Equation of State Dependence of Gravitational Waves from Core-Collapse Supernovae

Size: px
Start display at page:

Download "Equation of State Dependence of Gravitational Waves from Core-Collapse Supernovae"

Transcription

1 Equation of State Dependence of Gravitational Waves from Core-Collapse Supernovae Sherwood Richers California Institute of Technology NSF Blue Waters Graduate Fellow Christian Ott, Ernazar Abdikamalov Evan O Connor, Chris Sullivan Sherwood Richers 1/14

2 Rotating Core-Collapse Core-Collapse Supernovae SN-GRB Association Hypernovae Coincident GRB + SN Ic/bl Young star-forming regions Interior rotation is still poorly understood. (Ott 2009) Sherwood Richers 2/14

3 Gravitational Waves from Core Collapse h 2G c 4 dï (Finn & Evans 1990) High-β dynamical instability Low-β secular instability Post-bounce convection / SASI r-mode instability Asymmetric energy distribution Rotating collapse and bounce... Andresen et al Sherwood Richers 3/14

4 Gravitational Waves from Rapidly Rotating Core Collapse Sherwood Richers 4/14

5 Many Available Equations of State J M [M ] BHBΛΦ R [km] Sherwood Richers 5/14

6 Parameter Study Methods 1824 Simulations 18 equations of state, 98 rotation profiles 2D Simulations (CoCoNuT) Conformally flat GRHD Neutrino Leakage (Dimmelmeier+02,05) Deleptonization (GR1D) Spherically symmetric GRHD M1 neutrino transport (O Connor 2015) Ye BHBLP ρ [g/cm 3 ] Sherwood Richers 6/14

7 GW Observables h h+ tb tbe tbe + 6ms A = 634km Ω 0 = 5.0s 1 BHBΛΦ t t b [ms] h+ f [Hz 1/2 ] Virgo aligo Bounce signal h + in time domain Peak frequency f peak in frequency domain. bkagra f [Hz] Sherwood Richers 7/14

8 Bounce Amplitude 30 8 (GM)2 Rc 4 D T W A1 (Dimmelmeier et al. 2008) h+ 20 A2 10 A5 A4 A3 BHBΛΦ T/ W EOS and rotation influence M IC,b. Rotation increases deformation. Sherwood Richers 8/14

9 Peak Frequency 1100 Slow Rapid Extreme fpeak [Hz] weak signal 700 (Dimmelmeier+08) 150 Hz variation due to EOS Explained by the dynamical frequency. 2π fpeak/ G ρc f dyn = 2π G ρ c BHBΛΦ T / W Sherwood Richers 9/14

10 fpeak 2π/ G ρc Peak Frequency Now, let s measure rotation differently. BHBΛΦ Ω max / G ρ c Inertial effects increase frequency and confine modes to poles h + vr, e [10 3 cm/s] vr, p [10 3 cm/s] tb t t b [ms] Ω 0 [s 1 ] A = 634 km R = 5 km Sherwood Richers 10/14

11 Inertial Mode Character t tb =4.5 ms Ω0 = 4.0 rad s 1 Ω0 = 8.0 rad s 1 r = 15 km Entropy [kb baryon 1] 5 High rotation rates suppress equatorial fluctuations. Sherwood Richers 11/14

12 Can We Constrain the EOS? f peak [Hz] Weak Signal BHBΛΦ h + Probably not. Need detailed treatment of neutrino transport and electron capture rates. Sherwood Richers 12/14

13 Take Away A universal relations is obeyed by all EOS and rotation profiles. We quantify uncertainties in GW observables due to nuclear physics. GWs are sensitive to EOS properties at both subnuclear and supernuclear densities. Detailed neutrino transport and electron capture rates during collapse are required for reliable GW predictions. arxiv: srichers@tapir.caltech.edu Sherwood Richers 13/14

14 Fourier Analysis h+ f [10 22 Hz 1/2 ] t be + 50 ms 0 t be + 6 ms 0 t be t be t be + 6 ms A = 634 km Ω 0 = 5.0 rad s f [Hz] Sherwood Richers 13/14

15 18 Equations of State E(x, β) = E 0 + K 18 x2 + K x S 2 (x)β 2 + S 4 (x)β Constrained Parameter Value max M min Mmax > M 220 MeV < K < 260 MeV 28 MeV < S(0) < 34 MeV 20 MeV < L(0) < 120 MeV Parameters between the lines satisfy constraints. LS180 LS375 BHBL BHBLP HSIUF HSFSG GSFSU1.7 GSFSU2.1 GSNL3 HShen HShenH HSNL3 HSTMA HSTM1 S 2 (x) = J + L 3 x +... x = n ns n s β = 2(0.5 Y e ) Sherwood Richers 13/14

