Agata Froncza, Piotr Froncza, Krzysztof Sucheci and Piotr Wójcici Faculty of Physics and Center

More information

MAE 298, Lecture 4 April 9, Exploring network robustness

MAE 298, Lecture 4 April 9, Exploring network robustness MAE 298, Lecture 4 April 9, 2006 Switzerland Germany Spain Italy Japan Netherlands Russian Federation Sweden UK USA Unknown Exploring network robustness What is a power law? (Also called a Pareto Distribution

More information

Complex Systems. Shlomo Havlin. Content:

Complex Systems. Shlomo Havlin. Content: Complex Systems Content: Shlomo Havlin 1. Fractals: Fractals in Nature, mathematical fractals, selfsimilarity, scaling laws, relation to chaos, multifractals. 2. Percolation: phase transition, critical

More information

Structural Vulnerability Assessment of Electric Power Grids

Structural Vulnerability Assessment of Electric Power Grids Structural Vulnerability Assessment of Electric Power Grids Yakup Koç 1 Martijn Warnier 1 Robert E. Kooij 2,3 Frances M.T. Brazier 1 1 Faculty of Technology, Policy and Management, Delft University of

More information

Assortativity and Mixing. Outline. Definition. General mixing. Definition. Assortativity by degree. Contagion. References. Contagion.

Assortativity and Mixing. Outline. Definition. General mixing. Definition. Assortativity by degree. Contagion. References. Contagion. Outline Complex Networks, Course 303A, Spring, 2009 Prof Peter Dodds Department of Mathematics & Statistics University of Vermont Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

More information

On Watts Cascade Model with Random Link Weights

On Watts Cascade Model with Random Link Weights On Watts Cascade Model with Random Lin Weights arxiv:1211.5708v1 [physics.soc-ph] 24 Nov 2012 T. R. Hurd 1, James P. Gleeson 2 1 Department of Mathematics, McMaster University, Canada 2 MACSI, Department

More information

Geographical Embedding of Scale-Free Networks

Geographical Embedding of Scale-Free Networks Geographical Embedding of Scale-Free Networks Daniel ben-avraham a,, Alejandro F. Rozenfeld b, Reuven Cohen b, Shlomo Havlin b, a Department of Physics, Clarkson University, Potsdam, New York 13699-5820,

More information

arxiv:cond-mat/ v1 28 Feb 2005

arxiv:cond-mat/ v1 28 Feb 2005 How to calculate the main characteristics of random uncorrelated networks Agata Fronczak, Piotr Fronczak and Janusz A. Hołyst arxiv:cond-mat/0502663 v1 28 Feb 2005 Faculty of Physics and Center of Excellence

More information

Operational resilience: concepts, design and analysis

Operational resilience: concepts, design and analysis Operational resilience: concepts, design and analysis Alexander A. Ganin 1,2, Emanuele Massaro 1,3,+, Alexander Gutfraind 4, Nicolas Steen 1, Jeffrey M. Keisler 5, Alexander Kott 6, Rami Mangoubi 7, and

More information

Network Risk and Forecasting Power in Phase-Flipping Dynamical Networks

Network Risk and Forecasting Power in Phase-Flipping Dynamical Networks Network Risk and Forecasting Power in Phase-Flipping Dynamical Networks B. Podobnik,,2,3 A. Majdandzic, C. Curme, Z. Qiao, 4,5 W.-X. Zhou, 6 H. E. Stanley, and B. Li 4,5,7 Center for Polymer Studies and

More information

Cascading Link Failure in the Power Grid: A Percolation-Based Analysis

Cascading Link Failure in the Power Grid: A Percolation-Based Analysis Cascading Lin Failure in the Power Grid: A Percolation-Based Analysis Hongda Xiao and Edmund M. Yeh Department of Electrical Engineering, Yale University, New Haven, CT 06511 {hongda.xiao, edmund.yeh}@yale.edu

More information

Pricing of Cyber Insurance Contracts in a Network Model

Pricing of Cyber Insurance Contracts in a Network Model Pricing of Cyber Insurance Contracts in a Network Model Stefan Weber Leibniz Universität Hannover www.stochastik.uni-hannover.de (joint work with Matthias Fahrenwaldt & Kerstin Weske) WU Wien December

More information

Complex networks: an introduction

Complex networks: an introduction Alain Barrat Complex networks: an introduction CPT, Marseille, France ISI, Turin, Italy http://www.cpt.univ-mrs.fr/~barrat http://cxnets.googlepages.com Plan of the lecture I. INTRODUCTION II. I. Networks:

More information

II Podkarpackie Territorial Forum

II Podkarpackie Territorial Forum II Podkarpackie Territorial Forum Regional Cluster-based Policy: Some Theoretical and Practical Aspects Zbigniew Bochniarz Evans School of Public Affairs University of Washington Seattle, U.S.A. March

More information

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai Network Biology: Understanding the cell s functional organization Albert-László Barabási Zoltán N. Oltvai Outline: Evolutionary origin of scale-free networks Motifs, modules and hierarchical networks Network

More information

Towards k-connectivity: Local and Global approaches

Towards k-connectivity: Local and Global approaches Towards k-connectivity: Local and Global approaches Orestis Georgiou 1, Carl P. Dettmann 2, and Justin P. Coon 1,2 1 Toshiba Telecommunications Research Laboratory, 32 Queens Square, Bristol, BS1 4ND,

More information

Human Brain Networks. Aivoaakkoset BECS-C3001"

Human Brain Networks. Aivoaakkoset BECS-C3001 Human Brain Networks Aivoaakkoset BECS-C3001" Enrico Glerean (MSc), Brain & Mind Lab, BECS, Aalto University" www.glerean.com @eglerean becs.aalto.fi/bml enrico.glerean@aalto.fi" Why?" 1. WHY BRAIN NETWORKS?"

