NEURAL RELATIVITY PRINCIPLE

Size: px
Start display at page:

Download "NEURAL RELATIVITY PRINCIPLE"

Transcription

1 NEURAL RELATIVITY PRINCIPLE Alex Koulakov, Cold Spring Harbor Laboratory 1

2

3 3

4 Odorants are represented by patterns of glomerular activation butyraldehyde hexanone Odorant-Evoked SpH Signals in the Mouse Olfactory Bulb Bozza et.al., Neuron,

5 Odorants are represented by patterns of glomerular activation Glomeruli in the olfactory bulb (OB)

6 Odorant are represented by patterns of glomerular activation C1 C2 C3 How can odor identity be constant?

7 Solution primacy coding Template representing an odorant includes a very small number of glomeruli of highest affinity to the odorant (activated at the smallest concentration) C1 C2 C3 p (= 2) is an important parameter of the code 7

8 Different smells are represented by their primacy glomeruli

9 Temporal codes 9

10 Temporal codes in the olfactory bulb Cury and Uchida (2010) Shusterman, Smear, Koulakov, and Rinberg (2011) 10

11 Odor identity is represented in the sequence of sharp events generated by MCs Odorant 1 Cell number: Odorant 2 Time 11

12 Primacy coding p=2 First set of p active mitral cells determines odorant identity Prediction: odor identity is determined early in the sniff cycle

13 Smell A vs smell B 0.3nM 13 Chris Wilson (NYU) Dima Rinberg (NYU)

14 Primacy coding: Shazam service for the brain? p=2 14

15 evolution of olfactory receptors 15

16 2D odorspace Odor B binding affinity (k B ) R1 R2 Odor A binding affinity (k A ) 16

17 2D odorspace C k A A ~ 1 Odor B binding affinity (k B ) Inactive Active Odor A present Odor A binding affinity (k A ) 17

18 2D odorspace C k A A ~ 1 Odor B binding affinity (k B ) Inactive 2 p=2 O A representation 1 Active Odor A present Odor A binding affinity (k A ) 18

19 2D odorspace Odor B present Odor B binding affinity (k B ) O B representation Active Inactive C k B B ~ 1 Odor A binding affinity (k A ) 19

20 2D odorspace Odors A+B present Odor B binding affinity (k B ) O A + O B representation Odor A binding affinity (k A ) 20

21 p=2 primacy model Odor B binding affinity (k B ) Odor A binding affinity (k A ) 21

22 Individual odor identities are represented by simplexes p=2 p=3 p=

23 D=3, p=3 primacy hull 23

24 D=6, p=7 primacy hull 24

25 Prediction: Higher-order correlations in the response matrix D=6, p=7 Primacy hull Primacy Random Number of neighbors Overlap in odorant representation Primacy Random 25

26 Primacy structure in the response matrix Rˆor Sˆor Receptors or glomeruli Receptors or glomeruli Odorants Nearest neighbors p =

27 Fly data: Hallem and Carlson (2006) Rˆor Receptors Sˆor Receptors Odorants 27

28 Number of nearest neighbors, p=5 Primacy Random Number of neighbors pval Hamza Giaffar Overlap in odorant representation Primacy Random 28

29 Number of nearest neighbors, p=6 Primacy Random Number of neighbors pval Hamza Giaffar Overlap in odorant representation Primacy Random 29

30 Conclusions (OR evolution model) - Primacy model predicts that OR affinities occupy a narrow shell called primacy hull. - Topmost p responses of olfactory receptors share substantial overlaps - Increased overlaps are present in fly data (p=5) - These findings suggest substantial higher-order correlations in OR responses 30

31 Network models 31

32 Expand, sparsen, and decorrelate Olfactory bulb Antennal lobe Piriform cortex Mushroom body u 1 i u 1 i Vertices Simplexes (p=3) u 1 i 32

33 Connectivity between glomeruli and simplexes is given by the simplectic matrix Vertices (receptors/glomeruli) Ŝ Simplexes (cortical cells) 33

34 Dual networks 34

35 How does decoding work? Stimulus Glomerular responses x y Kx Cortical representation?? x x min ykx x α=1: Compressed sensing 35