16 fpeak 2π/ G ρc Peak Frequency Now, let s measure rotation differently. BHBΛΦ Ω max / G ρ c Inertial effects increase frequency and 1 confine modes to poles π fpeak [10 3 s 1 ] Ωmax [10 3 s 1 ] Ωmax = G ρc ρnuc BHBLΛΦ G ρc [10 3 s 1 ] 2π fpeak = G ρc Sherwood Richers 13/14

17 Correlations C AB = ( A Ā B B )( ) s A s B N 1 M IC,b j IC,b T/ W Ωmax Ωmax h+ f peak f peak Ω0 A Y e,c,b L K R1.4 Mmax J M IC,b j IC,b T/ W Ω max Ω max Ωmax < G ρc h + f peak f peak Ω 0 A Y e,c,b Ωmax G ρc L J R 1.4 K M max Sherwood Richers 14/14

18 Can We Constrain the EOS? Ye Fiducial ecap0.1 ecap1.0 ecap ρ [g cm 3 ] The GW signal is sensitive to systematic biases in electron capture rates. f peak [Hz] h Fiducial ecap0.1 ecap1.0 ecap10.0 Slow Rapid Extreme weak signal T/ W Sherwood Richers 14/14

19 Can We Constrain the EOS? Optimal SNR BHBΛΦ Slow Rapid Extreme T/ W Mismatch with Weak Signal Slow Rapid Extreme BHBΛΦ T/ W High SNR at 10 kpc. Must be in the Milky Way or Magellanic Clouds. Large mismatch between EOS due to pre- and post-collapse physics. Looks great, right? Sherwood Richers 14/14

Comparison of Neutrino Transport Approximations in Core-Collapse Supernova Simulations

Comparison of Neutrino Transport Approximations in Core-Collapse Supernova Simulations Comparison of Neutrino Transport Approximations in Core-Collapse Supernova Simulations Sherwood Richers 1 Evan O Connor 2 Christian Ott 1 1 TAPIR, California Institute of Technology 2 CITA, University

More information

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Outline Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Work done at the MPA in Garching Dimmelmeier, Font, Müller, Astron.

More information

Detection of Gravitational Waves and Neutrinos from Astronomical Events

Detection of Gravitational Waves and Neutrinos from Astronomical Events Detection of Gravitational Waves and Neutrinos from Astronomical Events Jia-Shu Lu IHEP,CAS April 18, 216 JUNO Neutrino Astronomy and Astrophysics Seminar 1 / 24 Outline Sources of both GW and neutrinos.

More information

General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes

General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes General-Relativistic Simulations of Stellar Collapse and The Formation of Stellar-Mass Black Holes Christian D. Ott, TAPIR, Caltech cott@tapir.caltech.edu Work in Collaboration with: Evan O Connor, Fang

More information

Gravitational Waves from Supernova Core Collapse: Current state and future prospects

Gravitational Waves from Supernova Core Collapse: Current state and future prospects Gravitational Waves from Core Collapse Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: Current state and future prospects Work done with E. Müller (MPA)

More information

Gravitational waves from proto-neutron star evolution

Gravitational waves from proto-neutron star evolution Gravitational waves from proto-neutron star evolution Giovanni Camelio in collaboration with: Leonardo Gualtieri, Alessandro Lovato, Jose A. Pons, Omar Benhar, Morgane Fortin & Valeria Ferrari PhD student

More information

Tomoya Takiwaki (RIKEN)

Tomoya Takiwaki (RIKEN) 2014/8/25 GRB-SN Workshop@RIKEN Explosion Mechanism of Core-collapse Supernovae Tomoya Takiwaki (RIKEN) Multi-scale & Multi-physics Hydrodynamics Bar-mode Gravitational Strong General relativity Gravitational

More information

Formation and evolution of BH and accretion disk in Collapsar

Formation and evolution of BH and accretion disk in Collapsar Formation and evolution of BH and accretion disk in Collapsar Yuichiro Sekiguchi National Astronomical Observatory of Japan arxiv : 1009.5303 Motivation Collapsar model of GRB Central engine : Black hole

More information

Extracting Supernova Information from a LIGO Detection

Extracting Supernova Information from a LIGO Detection Extracting Supernova Information from a LIGO Detection Tiffany Summerscales Penn State University March 23, 2005 March LSC Meeting ASIS Session 1 Goal: Supernova Astronomy with Gravitational Waves The

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

Life and Evolution of a Massive Star. M ~ 25 M Sun

Life and Evolution of a Massive Star. M ~ 25 M Sun Life and Evolution of a Massive Star M ~ 25 M Sun Birth in a Giant Molecular Cloud Main Sequence Post-Main Sequence Death The Main Sequence Stars burn H in their cores via the CNO cycle About 90% of a