More information

Scale-free random graphs and Potts model

Scale-free random graphs and Potts model PRAMAA c Indian Academy of Sciences Vol. 64, o. 6 journal of June 25 physics pp. 49 59 D-S LEE,2, -I GOH, B AHG and D IM School of Physics and Center for Theoretical Physics, Seoul ational University,

More information

arxiv: v1 [physics.soc-ph] 2 Apr 2017

arxiv: v1 [physics.soc-ph] 2 Apr 2017 Spreading of localized attacs in spatial multiplex networs arxiv:174.267v1 [physics.soc-ph] 2 Apr 217 Dana Vanin, 1 Michael M. Danziger, 1 and Shlomo Havlin 1 1 Bar-Ilan University, Ramat Gan, Israel (Dated:

More information

Systemic Risk and the Mathematics of Falling Dominoes

Systemic Risk and the Mathematics of Falling Dominoes Systemic Risk and the Mathematics of Falling Dominoes Reimer Kühn Disordered Systems Group Department of Mathematics, King s College London http://www.mth.kcl.ac.uk/ kuehn/riskmodeling.html Teachers Conference,

More information

Intensive Computation and Performance of Computer Networks

Intensive Computation and Performance of Computer Networks Introduction to joint projects for the courses of Intensive Computation and Performance of Computer Networks Novella Bartolini and Annalisa Massini Damage assessment and recovery after network failures

More information

Field Trips. Field Trips. Field Trips. Creek) Old Zoo Pond

Field Trips. Field Trips. Field Trips. Creek) Old Zoo Pond Biology 1 SLO 1: Distinguish questions that can be addressed scientifically from those that cannot, and identify basic components of the scientific method as it pertains to biological systems ranging form

More information

CustomWeather Statistical Forecasting (MOS)

CustomWeather Statistical Forecasting (MOS) CustomWeather Statistical Forecasting (MOS) Improve ROI with Breakthrough High-Resolution Forecasting Technology Geoff Flint Founder & CEO CustomWeather, Inc. INTRODUCTION Economists believe that 70% of

More information

Rate Equation Approach to Growing Networks

Rate Equation Approach to Growing Networks Rate Equation Approach to Growing Networks Sidney Redner, Boston University Motivation: Citation distribution Basic Model for Citations: Barabási-Albert network Rate Equation Analysis: Degree and related

More information

Evaluating the Impact of Modeling Assumptions for Cascading Failure Simulation

Evaluating the Impact of Modeling Assumptions for Cascading Failure Simulation 1 Evaluating the Impact of Modeling Assumptions for Cascading Failure Simulation Ronan Fitzmaurice, Member, IEEE, Eduardo Cotilla-Sanchez, Graduate Student Member, IEEE, and Paul Hines, Member, IEEE Abstract

More information

Lecture VI Introduction to complex networks. Santo Fortunato

Lecture VI Introduction to complex networks. Santo Fortunato Lecture VI Introduction to complex networks Santo Fortunato Plan of the course I. Networks: definitions, characteristics, basic concepts in graph theory II. III. IV. Real world networks: basic properties

More information

Effect of the interconnected network structure on the epidemic threshold

Effect of the interconnected network structure on the epidemic threshold PHYSICAL REVIEW E 8883 Effect of the interconnected network structure on the epidemic threshold Huijuan Wang * Qian Li Gregorio D Agostino 3 Shlomo Havlin 4 H. Eugene Stanley and Piet Van Mieghem Faculty

More information

Objective 1: The student will demonstrate an understanding of the nature of science.

Objective 1: The student will demonstrate an understanding of the nature of science. August 2003 Objective 1: The student will demonstrate an understanding of the nature of science. Biology (1) and Integrated Physics and Chemistry (1) Scientific Processes. The student, for at least 40%

More information

Trapezoidal Rule, n = 1, x 0 = a, x 1 = b, h = b a. f (x)dx = h 2 (f (x 0) + f (x 1 )) h3

Trapezoidal Rule, n = 1, x 0 = a, x 1 = b, h = b a. f (x)dx = h 2 (f (x 0) + f (x 1 )) h3 Trpezoidl Rule, n = 1, x 0 =, x 1 = b, h = b f (x)dx = h 2 (f (x 0) + f (x 1 )) h3 12 f (ξ). Simpson s Rule: n = 3, x 0 =, x 1 = +b 2, x 2 = b, h = b 2. Qudrture Rule, double node t x 1 P 3 (x)dx = f (x