36 Primacy (relativity) principle Stimulus Glomerular responses x y Kx Cortical representation?? x P P x min n x S y S y Pn n Pn n n Non-parametric conditions: Intensity invariance 36

37 Non-parametric problem: x min, x n S y S y Pn n Pn n n Fix the scale: x min, x n S y S y Pn n Pn n n Single condition: x min, us( Ssn yn ) 0 x n u s 1, s 1, s P P 37

38 Primary problem is difficult to implement: x min, u ( S y ) 0 x s sn n n y K x n nm m m u s 1, s 1, s P P Lagrangian (Karush-Kuhn-Tucker): L( x, ) x u ( S y ) 0 s s s sn n n n 38

39 Duality: Lagrange coefficients become variables Dual cost-function: ( ) min L( x, ) L( x, ) x ( ) Dual problem: n max ( ) 0 x x( ) Primal problem: x min, x + a bunch of very complex inequalities 39

40 Dual problem can be easily solved by a neural network Primal problem: Dual problem: Network Lyapunov function: x x + a bunch of very complex inequalities ( ) n 0 L( ) ( ) n 0 1 L( ) uss susgsquqq Gˆ SKK ˆ ˆ ˆ T Sˆ 2 s sq T Feedforward inputs Feedback 40

41 Dual network x y Ŝ u ˆK Gˆ SKK ˆ ˆ ˆ T Sˆ T Vertices Simplexes 41

42 Non-negativity constraint, x n 0 x L( x, ) x u ( S y ) x s s sn n n n s n n u y Ŝ, 0 n n ˆK Gˆ SKK ˆ ˆ ˆ T Sˆ T ˆK ˆ ˆ SK Granule cells 42

43 Features of dual networks: Operate with Lagrange-Karush-Kuhn-Tucker multipliers rather than with original stimulus variables Rely on inequalities -> intensity-invariant encoding Implement inequalities easily ( n 0) Sparse activity vectors New set of inequalities -> new set of λ-s -> new cell type 43

44 Conclusions: Primacy model: small number of receptors activated first code for odorant identity More general idea neural relativity the implementation of invariant stimulus percepts in dual networks. 44

45 Thanks to: Collaborators: Olfaction Dima Rinberg (NYU) Roman Shusterman (Haifa) Florin Albeanu (CSHL) Steve Shea (CSHL) Venki Murthy (Harvard) John Lisman (Braindeis) Lab Members Brian Kolterman Yi Wei Daniel Kepple Hamza Giaffar Animation Dancing-lemon-studio.com Funding: 45

46 Smell A vs smell B Behavioral performance 46 Chris Wilson (NYU) Dima Rinberg (NYU)

47 Mouse+human OR Isomap algorithm OR OR distance matrix Isomap algorithm Tenenbaum, de Silva and Langford (2000) 47

48 Mouse+human OR Isomap space Included variance Included Dimensions Can primacy model provide insight into the emergence of lowdimensional olfactory manifolds? 48

49 Dimension of olfactory space, D?? Primacy model (p~d) 49

50 Primacy and connectivity 50

51 Fly olfactory system Antennal lobe PNs Mushroom body KCs Vertices Simplexes (p=2) 51

52 Connectivity between glomeruli (PN, vertices) and KC (simplexes) looks random Vertices (glomeruli) Simplexes (kenyon cells) 52

53 Higher-order correlations in connectivity Primacy Random Count Similarity in KC connectivity D=6, p=7 primacy Random 53

54 Conclusions: Primacy model: small number of receptors activated first code for odorant identity Primacy code favors the representation of low-dimensional olfactory manifolds The network architecture based on sparse connectivity between AL and MB is ideal for implementing primacy coding 54

55 Thanks to: Collaborators: Olfaction Dima Rinberg (NYU) Roman Shusterman (Haifa) Florin Albeanu (CSHL) Steve Shea (CSHL) Venky Murthy (Harvard) Andreas Schaefer (MPI) John Lisman (Braindeis) Ivan Iossifov (CSHL) Lab Members Brian Kolterman Yi Wei Armen Enikolopov Toma Marinov Daniel Kepple Animation Dancing-lemon-studio.com Funding: 55