More information

Neutrino emission features from 3D supernova simulations

Neutrino emission features from 3D supernova simulations Neutrino emission features from 3D supernova simulations Irene Tamborra GRAPPA Institute, University of Amsterdam GDR Neutrino 2014 Laboratoire de l Accelérateur Linéaire, Orsay, June 17, 2014 Outline

More information

The Death of Massive Stars: Core-Collapse Supernova Science Opportunities with Gravitational Wave Observatories

The Death of Massive Stars: Core-Collapse Supernova Science Opportunities with Gravitational Wave Observatories The Death of Massive Stars: Core-Collapse Supernova Science Opportunities with Gravitational Wave Observatories Christian David Ott cott@tapir.caltech.edu TAPIR, California Institute of Technology, Pasadena,

More information

Core-collapse supernova simulations in three dimensions

Core-collapse supernova simulations in three dimensions Core-collapse supernova simulations in three dimensions Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R. Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU),

More information

Core-Collapse Supernova Science with Advanced LIGO and Virgo

Core-Collapse Supernova Science with Advanced LIGO and Virgo Core-Collapse Supernova Science with Advanced LIGO and Virgo Fifty-One Erg Raleigh, 06/01/2015 Marek Szczepańczyk Mösta et al 2014 LIGO Scientific Collaboration and Virgo Collaboration The Advanced GW

More information

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04 LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04 Science Goals Physics» Direct verification of the most relativistic prediction of general relativity» Detailed tests of properties of gravitational

More information

Simulations of neutron star mergers: Status and prospects

Simulations of neutron star mergers: Status and prospects Simulations of neutron star mergers: Status and prospects David Radice 1,2 1 Research Associate, Princeton University 2 Taplin Member, Institute for Advanced Study First multi-messenger observations of

More information

HPC in Physics. (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences

HPC in Physics. (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences HPC in Physics (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences 1 Gravitational Wave Einstein s Unfinished Symphony Marcia Bartuciak Predicted

More information

Multi-messenger predictions from 3D-GR Core-Collapse Supernova Models : Correlation beyond Kei Kotake (Fukuoka University)

Multi-messenger predictions from 3D-GR Core-Collapse Supernova Models : Correlation beyond Kei Kotake (Fukuoka University) Multi-messenger predictions from 3D-GR Core-Collapse Supernova Models : Correlation beyond Kei Kotake (Fukuoka University) with Takami Kuroda (TU. Darmstadt), Ko Nakamura (Fukuoka Univ.), Tomoya Takiwaki

More information

Ref. PRL 107, (2011)

Ref. PRL 107, (2011) Kenta Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata Ref. PRL 107, 051102 (2011) Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS Introduction Coalescence of binary neutron stars Promising source of GWs Verification

More information

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization

Hirschegg Supernova core collapse. dynamics of core collapse. simple and efficient parameterization of deleptonization Hirschegg 2006 Supernova core collapse M. Liebendörfer University of Basel U.-L. Pen & C. Thompson Canadian Institut for Theoretical Astrophysics dynamics of core collapse simple and efficient parameterization

More information

Multi-Dimensional Core-Collapse Supernova Simulations with the IDSA for Neutrino Transport

Multi-Dimensional Core-Collapse Supernova Simulations with the IDSA for Neutrino Transport F.O.E Conference June 3rd, 2015 Raleigh NC Multi-Dimensional Core-Collapse Supernova Simulations with the IDSA for Neutrino Transport Kuo-Chuan Pan Universität Basel, Switzerland (arxiv:1505.02513) The

More information

Neutrinos Probe Supernova Dynamics

Neutrinos Probe Supernova Dynamics Neutrinos Probe Supernova Dynamics Irene Tamborra GRAPPA Institute, University of Amsterdam Rencontres de Moriond, EW Interactions and Unified Theories La Thuile, March 18, 2014 Outline Supernova explosion

More information

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA)

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 2015/08/18 MICRA2015 How supernova simulations are affected by input physics Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 1 Supernovae: the death of the star? Q:How does the explosion

More information

Gravitational Waves. Masaru Shibata U. Tokyo

Gravitational Waves. Masaru Shibata U. Tokyo Gravitational Waves Masaru Shibata U. Tokyo 1. Gravitational wave theory briefly 2. Sources of gravitational waves 2A: High frequency (f > 10 Hz) 2B: Low frequency (f < 10 Hz) (talk 2B only in the case

More information

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models SFB-TR7 Workshop on "Probing the Supernova Mechanism by Observations" Seattle, July 16 20, 2012 Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven

More information

Takaaki Kajita, JGRG 22(2012) Status of KAGRA RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22. November

Takaaki Kajita, JGRG 22(2012) Status of KAGRA RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22. November Takaaki Kajita, JGRG 22(2012)111402 Status of KAGRA RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22 November 12-16 2012 Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan RESCEU

