Unifying Quantum Electrodynamics and Many-Body Perturbation Theory

Size: px
Start display at page:

Download "Unifying Quantum Electrodynamics and Many-Body Perturbation Theory"

Transcription

1 Slides with rosper/lat X p. 1/48 Unifying Quantum Electrodynamics and Many-Body erturbation Theory Ingvar Lindgren ingvar.lindgren@physics.gu.se Department of hysics University of Gothenburg, Gothenburg, Sweden

2 Slides with rosper/lat X p. 2/48 New Horizons in hysics Makutsi, South Africa, November, 2015 In honor of rof. Walter Greiner at his 80 th birthday

3 Slides with rosper/lat X p. 3/48 Coworkers Sten Salomonson Daniel Hedendahl Johan Holmberg

4 Slides with rosper/lat X p. 4/48 Combining MBT and QED Quantum physics/chemistry follows mainly the rules of Quantum Mechanics (QM) Some effects lie outside: Lamb shift (electron self-energy and vacuum polarization)

5 Slides with rosper/lat X p. 5/48 Combining MBT and QED Quantum physics/chemistry follows mainly the rules of Quantum Mechanics (QM) Some effects lie outside: Lamb shift (electron self-energy and vacuum polarization) require Field theory (QED) Normally these effects are evaluated separately For high accuracy they should be evaluated in a coherent way QED effects should be included in the wave function

6 Combining MBT and QED QM and QED are seemingly incompatible QM: single time Ψ(t,x 1,x 2, ) Field theory: individual times Ψ(t 1,x 1 ;t 2,x 2, ) Consequence of relativistic covariance Bethe-Salpeter equation is relativistic covariant can lead to spurious solutions (Nakanishi 1965; Namyslowski 1997) Slides with rosper/lat X p. 6/48

7 Slides with rosper/lat X p. 7/48 Combining MBT and QED Compromise: Equal-time approximation All particles given the same time makes FT compatible with QM Some sacrifice of the full covariance very small effect at atomic energies

8 Slides with rosper/lat X p. 8/48 Controversy Chantler (2012) claims that there are significant discrepancies between theory and experiment for X-ray energies of He-like ions Theory: Artemyev et al 2005, Two-photon QED

9 Slides with rosper/lat X p. 9/48 Higher-order QED Higher -order QED can be evaluated by means of the procedure for combining QED and MBT using the Green s operator, a procedure for time-dependent perturbation theory

10 Slides with rosper/lat X p. 10/48 Time-independent perturbation HΨ = (H +V)Ψ = EΨ target function Ψ 0 = Ψ model function projection operator for the model space Bloch equation Ψ = ΩΨ 0 Ω wave operator Ω = Γ ( VΩ ΩW ) Γ = 1 E 0 H 0 W = V Ω Effective Interaction H eff Ψ 0 = (H 0 +W)Ψ 0 = (E 0 + E)Ψ 0 Effective Ham.

11 Slides with rosper/lat X p. 11/48 Bloch equation Ω = Γ ( VΩ ΩW ) Γ = 1 E 0 H 0 + ΓVΩ = + = [ΓV +ΓVΓV +ΓVΓVΓV + ] + Singular when intermediate state in model space () Singularity cancelled by the term ΓΩW Leads to Bloch equation Ω = Γ Q ( VΩ ΩW ) The finite remainder is the Model-Space Contr. Γ Q ΩW ΓQ = Q E 0 H 0

12 Slides with rosper/lat X p. 12/48 Time-dependent perturbation Standard time-evolution operator Ψ(t) = U(t,t 0 )Ψ(t 0 ) articles Time propagates only forwards

13 Slides with rosper/lat X p. 13/48 Time-dependent perturbation Standard time-evolution operator Ψ(t) = U(t,t 0 )Ψ(t 0 ) articles art. Holes Electron propagators Electron propagators make evolution operator covariant Covariant Evolution Operator (U Cov )

14 Slides with rosper/lat X p. 14/48 Time-dependent perturbation Covariant evolution ladder (t = 0, t 0 = ) U Cov = E E E U Cov = 1+ΓV +ΓV ΓV + ; Γ = 1 E H 0 Same as first part of MBT wave operator Ω = 1+Γ ( VΩ ΩW ) Singular when intermediate state in model space

15 Slides with rosper/lat X p. 15/48 Green s operator The Green s operator is defined U Cov (t) = G(t) U Cov (0) is the regular part of the Covariant Evolution Oper.