A Dual Algorithm for Olfactory Computation in the Locust Brain

A Dual Algorithm for Olfactory Computation in the Locust Brain A Dual Algorithm for Olfactory Computation in the Locust Brain Sina Tootoonian st582@eng.cam.ac.uk Máté Lengyel m.lengyel@eng.cam.ac.uk Computational & Biological Learning Laboratory Department of Engineering,

More information

arxiv:physics/ v1 [physics.bio-ph] 19 Feb 1999

arxiv:physics/ v1 [physics.bio-ph] 19 Feb 1999 Odor recognition and segmentation by coupled olfactory bulb and cortical networks arxiv:physics/9902052v1 [physics.bioph] 19 Feb 1999 Abstract Zhaoping Li a,1 John Hertz b a CBCL, MIT, Cambridge MA 02139

More information

The sense of smell Outline Main Olfactory System Odor Detection Odor Coding Accessory Olfactory System Pheromone Detection Pheromone Coding

The sense of smell Outline Main Olfactory System Odor Detection Odor Coding Accessory Olfactory System Pheromone Detection Pheromone Coding The sense of smell Outline Main Olfactory System Odor Detection Odor Coding Accessory Olfactory System Pheromone Detection Pheromone Coding 1 Human experiment: How well do we taste without smell? 2 Brief

More information

Announcements: Test4: Wednesday on: week4 material CH5 CH6 & NIA CAPE Evaluations please do them for me!! ask questions...discuss listen learn.

Announcements: Test4: Wednesday on: week4 material CH5 CH6 & NIA CAPE Evaluations please do them for me!! ask questions...discuss listen learn. Announcements: Test4: Wednesday on: week4 material CH5 CH6 & NIA CAPE Evaluations please do them for me!! ask questions...discuss listen learn. The Chemical Senses: Olfaction Mary ET Boyle, Ph.D. Department

More information

Sensory Encoding of Smell in the Olfactory System of Drosophila

Sensory Encoding of Smell in the Olfactory System of Drosophila Sensory Encoding of Smell in the Olfactory System of Drosophila (reviewing Olfactory Information Processing in Drosophila by Masse et al, 2009) Ben Cipollini COGS 160 May 11, 2010 Smell Drives Our Behavior...

More information

Sensory/ Motor Systems March 10, 2008

Sensory/ Motor Systems March 10, 2008 Sensory/ Motor Systems March 10, 2008 Greg Suh greg.suh@med.nyu.edu Title: Chemical Senses- periphery Richard Axel and Linda Buck Win Nobel Prize for Olfactory System Research 2 3 After Leslie Vosshal

More information

Optimal Adaptation Principles In Neural Systems

Optimal Adaptation Principles In Neural Systems University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Optimal Adaptation Principles In Neural Systems Kamesh Krishnamurthy University of Pennsylvania, kameshkk@gmail.com

More information

Neuro-based Olfactory Model for Artificial Organoleptic Tests

Neuro-based Olfactory Model for Artificial Organoleptic Tests Neuro-based Olfactory odel for Artificial Organoleptic Tests Zu Soh,ToshioTsuji, Noboru Takiguchi,andHisaoOhtake Graduate School of Engineering, Hiroshima Univ., Hiroshima 739-8527, Japan Graduate School

More information

Olfactory coding from the periphery to higher brain centers in the Drosophila brain

Olfactory coding from the periphery to higher brain centers in the Drosophila brain Seki et al. BMC Biology (2017) 15:56 DOI 10.1186/s12915-017-0389-z RESEARCH ARTICLE Open Access Olfactory coding from the periphery to higher brain centers in the Drosophila brain Yoichi Seki 1,3*, Hany

More information

Identification of Odors by the Spatiotemporal Dynamics of the Olfactory Bulb. Outline

Identification of Odors by the Spatiotemporal Dynamics of the Olfactory Bulb. Outline Identification of Odors by the Spatiotemporal Dynamics of the Olfactory Bulb Henry Greenside Department of Physics Duke University Outline Why think about olfaction? Crash course on neurobiology. Some