More information

arxiv:astro-ph/ v1 17 Apr 2002

arxiv:astro-ph/ v1 17 Apr 2002 Astronomy & Astrophysics manuscript no. April 17, 2002 (DOI: will be inserted by hand later) Relativistic simulations of rotational core collapse. II. Collapse dynamics and gravitational radiation Harald

More information

Instabilities in neutron stars and gravitational waves

Instabilities in neutron stars and gravitational waves Instabilities in neutron stars and gravitational waves Andrea Passamonti INAF-Osservatorio di Roma AstroGR@Rome 2014 Rotational instabilities Non-axisymmetric instabilities of a rotating fluid star What

More information

arxiv: v1 [astro-ph] 18 May 2007

arxiv: v1 [astro-ph] 18 May 2007 arxiv:0705.2675v1 [astro-ph] 18 May 2007 GENERIC GRAVITATIONAL WAVE SIGNALS FROM THE COLLAPSE OF ROTATING STELLAR CORES H. DIMMELMEIER Department of Physics, Aristotle University of Thessaloniki, GR-54124

More information

Supernova neutrinos and their implications for supernova physics

Supernova neutrinos and their implications for supernova physics Supernova neutrinos and their implications for supernova physics Ken ichiro Nakazato (Tokyo University of Science) in collaboration with H. Suzuki(Tokyo U of Sci.), T. Totani, H. Umeda(U of Tokyo), K.

More information

Gravitational wave from neutron star

Gravitational wave from neutron star Gravitational wave from neutron star phase transition Shu Lin 2018.11.4 ATHIC 2018, Hefei based on 1810.00528, Gaoqing Cao, SL Outline Introduction GW from binary neutron star merger GW generation from

More information

Gravitational waves from NS-NS/BH-NS binaries

Gravitational waves from NS-NS/BH-NS binaries Gravitational waves from NS-NS/BH-NS binaries Numerical-relativity simulation Masaru Shibata Yukawa Institute for Theoretical Physics, Kyoto University Y. Sekiguchi, K. Kiuchi, K. Kyutoku,,H. Okawa, K.

More information

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics Gravitational Waves & Intermediate Mass Black Holes Lee Samuel Finn Center for Gravitational Wave Physics Outline What are gravitational waves? How are they produced? How are they detected? Gravitational

More information

Gravitational Waves from Neutron Stars

Gravitational Waves from Neutron Stars Gravitational Waves from Neutron Stars Astronomical Institute Anton Pannekoek Elastic outer crust Neutron star modelling Elastic inner curst with superfluid neutrons Superfluid neutrons and superconducting

More information

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel,

Nuclear Equation of State for High Density Matter. Matthias Hempel, Basel University NuPECC meeting Basel, Nuclear Equation of State for High Density Matter, Basel University NuPECC meeting Basel, 12.06.2015 Equation of State for Compact Stars neutron stars core-collapse supernova explosions MH Liebendörfer

More information

Progress of supernova simulations with the Shen equation of state

Progress of supernova simulations with the Shen equation of state Progress of supernova simulations with the Shen equation of state Nuclei K. Sumi yoshi Supernovae Numazu College of Technology & Theory Center, KEK, Japan Crab nebula hubblesite.org Applications of nuclear

More information

GRAVITATIONAL WAVE ASTRONOMY

GRAVITATIONAL WAVE ASTRONOMY GRAVITATIONAL WAVE ASTRONOMY A. Melatos (Melbourne) 1. GW: physics & astronomy 2. Current- & next-gen detectors & searches 3. Burst sources: CBC, SN GR, cosmology 4. Periodic sources: NS subatomic physics

More information

LIGO Observational Results

LIGO Observational Results LIGO Observational Results Patrick Brady University of Wisconsin Milwaukee on behalf of LIGO Scientific Collaboration LIGO Science Goals Direct verification of two dramatic predictions of Einstein s general

More information

GAMMA-RAY LIMIT ON AXION-LIKE PARTICLES FROM SUPERNOVAE. Alessandro MIRIZZI University of BARI & INFN BARI, Italy

GAMMA-RAY LIMIT ON AXION-LIKE PARTICLES FROM SUPERNOVAE. Alessandro MIRIZZI University of BARI & INFN BARI, Italy GAMMA-RAY LIMIT ON AXION-LIKE PARTICLES FROM SUPERNOVAE Alessandro MIRIZZI University of BARI & INFN BARI, Italy OUTLINE Introduction to SN & ALPs ALPs bound from SN 1987A [Payez, Evoli, Fischer, Giannotti,

More information

Searches for con,nuous gravita,onal waves in LIGO/Virgo data and the post-merger remnant following the binary neutron star merger GW170817

Searches for con,nuous gravita,onal waves in LIGO/Virgo data and the post-merger remnant following the binary neutron star merger GW170817 Searches for con,nuous gravita,onal waves in LIGO/Virgo data and the post-merger remnant following the binary neutron star merger GW170817 Evan Goetz for the LIGO Scien,fic Collabora,on and Virgo Collabora,on