16 Slides with rosper/lat X p. 16/48 Green s operator t = 0 : First order: G (1) = U (1) Cov = Γ QV = Ω (1) Second order: G (2) = Γ Q VG (1) + δg(1) δe W(1) ; Γ Q = Q E H 0 = Γ Q VG (1) Γ Q G (1) W (1) +Γ Q δv δe W (1) Ω (2) = Γ Q VΩ (1) Γ Q Ω (1) W (1) Time- or energy-dependent perturbations can be included in the wave function

17 Slides with rosper/lat X p. 17/48 QED effects Non-radiative Retardation Virtual pair Radiative El. self-energy Vertex correction Vacuum polarization

18 Slides with rosper/lat X p. 18/48 QED effects are time dependent

19 QED effects are time dependent Can be combined with electron correl. Continued iterations Mixing time-independent and time-dependent perturbat. Combining QED and MBT Slides with rosper/lat X p. 19/48

20 Slides with rosper/lat X p. 20/48 Radiative QED Dimensional regularization in Coulomb gauge Developed in the 1980 s for Feynman gauge Formulas for Coulomb gauge derived by Atkins in the 80 s Workable procedure developed by Johan Holmberg in 2011 First applied by Holmberg and Hedendahl

21 First calculation of self-energy in Coulomb gauge Slides with rosper/lat X p. 21/48 Self-energy of hydrogen like ions Hedendahl and Holmberg, hys. Rev. A 85, (2012) Z Coulomb gauge Feynman gauge (3) (1) (2) (8) (3) (1) (1) (2) E = α π (Zα) 4 mc 2 n 3 F(Zα)

22 Slides with rosper/lat X p. 22/48 He-like systems Johan Holmberg s hd thesis Holmberg, Salomonson and Lindgren, hys. Rev. A 92, (2015) Q Q (A) (B) (C) (D) (E) (B) and (E) are DIVERGENT Divergence cancels due to Ward identity

23 Slides with rosper/lat X p. 23/48 He-like Argon (Z=18) Second order Irreducible Q 1621 mev Q Feynman gauge Coulomb gauge

24 Slides with rosper/lat X p. 24/48 He-like Argon (Z=18) Second order Irreducible Model-space contr. + Vertex correction Q Q 1621 mev Feynman , Coulomb

25 Slides with rosper/lat X p. 25/48 He-like Argon (Z=18) Second order Irreducible Model-space contr. + Vertex correction Q Q Q 1621 mev Feynman , Coulomb -1.1

26 Gauge independen Slides with rosper/lat X p. 26/48 He-like Argon (Z=18) Second order Irreducible Model-space contr. + Vertex correction Q Q Q 1621 mev Feynman , Coulomb Large cancellations in Feynman gauge

27 Slides with rosper/lat X p. 27/48 He-like Argon (Z=18) Third order Irreducible Model-space contr. + Vertex correction Q Q 71 Feynm Coul.

28 Slides with rosper/lat X p. 27/48 He-like Argon (Z=18) Third order Irreducible Model-space contr. + Vertex correction Q Q Feynm Coul

29 Slides with rosper/lat X p. 27/48 He-like Argon (Z=18) Third order Irreducible Model-space contr. + Vertex correction Q Q Feynm ??? Coul ???

30 Slides with rosper/lat X p. 28/48 He-like Argon (Z=18) Third order Irreducible Model-space contr. + Vertex correction Q Q Feynm. Coul ?????? First calculation of radiative QED beyond second order

31 Slides with rosper/lat X p. 29/48 He-like Argon (Z=18) Third order Irreducible Model-space contr. + Vertex correction Q Q Feynm. Coul ?????? First calculation of radiative QED beyond second order Has to be performed in Coulomb gauge Holmberg, Salomonson, Lindgren, RA 92, (2015)

32 Slides with rosper/lat X p. 30/48 Summary QED He-like gr. state Non-radiative and radiative (in mev) Z Two-photon Higher orders Non-radiative Radiative Non-radiative Radiative

33 Slides with rosper/lat X p. 31/48 Summary QED He-like gr. state Higher-order QED (in mev) Z Holmberg 2015 (calc) Artemyev 2005 (est d) (2) (3) (5) (8) (2) 7.7(50) Chantler 500 mev

34 Slides with rosper/lat X p. 32/48 Summary QED He-like gr. state Higher-order QED (in mev) Z Holmberg 2015 (calc) Artemyev 2005 (est d) (2) (3) (5) (8) (2) 7.7(50) The higher-order QED has previously been underestimated but still much too small to correspond to the Chantler discrepances

35 Slides with rosper/lat X p. 33/48 Dynamical processes The Green s operator can also be used in dynamical processes

36 Slides with rosper/lat X p. 34/48 Free particles Scattering amplitude free particles q p q S p = 2πiδ(E p E q )τ(p q) Optical theorem for free particles 2Im p is p = q ] 2 2πδ(E p E q )τ(p q) p q p Forward scattering p q q p Cross section