More information

OLFACTORY NETWORK DYNAMICS AND THE CODING OF MULTIDIMENSIONAL SIGNALS

OLFACTORY NETWORK DYNAMICS AND THE CODING OF MULTIDIMENSIONAL SIGNALS OLFACTORY NETWORK DYNAMICS AND THE CODING OF MULTIDIMENSIONAL SIGNALS Gilles Laurent The brain faces many complex problems when dealing with odorant signals. Odours are multidimensional objects, which

More information

arxiv: v4 [q-bio.nc] 22 Jan 2019

arxiv: v4 [q-bio.nc] 22 Jan 2019 Adaptation of olfactory receptor abundances for efficient coding Tiberiu Teşileanu 1,2,3, Simona Cocco 4, Rémi Monasson 5, and Vijay Balasubramanian 2,3 arxiv:181.93v4 [q-bio.nc] 22 Jan 219 1 Center for

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2015 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Pattern recognition for chemical sensor arrays with neuromorphic models of the olfactory system

Pattern recognition for chemical sensor arrays with neuromorphic models of the olfactory system Pattern recognition for chemical sensor arrays with neuromorphic models of the olfactory system Pattern Recognition and Intelligent Sensor Machines Lab Department of Computer Science Texas A&M University

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Les sens chimiques Prof. Alan Carleton Département de Neurosciences Fondamentales

Les sens chimiques Prof. Alan Carleton Département de Neurosciences Fondamentales Les sens chimiques Prof. Alan Carleton Département de Neurosciences Fondamentales Les sens chimiques Le système olfactif principal Organe voméronasal et détection des phéromones La perception des goûts

More information

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing

Tuning tuning curves. So far: Receptive fields Representation of stimuli Population vectors. Today: Contrast enhancment, cortical processing Tuning tuning curves So far: Receptive fields Representation of stimuli Population vectors Today: Contrast enhancment, cortical processing Firing frequency N 3 s max (N 1 ) = 40 o N4 N 1 N N 5 2 s max

More information

arxiv: v3 [q-bio.nc] 19 Jul 2018

arxiv: v3 [q-bio.nc] 19 Jul 2018 Adaptation of olfactory receptor abundances for efficient coding Tiberiu Teşileanu 1,2, Simona Cocco 3, Rémi Monasson 4, and Vijay Balasubramanian 1,2 arxiv:1801.09300v3 [q-bio.nc] 19 Jul 2018 1 Initiative

More information

Neuro-based Olfactory Model for Estimation of Sensory Characteristic of Mice

Neuro-based Olfactory Model for Estimation of Sensory Characteristic of Mice Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics Bangkok, Thailand, February 21-26, 2009 Neuro-based Olfactory Model for Estimation of Sensory Characteristic of Mice Zu

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

Support Vector Machines for Regression

Support Vector Machines for Regression COMP-566 Rohan Shah (1) Support Vector Machines for Regression Provided with n training data points {(x 1, y 1 ), (x 2, y 2 ),, (x n, y n )} R s R we seek a function f for a fixed ɛ > 0 such that: f(x

More information

Classification of odorants across layers in locust olfactory pathway

Classification of odorants across layers in locust olfactory pathway J Neurophysiol : 33 3,. First published February, ; doi:/jn.9.. Classification of odorants across layers in locust olfactory pathway Pavel Sanda, * Tiffany Kee,, * Nitin Gupta, 3, Mark Stopfer, 3 and Maxim

More information

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction Linear vs Non-linear classifier CS789: Machine Learning and Neural Network Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Linear classifier is in the

More information

Chemosensory System. Spring 2013 Royce Mohan, PhD Reading: Chapter 15, Neuroscience by Purves et al; FiGh edihon (Sinauer Publishers)

Chemosensory System. Spring 2013 Royce Mohan, PhD Reading: Chapter 15, Neuroscience by Purves et al; FiGh edihon (Sinauer Publishers) Chemosensory System Spring 2013 Royce Mohan, PhD mohan@uchc.edu Reading: Chapter 15, Neuroscience by Purves et al; FiGh edihon (Sinauer Publishers) Learning ObjecHves Anatomical and funchonal organizahon

More information

Lecture 9 Olfaction (Chemical senses 2)

Lecture 9 Olfaction (Chemical senses 2) Lecture 9 Olfaction (Chemical senses 2) All lecture material from the following links unless otherwise mentioned: 1. http://wws.weizmann.ac.il/neurobiology/labs/ulanovsky/sites/neurobiology.labs.ulanovsky/files/uploads/kandel_ch32_smell_taste.pd

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Kernel PCA 2 Isomap 3 Locally Linear Embedding 4 Laplacian Eigenmap

More information

Temporal Processing in the Olfactory System: CanWeSeeaSmell?