More information

Neutrino-Driven Convection and Neutrino-Driven Explosions

Neutrino-Driven Convection and Neutrino-Driven Explosions Neutrino-Driven Convection and Neutrino-Driven Explosions by Jeremiah W. Murphy (Princeton U.) Collaborators: Adam Burrows (Princeton U.), Josh Dolence (Princeton U.) & Casey Meakin (LANL) 1D simulations

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

continuous waves from rotating neutron stars

continuous waves from rotating neutron stars continuous waves from rotating neutron stars Matthew Pitkin - University of Glasgow DAWN Workshop 7 May 2015 LIGO G1500603 0 continuous wave sources Rotating neutron stars with a non-axisymmetric deformation

More information

Powell, J., Szczepanczyk, M. and Heng, I. S. (217) Inferring the core-collapse supernova explosion mechanism with three-dimensional gravitational-wave simulations. Physical Review D, 96(12), 12313. There

More information

Prospects of continuous gravitational waves searches from Fermi-LAT sources

Prospects of continuous gravitational waves searches from Fermi-LAT sources S. Mastrogiovanni for the LIGO Scientific Collaboration and the Virgo Collaboration Prospects of continuous gravitational waves searches from Fermi-LAT sources Outline Aim of the talk: I would like to

More information

Core-collapse Supernove through Cosmic Time...

Core-collapse Supernove through Cosmic Time... Core-collapse Supernove through Cosmic Time... Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R.Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU), E. Endeve

More information

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3 Core collapse triggered by Collapse (only core inner ~1.5 MO) Free-fall K-captures, photodissociation 1000 km 1010 g cm-3 30 km nuclear dens. ~ 1014 g cm-3 Bounce Shock wave Nuclear repulsion Collapse

More information

Astro Instructors: Jim Cordes & Shami Chatterjee.

Astro Instructors: Jim Cordes & Shami Chatterjee. Astro 2299 The Search for Life in the Universe Lecture 8 Last time: Formation and function of stars This time (and probably next): The Sun, hydrogen fusion Virial theorem and internal temperatures of stars

More information

Sources of Gravitational Waves

Sources of Gravitational Waves Optical afterglow of GRB 050709 Hubble image 5.6 days after initial gamma-ray burst (Credit: Derek Fox / Penn State University) Sources of Gravitational Waves Peter Shawhan SLAC Summer Institute August

More information

Is strong SASI activity the key to successful neutrino-driven supernova explosions?

Is strong SASI activity the key to successful neutrino-driven supernova explosions? Is strong SASI activity the key to successful neutrino-driven supernova explosions? Florian Hanke Max-Planck-Institut für Astrophysik INT-12-2a program Core-Collapse Supernovae: Models and observable Signals,

More information

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G.

GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. GENERALIZED DENSITY FUNCTIONAL EQUATION OF STATE FOR SUPERNOVA & NEUTRON STAR SIMULATIONS MacKenzie Warren J.P. Olson, M. Meixner, & G. Mathews Symposium on Neutron Stars in the Multimessenger Era Ohio

More information

Results on the classical high-! bar-mode instability in relativistic star models for polytropic EoS with adiabatic index!=2.75.

Results on the classical high-! bar-mode instability in relativistic star models for polytropic EoS with adiabatic index!=2.75. Results on the classical high-! bar-mode instability in relativistic star models for polytropic EoS with adiabatic index!=2.75 Luca Franci (1) in collaboration with Roberto De Pietri (1), Alessandra Feo

More information

Neutrino Signatures from 3D Models of Core-Collapse Supernovae

Neutrino Signatures from 3D Models of Core-Collapse Supernovae Neutrino Signatures from 3D Models of Core-Collapse Supernovae Irene Tamborra Niels Bohr Institute, University of Copenhagen nueclipse Knoxville, August 20, 2017 Outline Supernova explosion mechanism Hydrodynamical

More information

Equation of state constraints from modern nuclear interactions and observation

Equation of state constraints from modern nuclear interactions and observation Equation of state constraints from modern nuclear interactions and observation Kai Hebeler Seattle, March 12, 218 First multi-messenger observations of a neutron star merger and its implications for nuclear

More information

Supernova Explosions and Observable Consequences

Supernova Explosions and Observable Consequences SFB-TR7 Supernova Explosions and Observable Consequences Hans-Thomas Janka Max Planck Institute for Astrophysics, Garching Outline Introduction: The neutrino-driven mechanism Status of self-consistent

More information

The Many Deaths of a Massive Star. S. E. Woosley with Justin Brown, Alexander Heger, Elizabeth Lovegrove, and Tuguldur Sukhbold