37 Slides with rosper/lat X p. 35/48 Free particles Scattering amplitude free particles q p q S p = 2πiδ(E p E q )τ(p q) Optical theorem for free particles 2Im p is p = q ] 2 2πδ(E p E q )τ(p q) The imaginary part of the forward scattering amplitude is proportional to the total cross section

38 Slides with rosper/lat X p. 36/48 Bound particles S = U(, ) = U Cov (, ) S-matrix becomes singular for bound states with intermediate model-space states Optical theorem for bound particles 2Im p ig(, ) p = q ] 2 2πδ(E p E q )τ( q) G(, ) is identical to the S-matrix, if there are no intermediate model-space states G always regular: "S-matrix cleaned from singularities"

39 Slides with rosper/lat X p. 37/48 Bound particles ig(, ) = 2πδ(E in E out )W 2Im p ig(, ) p = q ] 2 2πδ(E p E q )τ(p q) 2Im p W p = q 2πδ(E p E q )τ(p q) 2

40 ig(, ) = 2πδ(E in E out )W 2Im p ig(, ) p = q ] 2 2πδ(E p E q )τ(p q) 2Im p H eff p = q 2πδ(E p E q )τ(p q) 2 H eff = H 0 +W Optical theorem for free and bound particles Lindgren, Salomonson, Holmberg, RA 89, (2014) Slides with rosper/lat X p. 38/48

41 Radiative recombination Lindgren, Salomonson, Holmberg, RA 89, (2014) Shabaev et al, RA 61, (2000) a p First-order amplitude p p a p a a p Forward scattering Cross section Slides with rosper/lat X p. 39/48

42 Radiative recombination Self-energy insertion a p First-order amplitude a p p Forward scattering a a p p Cross section Slides with rosper/lat X p. 40/48

43 Slides with rosper/lat X p. 41/48 Radiative recombination Self-energy insertion leads to singularity that is taken care of in the Green s operator.

44 Radiative decay b a a Forward scattering a b a b ε p Cross section a a b r a r a b b Self-energy insertion (MSC) Slides with rosper/lat X p. 42/48

45 Slides with rosper/lat X p. 43/48 Radiative decay 1s 2p 1/2 transition in H-like Uranium Magnetic quadrupole to electrical dipole ampitude ratio M2/E1 Dirac QED Expt t: Stöhlker et al. RL 105, (2010) JB 48, (2015) Theory: Holmberg, Artemyev, Surzhykov, Yerohkin, Stöhlker, SSRA 92, (2015)

46 Slides with rosper/lat X p. 44/48 Conclusions and Outlook The Green s operator is a time-dependent wave operator Can combine time-dependent and time-independent perturbations, unifying QED and MBT Can be used for stationary as well as dynamical problems (real and imaginary parts, respectively) Improves the accuracy of theoretical estimates one order of magnitude

47 Slides with rosper/lat X p. 45/48 Conclusions and Outlook The Green s operator has been used to evaluate QED beyond second order, employing Coulomb gauge for radiative QED applied to dynamical problems to derive the Optical Theorem for bound systems to evaluate the QED effect in radiative recombination and in radiative decay (together with GSI, Jena)

48 Slides with rosper/lat X p. 46/48 This work has been supported by The Swedish Science Reseach Council The Humboldt Foundation Helmholtz Association Gesellschaft für Schwerionenforschung

49 Thank you! Slides with rosper/lat X p. 47/48

50 Slides with rosper/lat X p. 48/48

Helium fine structure Ingvar Lindgren (mod )

Helium fine structure Ingvar Lindgren (mod ) Helium fine structure Ingvar Lindgren 2004.09.20 (mod. 2005.01.23) The leading contributions to the helium fine structure beyond the first-order relativistic contribution were first derived by Araki [1]

More information

Springer Series on Atomic, Optical, and Plasma Physics

Springer Series on Atomic, Optical, and Plasma Physics Springer Series on Atomic, Optical, and Plasma Physics Volume 63 Series Editors W.E. Baylis Uwe Becker Philip George Burke Robert N. Compton M.R. Flannery Charles J. Joachain Brian R. Judd Kate Kirby Peter

More information

TOWARDS A RELATIVISTICALLY COVARIANT MANY-BODY PERTURBATION THEORY

TOWARDS A RELATIVISTICALLY COVARIANT MANY-BODY PERTURBATION THEORY Thesis for the degree of Doctor of Philosophy TOWARDS A RELATIVISTICALLY COVARIANT MANY-BODY PERTURBATION THEORY - With Numerical Implementation to Helium-Like Ions DANIEL HEDENDAHL Department of Physics

More information

LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM

LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM Student, Aws Abdo The hydrogen atom is the only system with exact solutions of the nonrelativistic Schrödinger equation

More information

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons;