Temporal Processing in the Olfactory System: CanWeSeeaSmell? Temporal Processing in the Olfactory System: CanWeSeeaSmell? David H. Gire, 1,7 Diego Restrepo, 2,7, * Terrence J. Sejnowski, 3,4 Charles Greer, 5 Juan A. De Carlos, 6 and Laura Lopez-Mascaraque 6 1 Molecular

More information

Olfactory Information Processing in Drosophila

Olfactory Information Processing in Drosophila Current Biology 19, R7 R713, August 25, 29 ª29 Elsevier Ltd All rights reserved DOI 1.116/j.cub.29.6.26 Olfactory Information Processing in Drosophila Review Nicolas Y. Masse 1, Glenn C. Turner 2, and

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

CHEMICAL SENSES Smell (Olfaction) and Taste

CHEMICAL SENSES Smell (Olfaction) and Taste CHEMICAL SENSES Smell (Olfaction) and Taste Peter Århem Department of Neuroscience SMELL 1 Olfactory receptor neurons in olfactory epithelium. Size of olfactory region 2 Number of olfactory receptor cells

More information

Lecture 2: Connectionist approach Elements and feedforward networks

Lecture 2: Connectionist approach Elements and feedforward networks Short Course: Computation of Olfaction Lecture 2 Lecture 2: Connectionist approach Elements and feedforward networks Dr. Thomas Nowotny University of Sussex Connectionist approach The connectionist approach

More information

The Nobel Prize in Physiology or Medicine for 2004 awarded

The Nobel Prize in Physiology or Medicine for 2004 awarded The Nobel Prize in Physiology or Medicine for 2004 awarded jointly to Richard Axel and Linda B. Buck for their discoveries of "odorant receptors and the organization of the olfactory system" Introduction

More information

Neurology, neurophysiology and neuropsychology: olfactory clues to brain development and disorder

Neurology, neurophysiology and neuropsychology: olfactory clues to brain development and disorder Section I Neurology, neurophysiology and neuropsychology: olfactory clues to brain development and disorder 1 Structure and function of the olfactory system Alan Mackay-Sim and Jean-Pierre Royet Introduction

More information

Biologically inspired signal transformations and neural classification of odours in an electronic nose

Biologically inspired signal transformations and neural classification of odours in an electronic nose Biologically inspired signal transformations and neural classification of odours in an electronic nose Bashan Naidoo School of Electrical, Electronic & Computer Engineering University of Natal, 4041, South

More information

Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction Non-linear Dimensionality Reduction CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Laplacian Eigenmaps Locally Linear Embedding (LLE)

More information

THE LOCUST OLFACTORY SYSTEM AS A CASE STUDY FOR MODELING DYNAMICS OF NEUROBIOLOGICAL NETWORKS: FROM DISCRETE TIME NEURONS TO CONTINUOUS TIME NEURONS

THE LOCUST OLFACTORY SYSTEM AS A CASE STUDY FOR MODELING DYNAMICS OF NEUROBIOLOGICAL NETWORKS: FROM DISCRETE TIME NEURONS TO CONTINUOUS TIME NEURONS 1 THE LOCUST OLFACTORY SYSTEM AS A CASE STUDY FOR MODELING DYNAMICS OF NEUROBIOLOGICAL NETWORKS: FROM DISCRETE TIME NEURONS TO CONTINUOUS TIME NEURONS B. QUENET 1 AND G. HORCHOLLE-BOSSAVIT 2 1 Equipe de

More information

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities

Duality. Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Duality Lagrange dual problem weak and strong duality optimality conditions perturbation and sensitivity analysis generalized inequalities Lagrangian Consider the optimization problem in standard form

More information

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 7. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 7 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Convex Optimization Differentiation Definition: let f : X R N R be a differentiable function,

More information

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module - 5 Lecture - 22 SVM: The Dual Formulation Good morning.