The Many Deaths of a Massive Star. S. E. Woosley with Justin Brown, Alexander Heger, Elizabeth Lovegrove, and Tuguldur Sukhbold The Many Deaths of a Massive Star S. E. Woosley with Justin Brown, Alexander Heger, Elizabeth Lovegrove, and Tuguldur Sukhbold This talk will explore a few of the reasons for, and consequences of black

More information

Extracting Progenitor Parameters of Rotating CCSNe via Pattern Recognition and Machine Learning. Abstract

Extracting Progenitor Parameters of Rotating CCSNe via Pattern Recognition and Machine Learning. Abstract Extracting Progenitor Parameters of Rotating CCSNe via Pattern Recognition and Machine Learning Laksh Bhasin 1 Mentor: Alan Weinstein. Co-Mentor: Sarah Gossan. 1 LIGO SURF 2014, California Institute of

More information

GRAVITATIONAL WAVES. Eanna E. Flanagan Cornell University. Presentation to CAA, 30 April 2003 [Some slides provided by Kip Thorne]

GRAVITATIONAL WAVES. Eanna E. Flanagan Cornell University. Presentation to CAA, 30 April 2003 [Some slides provided by Kip Thorne] GRAVITATIONAL WAVES Eanna E. Flanagan Cornell University Presentation to CAA, 30 April 2003 [Some slides provided by Kip Thorne] Summary of talk Review of observational upper limits and current and planned

More information

Probing the Creation of the Heavy Elements in Neutron Star Mergers

Probing the Creation of the Heavy Elements in Neutron Star Mergers Probing the Creation of the Heavy Elements in Neutron Star Mergers Daniel Kasen UC Berkeley/LBNL r. fernandez, j. barnes, s. richers, f. foucart, d. desai, b. metzger, n. badnell, j. lippuner, l. roberts

More information

Simulations of magnetic fields in core collapse on small and large scales

Simulations of magnetic fields in core collapse on small and large scales Simulations of magnetic fields in core collapse on small and large scales Miguel Ángel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz CAMAP, Departament

More information

Neutrino Signature from Multi-D Supernova Models

Neutrino Signature from Multi-D Supernova Models Neutrino Signature from Multi-D Supernova Models David Radice 1,2 A. Burrows, J. C. Dolence, S. Seadrow, M. A. Skinner, D. Vartanyan, J. Wallace 1 Research Associate, Princeton University 2 Schmidt Fellow,

More information

arxiv: v1 [gr-qc] 21 Jan 2019

arxiv: v1 [gr-qc] 21 Jan 2019 Spectral classification of gravitational-wave emission and equation of state constraints in binary neutron star mergers arxiv:1901.06969v1 [gr-qc] 21 Jan 2019 A. Bauswein 1,2 & N. Stergioulas 3 1 GSI Helmholtzzentrum

More information

Constraints on Neutron Star Sttructure and Equation of State from GW170817

Constraints on Neutron Star Sttructure and Equation of State from GW170817 Constraints on Neutron Star Sttructure and Equation of State from GW170817 J. M. Lattimer Department of Physics & Astronomy Stony Brook University March 12, 2018 INT-JINA GW170817 12 March, 2018 GW170817

More information

A Search for Gravitational Wave Transients from Core Collapse Supernovae Using the Coherent WaveBurst Search Algorithm

A Search for Gravitational Wave Transients from Core Collapse Supernovae Using the Coherent WaveBurst Search Algorithm A Search for Gravitational Wave Transients from Core Collapse Supernovae Using the Coherent WaveBurst Search Algorithm Alexander Adams Corpuz Embry-Riddle Aeronautical University, 3700 Willow Creek Rd,

More information

Supernova Neutrino Physics with XENON1T and Beyond

Supernova Neutrino Physics with XENON1T and Beyond Supernova Neutrino Physics with XENON1T and Beyond Shayne Reichard* University of Zurich nueclipse 2017 August 22 R. F. Lang*, C. McCabe, M. Selvi*, and I. Tamborra Phys. Rev. D94, arxiv:1606.09243 *Members

More information

Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars. Francesca Gulminelli - LPC Caen, France

Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars. Francesca Gulminelli - LPC Caen, France Dense Matter EoS and applications in Core Collapse SuperNovae and Neutron Stars Francesca Gulminelli - LPC Caen, France Lecture II: nuclear physics in the neutron star crust and observational consequences

More information

Understanding Core-Collapse Supernovae with the Help of Gravitational Waves [Ott, arxiv: , CQG topical review]

Understanding Core-Collapse Supernovae with the Help of Gravitational Waves [Ott, arxiv: , CQG topical review] Understanding Core-Collapse Supernovae with the Help of Gravitational Waves [Ott, arxiv:0809.0695, CQG topical review] Christian David Ott cott@tapir.caltech.edu TAPIR, California Institute of Technology,