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons; Chapter 9 : Radiative Corrections 9.1 Second order corrections of QED 9. Photon self energy 9.3 Electron self energy 9.4 External line renormalization 9.5 Vertex modification 9.6 Applications 9.7 Infrared

More information

Chapter 7 -- Radiative Corrections: some formal developments. A quotation from Peskin & Schroeder, Chapter 7:

Chapter 7 -- Radiative Corrections: some formal developments. A quotation from Peskin & Schroeder, Chapter 7: Chapter 7 -- Radiative Corrections: some formal developments A quotation from Peskin & Schroeder, Chapter 7: 7.1. Field-strength renormalization 7.2. The LSZ reduction formula 7.3. The optical theorem

More information

The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius

The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius The Lamb shift in hydrogen and muonic hydrogen and the proton charge radius Savely Karshenboim Pulkovo Observatory (ГАО( РАН) ) (St. Petersburg) & Max-Planck Planck-Institut für Quantenoptik (Garching)

More information

Lecture 4. Beyound the Dirac equation: QED and nuclear effects

Lecture 4. Beyound the Dirac equation: QED and nuclear effects Lecture 4 Beyound the Dirac equation: QED and nuclear effects Plan of the lecture Reminder from the last lecture: Bound-state solutions of Dirac equation Higher-order corrections to Dirac energies: Radiative

More information

4. The Standard Model

4. The Standard Model 4. The Standard Model Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 4. The Standard Model 1 In this section... Standard Model particle content Klein-Gordon equation Antimatter Interaction

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Relativistic corrections of energy terms

Relativistic corrections of energy terms Lectures 2-3 Hydrogen atom. Relativistic corrections of energy terms: relativistic mass correction, Darwin term, and spin-orbit term. Fine structure. Lamb shift. Hyperfine structure. Energy levels of the

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

good agreement with the experiment. Thus investigations on the magnetic moment anomaly represent one of the most stringent tests of QED of a free part

good agreement with the experiment. Thus investigations on the magnetic moment anomaly represent one of the most stringent tests of QED of a free part The Magnetic Moment Anomaly of the Electron Bound in Hydrogenic Ions W. Quint Λ, T. Beier Λ, H. Häffner Λ;y1, N. Hermanspahn y2, S. Karshenboim +, H.-J. Kluge Λ, G. Marx Λ, T. Valenzuela y, J. Verdú Λ

More information

Introduction to particle physics Lecture 2

Introduction to particle physics Lecture 2 Introduction to particle physics Lecture 2 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Quantum field theory Relativistic quantum mechanics Merging special relativity and quantum mechanics

More information

Introduction to Elementary Particle Physics I

Introduction to Elementary Particle Physics I Physics 56400 Introduction to Elementary Particle Physics I Lecture 16 Fall 018 Semester Prof. Matthew Jones Review of Lecture 15 When we introduced a (classical) electromagnetic field, the Dirac equation

More information

Experiments with hydrogen - discovery of the Lamb shift

Experiments with hydrogen - discovery of the Lamb shift Experiments with hydrogen - discovery of the Lamb shift Haris Ðapo Relativistic heavy ion seminar, October 26, 2006 Outline 1 Pre-Lamb experiment The beginning (Bohr s formula) Fine structure (Dirac s

More information

Atomic Physics with Stored and Cooled Ions

Atomic Physics with Stored and Cooled Ions Lecture #5 Atomic Physics with Stored and Cooled Ions Klaus Blaum Gesellschaft für Schwerionenforschung, GSI, Darmstadt and CERN, Physics Department, Geneva, Switzerland Summer School, Lanzhou, China,

More information

A natural solution of the proton charge radius puzzle.

A natural solution of the proton charge radius puzzle. A natural solution of the proton charge radius puzzle. Thomas Walcher Institute for Nuclear Physics Johannes-Gutenberg University Mainz INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 37th Course Probing Hadron

More information

_ int (x) = e ψ (x) γμ ψ(x) Aμ(x)

_ int (x) = e ψ (x) γμ ψ(x) Aμ(x) QED; and the Standard Model We have calculated cross sections in lowest order perturbation theory. Terminology: Born approximation; tree diagrams. At this order of approximation QED (and the standard model)

More information

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model Quantum Mechanics and Atomic Physics Lecture 20: Real Hydrogen Atom /Identical particles http://www.physics.rutgers.edu/ugrad/361 physics edu/ugrad/361 Prof. Sean Oh Last time Hydrogen atom: electron in

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

The path integral for photons

The path integral for photons The path integral for photons based on S-57 We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge: as in the case of scalar field we Fourier-transform

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information

Part III. Interacting Field Theory. Quantum Electrodynamics (QED)