More information

Interdependent networks: vulnerability analysis and strategies to limit cascading failure

Interdependent networks: vulnerability analysis and strategies to limit cascading failure Eur. Phys. J. B (2014) 87: 148 DOI: 10.1140/epjb/e2014-40876-y Regular Article THE EUROPEAN PHYSICAL JOURNAL B Interdependent networks: vulnerability analysis and strategies to limit cascading failure

More information

Robustness of Interdependent Random Geometric Networks

Robustness of Interdependent Random Geometric Networks 1 Robustness of Interdependent Random Geometric Networks Jianan Zhang, Student Member, IEEE, Edmund Yeh, Senior Member, IEEE, and Eytan Modiano, Fellow, IEEE Abstract We propose an interdependent random

More information

arxiv: v1 [physics.data-an] 20 Sep 2011

arxiv: v1 [physics.data-an] 20 Sep 2011 Strategy of Cometition between Two Grous based on a Contrarian Oinion Model Qian Li 1, Lidia A. Braunstein, 2,1, Shlomo Havlin, 3, and H. Eugene Stanley 1 1 Deartment of Physics and Center for Polymer

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 10 Feb 1997

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 10 Feb 1997 Scaling behavior in economics: II. Modeling of company growth arxiv:cond-mat/9702085v1 [cond-mat.stat-mech] 10 Feb 1997 Sergey V. Buldyrev, 1 Luís A. Nunes Amaral, 1,2 Shlomo Havlin, 1,3 Heiko Leschhorn,

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Apr 1999

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Apr 1999 Optimal Path in Two and Three Dimensions Nehemia Schwartz, Alexander L. Nazaryev, and Shlomo Havlin Minerva Center and Department of Physics, Jack and Pearl Resnick Institute of Advanced Technology Bldg.,

More information

Distributed Estimation and Detection for Smart Grid

Distributed Estimation and Detection for Smart Grid Distributed Estimation and Detection for Smart Grid Texas A&M University Joint Wor with: S. Kar (CMU), R. Tandon (Princeton), H. V. Poor (Princeton), and J. M. F. Moura (CMU) 1 Distributed Estimation/Detection

More information

Adventures in random graphs: Models, structures and algorithms

Adventures in random graphs: Models, structures and algorithms BCAM January 2011 1 Adventures in random graphs: Models, structures and algorithms Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM January 2011 2 Complex

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

Effects of epidemic threshold definition on disease spread statistics

Effects of epidemic threshold definition on disease spread statistics Effects of epidemic threshold definition on disease spread statistics C. Lagorio a, M. V. Migueles a, L. A. Braunstein a,b, E. López c, P. A. Macri a. a Instituto de Investigaciones Físicas de Mar del

More information

The architecture of complexity: the structure and dynamics of complex networks.

The architecture of complexity: the structure and dynamics of complex networks. SMR.1656-36 School and Workshop on Structure and Function of Complex Networks 16-28 May 2005 ------------------------------------------------------------------------------------------------------------------------

More information

Learning latent structure in complex networks

Learning latent structure in complex networks Learning latent structure in complex networks Lars Kai Hansen www.imm.dtu.dk/~lkh Current network research issues: Social Media Neuroinformatics Machine learning Joint work with Morten Mørup, Sune Lehmann

More information

Science TAKS Objectives for Grades 10 and 11

Science TAKS Objectives for Grades 10 and 11 Science TAKS Objectives for s and Objective 1 The student will demonstrate an understanding of the nature of science. Bio (1) and IPC (1) The student, for at least 40% of instructional time, conducts field

More information

arxiv: v2 [cond-mat.stat-mech] 11 Apr 2016

arxiv: v2 [cond-mat.stat-mech] 11 Apr 2016 Hybrid Phase Transition into an Absorbing State: Percolation and Avalanches arxiv:1512.08335v2 [cond-mat.stat-mech] 11 Apr 2016 Deokjae Lee, 1 S. Choi, 1 M. Stippinger, 2 J. Kertész, 2, 3 and B. Kahng

More information

A THEORY OF NETWORK SECURITY: PRINCIPLES OF NATURAL SELECTION AND COMBINATORICS

A THEORY OF NETWORK SECURITY: PRINCIPLES OF NATURAL SELECTION AND COMBINATORICS Internet Mathematics, 2:45 204, 206 Copyright Taylor & Francis Group, LLC ISSN: 542-795 print/944-9488 online DOI: 0.080/542795.205.098755 A THEORY OF NETWORK SECURITY: PRINCIPLES OF NATURAL SELECTION

More information

The AIR Severe Thunderstorm Model for the United States

The AIR Severe Thunderstorm Model for the United States The AIR Severe Thunderstorm Model for the United States In 2011, six severe thunderstorms generated insured losses of over USD 1 billion each. Total losses from 24 separate outbreaks that year exceeded

More information

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow CHAPTER PROBLEM Did Mendel s results from plant hybridization experiments contradict his theory? Gregor Mendel conducted original experiments to study the genetic traits of pea plants. In 1865 he wrote

More information