More information

Odor Coding and Memory Traces in the Antennal Lobe of Honeybee

Odor Coding and Memory Traces in the Antennal Lobe of Honeybee Odor Coding and Memory Traces in the Antennal Lobe of Honeybee Computational Studies of Neural Dynamics based on Calcium-Imaging Data D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor

More information

Support Vector Machines: Maximum Margin Classifiers

Support Vector Machines: Maximum Margin Classifiers Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 16, 2008 Piotr Mirowski Based on slides by Sumit Chopra and Fu-Jie Huang 1 Outline What is behind

More information

Machine Learning Support Vector Machines. Prof. Matteo Matteucci

Machine Learning Support Vector Machines. Prof. Matteo Matteucci Machine Learning Support Vector Machines Prof. Matteo Matteucci Discriminative vs. Generative Approaches 2 o Generative approach: we derived the classifier from some generative hypothesis about the way

More information

A quantitative description of the mouse piriform cortex Shyam Srinivasan 1,2,*, Charles F Stevens 1,2,*

A quantitative description of the mouse piriform cortex Shyam Srinivasan 1,2,*, Charles F Stevens 1,2,* A quantitative description of the mouse piriform cortex Shyam Srinivasan 1,2,*, Charles F Stevens 1,2,* 1 Kavli Institute for Brain and Mind, University of California, San Diego, CA 92093, USA 2 Salk Institute

More information

Early Events in Olfactory Processing

Early Events in Olfactory Processing Annu. Rev. Neurosci. 2006. 29:163 201 The Annual Review of Neuroscience is online at neuro.annualreviews.org doi: 10.1146/ annurev.neuro.29.051605.112950 Copyright c 2006 by Annual Reviews. All rights

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2016 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Introduction to Physiological Psychology

Introduction to Physiological Psychology Introduction to Physiological Psychology Psych 260 Kim Sweeney ksweeney@cogsci.ucsd.edu cogsci.ucsd.edu/~ksweeney/psy260.html n Vestibular System Today n Gustation and Olfaction 1 n Vestibular sacs: Utricle

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

A Neural Network Model of General Olfactory Coding in the Insect Antennal Lobe

A Neural Network Model of General Olfactory Coding in the Insect Antennal Lobe Chem. Senses 24: 351 372, 1999 A Neural Network Model of General Olfactory Coding in the Insect Antennal Lobe Wayne M. Getz and Antoine Lutz Division of Insect Biology, ESPM, University of California at

More information

In view of (31), the second of these is equal to the identity I on E m, while this, in view of (30), implies that the first can be written

In view of (31), the second of these is equal to the identity I on E m, while this, in view of (30), implies that the first can be written 11.8 Inequality Constraints 341 Because by assumption x is a regular point and L x is positive definite on M, it follows that this matrix is nonsingular (see Exercise 11). Thus, by the Implicit Function

More information

Manifold Learning and it s application

Manifold Learning and it s application Manifold Learning and it s application Nandan Dubey SE367 Outline 1 Introduction Manifold Examples image as vector Importance Dimension Reduction Techniques 2 Linear Methods PCA Example MDS Perception

More information

1

1 http://photos1.blogger.com/img/13/2627/640/screenhunter_047.jpg 1 The Nose Knows http://graphics.jsonline.com/graphics/owlive/img/mar05/sideways.one0308_big.jpg 2 http://www.stlmoviereviewweekly.com/sitebuilder/images/sideways-253x364.jpg

More information

Analysis of non-olfactory sensory pathways that are necessary for the olfactory associative learning of the Drosophila mushroom body

Analysis of non-olfactory sensory pathways that are necessary for the olfactory associative learning of the Drosophila mushroom body 15 12601 B 2009 2011 21300117 Analysis of non-olfactory sensory pathways that are necessary for the olfactory associative learning of the Drosophila mushroom body ITO, Kei 00311192 The mushroom body is

More information

Statistical model of evolution of brain parcellation. Daniel D. Ferrante, Yi Wei, and Alexei A. Koulakov