Part III. Interacting Field Theory. Quantum Electrodynamics (QED) November-02-12 8:36 PM Part III Interacting Field Theory Quantum Electrodynamics (QED) M. Gericke Physics 7560, Relativistic QM 183 III.A Introduction December-08-12 9:10 PM At this point, we have the

More information

Vector mesons in the fireball

Vector mesons in the fireball Symmetries and Self-consistency Vector mesons in the fireball π,... ρ/ω γ e e + Hendrik van Hees Fakultät für Physik Universität Bielefeld Symmetries and Self-consistency p.1 Content Concepts Real time

More information

Atomic structure and dynamics

Atomic structure and dynamics Atomic structure and dynamics -- need and requirements for accurate atomic calculations Analysis and interpretation of optical and x-ray spectra (astro physics) Isotope shifts and hyperfine structures

More information

Quantization of the E-M field. 2.1 Lamb Shift revisited 2.1. LAMB SHIFT REVISITED. April 10, 2015 Lecture XXVIII

Quantization of the E-M field. 2.1 Lamb Shift revisited 2.1. LAMB SHIFT REVISITED. April 10, 2015 Lecture XXVIII .. LAMB SHFT REVSTED April, 5 Lecture XXV Quantization of the E-M field. Lamb Shift revisited We discussed the shift in the energy levels of bound states due to the vacuum fluctuations of the E-M fields.

More information

Auger electron and x-ray emission from high-z few-electron ions

Auger electron and x-ray emission from high-z few-electron ions Auger electron and x-ray emission from high-z few-electron ions S. Fritzsche MPI für Kernphysik Heidelberg and GSI Darmstadt 4th August 2007 Main goal for studying high-z ions is the better understanding

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

Quantum ElectroDynamics III

Quantum ElectroDynamics III Quantum ElectroDynamics III Feynman diagram Dr.Farida Tahir Physics department CIIT, Islamabad Human Instinct What? Why? Feynman diagrams Feynman diagrams Feynman diagrams How? What? Graphic way to represent

More information

Electron-positron production in kinematic conditions of PrimEx

Electron-positron production in kinematic conditions of PrimEx Electron-positron production in kinematic conditions of PrimEx Alexandr Korchin Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine 1 We consider photoproduction of e + e pairs on a nucleus

More information

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM I. The interaction of electromagnetic fields with matter. The Lagrangian for the charge q in electromagnetic potentials V

More information

Non-relativistic Quantum Electrodynamics

Non-relativistic Quantum Electrodynamics Rigorous Aspects of Relaxation to the Ground State Institut für Analysis, Dynamik und Modellierung October 25, 2010 Overview 1 Definition of the model Second quantization Non-relativistic QED 2 Existence

More information

Atomic double slit: Coherence transfer through excitation and (Auger) decay processes. S. Fritzsche, Kassel University Göteborg, 3rd June 2006

Atomic double slit: Coherence transfer through excitation and (Auger) decay processes. S. Fritzsche, Kassel University Göteborg, 3rd June 2006 Atomic double slit: Coherence transfer through excitation and (Auger) decay processes S. Fritzsche, Kassel University Göteborg, 3rd June 2006 Experiments with double slits (Feynman-Lectures 1962) Interference

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Lecture 8 Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 8 Feynman diagramms. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 8 Feynman diagramms SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Photon propagator Electron-proton scattering by an exchange of virtual photons ( Dirac-photons ) (1) e - virtual

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Renormalization of Conserving Selfconsistent Dyson equations

Renormalization of Conserving Selfconsistent Dyson equations Renormalization of Conserving Selfconsistent Dyson equations Hendrik van Hees Darmstadt Motivation Thermodynamics of strongly interacting systems Conservation laws, detailed balance, thermodynamical consistency

More information

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Hendrik van Hees in collaboration with Jörn Knoll Contents Schwinger-Keldysh real-time formalism

More information

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n. University of Groningen Proton-proton bremsstrahlung in a relativistic covariant model Martinus, Gerard Henk IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Muon (g 2) Dennis V. Perepelitsa Columbia University Department of Physics (Dated: December 22, 2008)

Muon (g 2) Dennis V. Perepelitsa Columbia University Department of Physics (Dated: December 22, 2008) Muon (g 2) Dennis V. Perepelitsa Columbia University Department of Physics (Dated: December 22, 2008) 1. THE MUON MAGNETIC MOMENT A charged particle with mass m and charge q has a magnetic moment that

More information

Lorentz invariant scattering cross section and phase space

Lorentz invariant scattering cross section and phase space Chapter 3 Lorentz invariant scattering cross section and phase space In particle physics, there are basically two observable quantities : Decay rates, Scattering cross-sections. Decay: p p 2 i a f p n

More information

Proton charge radius puzzle

Proton charge radius puzzle Proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw KMMF, January 24, 2013 Proton charge radius puzzle global fit to H and D spectrum: r p = 0.8758(77)

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li Institute) Slide_04 1 / 44 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination is the covariant derivative.