More information

Astrophysical Rates of Gravitational-Wave Compact Binary Sources in O3

Astrophysical Rates of Gravitational-Wave Compact Binary Sources in O3 Astrophysical Rates of Gravitational-Wave Compact Binary Sources in O3 Tom Dent (Albert Einstein Institute, Hannover) Chris Pankow (CIERA/Northwestern) for the LIGO and Virgo Collaborations DCC: LIGO-G1800370

More information

80 2 Observational Cosmology L and the mean energy

80 2 Observational Cosmology L and the mean energy 80 2 Observational Cosmology fluctuations, short-wavelength modes have amplitudes that are suppressed because these modes oscillated as acoustic waves during the radiation epoch whereas the amplitude of

More information

Astronomy 114. Lecture 22: Neutron Stars. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 22: Neutron Stars. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 22: Neutron Stars Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 22 02 Apr 2007 Read: Ch. 23,24 Astronomy 114 1/20 Announcements PS#5 due Wednesday

More information

An EOS implementation for astrophyisical simulations

An EOS implementation for astrophyisical simulations Introduction Formalism Neutron Stars CCSN An EOS implementation for astrophyisical simulations A S Schneider 1, L F Roberts 2, C D Ott 1 1 TAPIR, Caltech, Pasadena, CA 2 NSCL, MSU, East Lansing, MI East

More information

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency!

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency! Theoretical ideas About Galaxy Wide Star Formation Theoretical predictions are that galaxy formation is most efficient near a mass of 10 12 M based on analyses of supernova feedback and gas cooling times

More information

Cosmology with Gravitational Wave Detectors. Maya Fishbach

Cosmology with Gravitational Wave Detectors. Maya Fishbach Cosmology with Gravitational Wave Detectors Maya Fishbach Part I: Cosmography Compact Binary Coalescenses are Standard Sirens The amplitude* of a GW from a CBC is The timescale is Measuring amplitude,

More information

A synthetic model of the gravitational wave background from evolving binary compact objects

A synthetic model of the gravitational wave background from evolving binary compact objects A synthetic model of the gravitational wave background from evolving binary compact objects Irina Dvorkin, Jean-Philippe Uzan, Elisabeth Vangioni, Joe Silk (Institut d Astrophysique de Paris) [arxiv:1607.06818]

More information

Comparing a Supergiant to the Sun

Comparing a Supergiant to the Sun The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

More information

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses Lecture 1 Overview Time Scales, Temperature-density Scalings, Critical Masses I. Preliminaries The life of any star is a continual struggle between the force of gravity, seeking to reduce the star to a

More information

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses. I. Preliminaries

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses. I. Preliminaries I. Preliminaries Lecture 1 Overview Time Scales, Temperature-density Scalings, Critical Masses The life of any star is a continual struggle between the force of gravity, seeking to reduce the star to a

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Shocks occur in supersonic flows; Shocks are sudden jumps in velocity, density and pressure; Shocks satisfy flux in = flux out principle

More information

Neutrino processes in supernovae from chiral EFT

Neutrino processes in supernovae from chiral EFT Neutrino processes in supernovae from chiral EFT Achim Schwenk CANADA S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities

More information

Neutrino-Driven Convection and Neutrino-Driven Explosions

Neutrino-Driven Convection and Neutrino-Driven Explosions Neutrino-Driven Convection and Neutrino-Driven Explosions by Jeremiah W. Murphy (Princeton U.) Collaborators: Adam Burrows (Princeton U.), Josh Dolence (Princeton U.) & Casey Meakin (U. Arizona) 1D simulations

More information

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso L Aquila - 14/11/2018 Multi-messenger studies of NS mergers, GRBs and magnetars Simone Dall Osso OUTLINE 1. Overview of GW/EM discoveries since 2015 binary black hole mergers binary neutron star mergers

More information

Convection. If luminosity is transported by radiation, then it must obey

Convection. If luminosity is transported by radiation, then it must obey Convection If luminosity is transported by radiation, then it must obey L r = 16πacr 2 T 3 3ρκ R In a steady state, the energy transported per time at radius r must be equal to the energy generation rate

More information

The Effects of Radiative Transfer on Low-Mass Star Formation

The Effects of Radiative Transfer on Low-Mass Star Formation The Effects of Radiative Transfer on Low-Mass Star Formation Stella Offner NSF Fellow, ITC Dense Cores in Dark Clouds Oct 23 2009 Collaborators: Chris McKee (UC Berkeley), Richard Klein (UC Berkeley; LLNL),

More information

Detecting the next Galactic supernova

Detecting the next Galactic supernova Detecting the next Galactic supernova Nicolas Arnaud on behalf of the Virgo-LAL group Now fellow at LHCb-CERN Moriond Gravitation 2003 GW supernova amplitudes Burst online filter performances Comparison

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Shocks occur in supersonic flows; Shocks are sudden jumps in velocity, density and pressure; Shocks satisfy flux in = flux out principle