More information

1 Running and matching of the QED coupling constant

1 Running and matching of the QED coupling constant Quantum Field Theory-II UZH and ETH, FS-6 Assistants: A. Greljo, D. Marzocca, J. Shapiro http://www.physik.uzh.ch/lectures/qft/ Problem Set n. 8 Prof. G. Isidori Due: -5-6 Running and matching of the QED

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Lecture 4: Antiparticles

Lecture 4: Antiparticles Lecture 4: Antiparticles Relativistic wave equations have negative-energy solutions Antiparticles (Chap 3) Perturbation Theory Quantum Field Theories describe fundamental interactions. e.g., QED for electromagnetic

More information

Nuclear Effects in Electron Capture into Highly Charged Heavy Ions

Nuclear Effects in Electron Capture into Highly Charged Heavy Ions Nuclear Effects in Electron Capture into Highly Charged Heavy Ions W. Scheid 1,A.Pálffy 2,Z.Harman 2, C. Kozhuharov 3, and C. Brandau 3 1 Institut für Theoretische Physik der Justus-Liebig-Universität

More information

From the Bethe-Salpeter equation to non-relativistic approaches with effective two-body interactions

From the Bethe-Salpeter equation to non-relativistic approaches with effective two-body interactions INT, Seattle - 15.11.2004 p. 1/28 From the Bethe-Salpeter equation to non-relativistic approaches with effective two-body interactions Lukas THEUSSL theussl@triumf.ca Triumf, 4004 Wesbrook Mall, Vancouver,

More information

Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics and Mathematics (IPM) Tehran-Iran

Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics and Mathematics (IPM) Tehran-Iran Modified Coulomb potential of QED in a strong magnetic field Neda Sadooghi Sharif University of Technology (SUT) and Institute for Theoretical Physics and Mathematics (IPM) Tehran-Iran Modified Coulomb

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

Lamb shift in muonic hydrogen and the proton charge radius puzzle

Lamb shift in muonic hydrogen and the proton charge radius puzzle Lamb shift in muonic hydrogen and the proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw Mainz, April 17, 2013 Proton charge radius puzzle global fit

More information

Proton. Hadron Charge: +1 Composition: 2 up quarks 1 down quark. Spin: 1/2

Proton. Hadron Charge: +1 Composition: 2 up quarks 1 down quark. Spin: 1/2 The proton radius puzzle Proton Hadron Charge: +1 Composition: 2 up quarks 1 down quark Spin: 1/2 1 How to measure the (rms) radius of the proton https://muhy.web.psi.ch/wiki/index.php/main/news Method

More information

Outline. Basic Principles. Extended Lagrange and Hamilton Formalism for Point Mechanics and Covariant Hamilton Field Theory

Outline. Basic Principles. Extended Lagrange and Hamilton Formalism for Point Mechanics and Covariant Hamilton Field Theory Outline Outline Covariant Hamiltonian Formulation of Gauge Theories J. 1 GSI Struckmeier1,, D. Vasak3, J. Kirsch3, H. 1 Basics:,, General Relativity 3 Global symmetry of a dynamical system Local symmetry

More information

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I)

Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Quantum Field Theory Spring 2019 Problem sheet 3 (Part I) Part I is based on material that has come up in class, you can do it at home. Go straight to Part II. 1. This question will be part of a take-home

More information

Two-photon transitions in heavy ions:

Two-photon transitions in heavy ions: Two-photon transitions in heavy ions: From relativistic and many-body effects to parity non-conservation phenomena Andrey Surzhykov Physics Institute of the University of Heidelberg and Atomic Physics

More information

Theoretical Tools for Spectro-Polarimetry

Theoretical Tools for Spectro-Polarimetry Theoretical Tools for Spectro-Polarimetry R. Casini High Altitude Observatory The High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) The National Center for Atmospheric

More information

Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI-FRIB Workshop, October 23, 2014

Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI-FRIB Workshop, October 23, 2014 Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI-FRIB Workshop, October 23, 2014 Outline Very short review of Schiff theorem Multipole

More information

2 Feynman rules, decay widths and cross sections

2 Feynman rules, decay widths and cross sections 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in

More information

QED, Lamb shift, `proton charge radius puzzle' etc.

QED, Lamb shift, `proton charge radius puzzle' etc. QED, Lamb shift, `proton charge radius puzzle' etc. Savely Karshenboim Pulkovo Observatory (ГАО РАН) (St. Petersburg) & Max-Planck-Institut für Quantenoptik (Garching) Outline Different methods to determine

More information

Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI Workshop, November 6, 2014

Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI Workshop, November 6, 2014 Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI Workshop, November 6, 2014 Outline Very short review of Schiff theorem Multipole expansion

More information

Feynman Diagrams. e + e µ + µ scattering

Feynman Diagrams. e + e µ + µ scattering Feynman Diagrams Pictorial representations of amplitudes of particle reactions, i.e scatterings or decays. Greatly reduce the computation involved in calculating rate or cross section of a physical process,

More information

Semi-Classical Theory of Radiative Transitions

Semi-Classical Theory of Radiative Transitions Semi-Classical Theory of Radiative Transitions Massimo Ricotti ricotti@astro.umd.edu University of Maryland Semi-Classical Theory of Radiative Transitions p.1/13 Atomic Structure (recap) Time-dependent

More information

Elementary Par,cles Rohlf Ch , p474 et seq.

Elementary Par,cles Rohlf Ch , p474 et seq. Elementary Par,cles Rohlf Ch. 17-18, p474 et seq. The Schroedinger equa,on is non- rela,vis,c. Rela,vis,c wave equa,on (Klein- Gordon eq.) Rela,vis,c equa,on connec,ng the energy and momentum of a free

More information

Loop Corrections: Radiative Corrections, Renormalization and All

Loop Corrections: Radiative Corrections, Renormalization and All Loop Corrections: Radiative Corrections, Renormalization and All That Michael Dine Department of Physics University of California, Santa Cruz Nov 2012 Loop Corrections in φ 4 Theory At tree level, we had

More information

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002

Particle Physics. experimental insight. Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 experimental insight e + e - W + W - µνqq Paula Eerola Division of High Energy Physics 2005 Spring Semester Based on lectures by O. Smirnova spring 2002 Lund University I. Basic concepts Particle physics

More information

By following steps analogous to those that led to (20.177), one may show (exercise 20.30) that in Feynman s gauge, = 1, the photon propagator is

By following steps analogous to those that led to (20.177), one may show (exercise 20.30) that in Feynman s gauge, = 1, the photon propagator is 20.2 Fermionic path integrals 74 factor, which cancels. But if before integrating over all gauge transformations, we shift so that 4 changes to 4 A 0, then the exponential factor is exp[ i 2 R ( A 0 4

More information

BETHE - SALPETER EQUATION THE ORIGINS Edwin E. Salpeter October 2008

BETHE - SALPETER EQUATION THE ORIGINS Edwin E. Salpeter October 2008 1. INTRODUCTION BETHE - SALPETER EQUATION THE ORIGINS Edwin E. Salpeter October 2008 The Bethe-Salpeter equation was first given at an American Physical Society meeting at the beginning of 1951 (Bethe-Salpeter

More information

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran

Classical and Quantum Dynamics in a Black Hole Background. Chris Doran Classical and Quantum Dynamics in a Black Hole Background Chris Doran Thanks etc. Work in collaboration with Anthony Lasenby Steve Gull Jonathan Pritchard Alejandro Caceres Anthony Challinor Ian Hinder

More information

Higher-order recoil corrections in Helium and Helium-like ions

Higher-order recoil corrections in Helium and Helium-like ions Higher-order recoil corrections in Helium and Helium-like ions Vojtěch Patkóš Department of Chemical Physics and Optics Charles University in Prague 19th May 2017 Motivation Motivation Hydrogenic systems

More information

Bound Electron g Factor

Bound Electron g Factor Bound Electron g Factor Lepton Moments ' 06 Cape Cod, 20 JUN 2006 Ulrich D. Jentschura Max Planck Institute for Nuclear Physics, Heidelberg, Germany Contents Theory of hydrogen and deuterium spectra and

More information

Feynman Diagrams of the Standard Model Sedigheh Jowzaee

Feynman Diagrams of the Standard Model Sedigheh Jowzaee tglied der Helmholtz-Gemeinschaft Feynman Diagrams of the Standard Model Sedigheh Jowzaee PhD Seminar, 5 July 01 Outlook Introduction to the standard model Basic information Feynman diagram Feynman rules

More information

Inclusive Electron Scattering off 4 He

Inclusive Electron Scattering off 4 He Gesellschaft für Schwerionenforschung, Darmstadt Theory Division Inclusive Electron Scattering off He S. Bacca in coloration with: H. Arenhövel Johannes-Gutenberg Universität, Mainz N. Barnea The Racah

More information

YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD. Algirdas Antano Maknickas 1. September 3, 2014

YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD. Algirdas Antano Maknickas 1. September 3, 2014 YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD Algirdas Antano Maknickas Institute of Mechanical Sciences, Vilnius Gediminas Technical University September 3, 04 Abstract. It