More information

Konstantin Yakunin Joint Institute for Computational Sciences Oak Ridge National Laboratory. 3/29/17 Particle Physics and Astro-Cosmology Seminar, UTK

Konstantin Yakunin Joint Institute for Computational Sciences Oak Ridge National Laboratory. 3/29/17 Particle Physics and Astro-Cosmology Seminar, UTK Konstantin Yakunin Joint Institute for Computational Sciences Oak Ridge National Laboratory 3/29/17 Particle Physics and Astro-Cosmology Seminar, UTK 1 Credit: NASA/Dana Berry, Sky Works Digital Credit:

More information

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Nucleosynthesis in core-collapse supernovae. Almudena Arcones Nucleosynthesis in core-collapse supernovae Almudena Arcones Solar system abundances Solar photosphere and meteorites: chemical signature of the gas cloud where the Sun formed. Contribution of all nucleosynthesis

More information

Implicit Lagrangian method on variable triangular grid for magnetorotational supernova simulations Sergey Moiseenko

Implicit Lagrangian method on variable triangular grid for magnetorotational supernova simulations Sergey Moiseenko Implicit Lagrangian method on variable triangular grid for magnetorotational supernova simulations Sergey Moiseenko Space Research Institute, Moscow, Russia Basic equations: MHD +self-gravitation, infinite

More information

Confronting Theory with Gravitational Wave Observations

Confronting Theory with Gravitational Wave Observations Gravitation: A Decennial Perspective Confronting Theory with Gravitational Wave Observations B F Schutz Max Planck Institute for Gravitational Physics () Golm/Potsdam Germany The AEI congratulates The

More information

The role of neutrinos in collapse-driven supernovae

The role of neutrinos in collapse-driven supernovae The role of neutrinos in collapse-driven supernovae Shoichi Yamada, Kei Kotake and Tatsuya Yamasaki Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan Department of

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics II. Core-collapse supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008

More information

!"#$%&%'()*%+),#-."/(0)+1,-.%'"#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56",$%+)-+7-.$,$(-859.:

!#$%&%'()*%+),#-./(0)+1,-.%'#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56,$%+)-+7-.$,$(-859.: !"#$%&%'()*%+),#-."/(0)+1,-.%'"#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56",$%+)-+7-.$,$(-859.: Kei Kotake!National Astronomical Observatory of Japan" NuSYM11 @ Smith college, Northampton 18 th June 2011 The supernova

More information

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory

Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Neutron-rich matter and neutrino-matter interactions based on chiral effective field theory Achim Schwenk Astrophysical Transients: Multi-Messenger Probes of Nuclear Physics INT, July 29, 2011 Outline

More information

Amplification of magnetic fields in core collapse

Amplification of magnetic fields in core collapse Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo Cerdá-Durán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; Max-Planck-Institut

More information

PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA

PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA PULSAR RECOIL BY LARGE-SCALE ANISOTROPIES IN SUPERNOVAE L. SCHECK H.-TH. JANKA, E. MÜLLER, K. KIFONIDIS, T. PLEWA MAX-PLANCK-INSTITUTE FOR ASTROPHYSICS, GARCHING OUTLINE INTRODUCTION Observations Anisotropy

More information

Future underground gravitational wave observatories. Michele Punturo INFN Perugia

Future underground gravitational wave observatories. Michele Punturo INFN Perugia Future underground gravitational wave observatories Michele Punturo INFN Perugia Terrestrial Detectors Advanced detectors 2015-2025 GEO, Hannover, 600 m aligo Hanford, 4 km 2015 2016 AdV, Cascina, 3 km

More information

GR SIMULATIONS OF COMPACT BINARY MERGERS. Bruno Giacomazzo JILA, University of Colorado, USA

GR SIMULATIONS OF COMPACT BINARY MERGERS. Bruno Giacomazzo JILA, University of Colorado, USA GR SIMULATIONS OF COMPACT BINARY MERGERS Bruno Giacomazzo JILA, University of Colorado, USA WHY SO INTERESTING? Due to their duration and dynamics, NS-NS and NS-BH binaries are very good sources for gravitational

More information

MHD simulation for merger of binary neutron stars in numerical relativity

MHD simulation for merger of binary neutron stars in numerical relativity MHD simulation for merger of binary neutron stars in numerical relativity M. SHIBATA (Yukawa Institute for Theoretical Physics, Kyoto University) In collaboration with K. Kiuchi, L. Baiotti, & Y. Sekiguchi

More information

PHY 316 FINAL EXAM ANSWERS DEC

PHY 316 FINAL EXAM ANSWERS DEC PHY 16 FINAL EXAM ANSWERS DEC 1 2007 1. Answer the following multiple choice questions and for each one give a brief and clear explanation of your answer. [ 1.0 pt each] 1.1. Lyman-alpha absorbers are

More information