More information

Lecture 3 (Part 1) Physics 4213/5213

Lecture 3 (Part 1) Physics 4213/5213 September 8, 2000 1 FUNDAMENTAL QED FEYNMAN DIAGRAM Lecture 3 (Part 1) Physics 4213/5213 1 Fundamental QED Feynman Diagram The most fundamental process in QED, is give by the definition of how the field

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 2012/13 (13.11.2012) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 226, 3.101 Content of Today Up to now: first order non-resonant e+e- cross-section dσ e.g. (e + e μ + μ

More information

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York QUANTUM FIELD THEORY A Modern Introduction MICHIO KAKU Department of Physics City College of the City University of New York New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Quantum Fields and Renormalization

More information

Studying Nuclear Structure

Studying Nuclear Structure Microscope for the Studying Nuclear Structure with s School of Physics Seoul National University November 15, 2004 Outline s Microscope for the s Smaller, smaller Quest for basic building blocks of the

More information

Ultraviolet Divergences

Ultraviolet Divergences Ultraviolet Divergences In higher-order perturbation theory we encounter Feynman graphs with closed loops, associated with unconstrained momenta. For every such momentum k µ, we have to integrate over

More information

Hadronic contributions to the muon g-2

Hadronic contributions to the muon g-2 Hadronic contributions to the muon g-2 RICHARD WILLIAMS (HIRSCHEGG 2014) 1 Overview Introduction Hadronic Vacuum Polarisation Hadronic Light-by-Light Scattering Conclusions 2 Overview Introduction Hadronic

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Physics 444: Quantum Field Theory 2. Homework 2.

Physics 444: Quantum Field Theory 2. Homework 2. Physics 444: Quantum Field Theory Homework. 1. Compute the differential cross section, dσ/d cos θ, for unpolarized Bhabha scattering e + e e + e. Express your results in s, t and u variables. Compute the

More information

Introduction to the physics of highly charged ions. Lecture 12: Self-energy and vertex correction

Introduction to the physics of highly charged ions. Lecture 12: Self-energy and vertex correction Introduction to the physics of highly charged ions Lecture 12: Self-energy and vertex correction Zoltán Harman harman@mpi-hd.mpg.de Universität Heidelberg, 03.02.2014 Recapitulation from the previous lecture

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

Lamb Shift and Sub-Compton Electron Dynamics: Dirac Hydrogen Wavefunctions without Singularities. Lloyd Watts October 16, 2015

Lamb Shift and Sub-Compton Electron Dynamics: Dirac Hydrogen Wavefunctions without Singularities. Lloyd Watts October 16, 2015 Lamb Shift and Sub-Compton Electron Dynamics: Dirac Hydrogen Wavefunctions without Singularities Lloyd Watts October 16, 2015 Introduction Schrodinger Hydrogen Atom explains basic energy levels, but does

More information

Directions toward the resolution of the proton charge radius puzzle

Directions toward the resolution of the proton charge radius puzzle Directions toward the resolution of the proton charge radius puzzle Krzysztof Pachucki Institute of Theoretical Physics, University of Warsaw ECT workshop on the proton radius puzzle, November 1, 2012

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

THE FEYNMAN RULES. < f S i >. \ f >

THE FEYNMAN RULES. < f S i >. \ f > THE FEYNMAN RULES I. Introduction: Very generally, interactions can be viewed as the result of a scattering operator (S), a unitary operator acting on an initial state (\i >) leading to a multitude of

More information

TENTATIVE SYLLABUS INTRODUCTION

TENTATIVE SYLLABUS INTRODUCTION Physics 615: Overview of QFT Fall 2010 TENTATIVE SYLLABUS This is a tentative schedule of what we will cover in the course. It is subject to change, often without notice. These will occur in response to

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Static and covariant meson-exchange interactions in nuclear matter

Static and covariant meson-exchange interactions in nuclear matter Workshop on Relativistic Aspects of Two- and Three-body Systems in Nuclear Physics - ECT* - 19-23/10/2009 Static and covariant meson-exchange interactions in nuclear matter Brett V. Carlson Instituto Tecnológico

More information

Introduction to Elementary Particles

Introduction to Elementary Particles David Criffiths Introduction to Elementary Particles Second, Revised Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface to the First Edition IX Preface to the Second Edition XI Formulas and Constants

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 5 : Electron-Proton Elastic Scattering. Electron-Proton Scattering Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 5 : Electron-Proton Elastic Scattering Prof. M.A. Thomson Michaelmas 2011 149 i.e. the QED part of ( q q) Electron-Proton Scattering In this

More information

QED on background Coulomb field

QED on background Coulomb field Department of Chemical Physics and Optics Charles University in Prague May 2017 Plan of the talk Motivation for study bound-state QED Solution of Dirac equation for external Coulomb field Evaluation of

More information