Statistical model of evolution of brain parcellation. Daniel D. Ferrante, Yi Wei, and Alexei A. Koulakov 1 Statistical model of evolution of brain parcellation Daniel D. Ferrante, Yi Wei, and Alexei A. Koulakov Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724. USA. We study the distribution of

More information

CS798: Selected topics in Machine Learning

CS798: Selected topics in Machine Learning CS798: Selected topics in Machine Learning Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Jakramate Bootkrajang CS798: Selected topics in Machine Learning

More information

A Duality View of Spectral Methods for Dimensionality Reduction

A Duality View of Spectral Methods for Dimensionality Reduction Lin Xiao lxiao@caltech.edu Center for the Mathematics of Information, California Institute of Technology, Pasadena, CA 91125, USA Jun Sun sunjun@stanford.edu Stephen Boyd boyd@stanford.edu Department of

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Chap 2. Optimality conditions

Chap 2. Optimality conditions Chap 2. Optimality conditions Version: 29-09-2012 2.1 Optimality conditions in unconstrained optimization Recall the definitions of global, local minimizer. Geometry of minimization Consider for f C 1

More information

Lecture 10: Dimension Reduction Techniques

Lecture 10: Dimension Reduction Techniques Lecture 10: Dimension Reduction Techniques Radu Balan Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD April 17, 2018 Input Data It is assumed that there is a set

More information

Learning a latent manifold of odor representations from neural responses in piriform cortex

Learning a latent manifold of odor representations from neural responses in piriform cortex Learning a latent manifold of odor representations from neural responses in piriform cortex Anqi Wu 1 Stan L. Pashkovski 2 Sandeep Robert atta 2 Jonathan W. Pillow 1 1 Princeton euroscience Institute,

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Sridhar Mahadevan mahadeva@cs.umass.edu University of Massachusetts Sridhar Mahadevan: CMPSCI 689 p. 1/32 Margin Classifiers margin b = 0 Sridhar Mahadevan: CMPSCI 689 p.

More information

Decoding olfaction in Drosophila Andreas Keller and Leslie B Vosshall y

Decoding olfaction in Drosophila Andreas Keller and Leslie B Vosshall y 103 Decoding olfaction in Drosophila Andreas Keller and Leslie B Vosshall y Recent experiments in Drosophila demonstrate striking stereotypy in the neural architecture of the olfactory system. Functional

More information

Intrinsic Structure Study on Whale Vocalizations

Intrinsic Structure Study on Whale Vocalizations 1 2015 DCLDE Conference Intrinsic Structure Study on Whale Vocalizations Yin Xian 1, Xiaobai Sun 2, Yuan Zhang 3, Wenjing Liao 3 Doug Nowacek 1,4, Loren Nolte 1, Robert Calderbank 1,2,3 1 Department of

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Shivani Agarwal Support Vector Machines (SVMs) Algorithm for learning linear classifiers Motivated by idea of maximizing margin Efficient extension to non-linear

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers Optimization for Communications and Networks Poompat Saengudomlert Session 4 Duality and Lagrange Multipliers P Saengudomlert (2015) Optimization Session 4 1 / 14 24 Dual Problems Consider a primal convex

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Lesson 7 Delta Modulation and DPCM Instructional Objectives At the end of this lesson, the students should be able to: 1. Describe a lossy predictive coding scheme.

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

A Duality View of Spectral Methods for Dimensionality Reduction

A Duality View of Spectral Methods for Dimensionality Reduction A Duality View of Spectral Methods for Dimensionality Reduction Lin Xiao 1 Jun Sun 2 Stephen Boyd 3 May 3, 2006 1 Center for the Mathematics of Information, California Institute of Technology, Pasadena,

More information

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA 2

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA 2 Leading Edge Review Olfactory Perception: Receptors, Cells, and Circuits Chih-Ying Su, 1,2 Karen Menuz, 1,2 and John R. Carlson 1, * 1 Department of Molecular, Cellular, and Developmental Biology, Yale

More information

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Linear classifier Which classifier? x 2 x 1 2 Linear classifier Margin concept x 2

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

Constrained optimization

Constrained optimization Constrained optimization DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Compressed sensing Convex constrained

More information

1. f(β) 0 (that is, β is a feasible point for the constraints)

1. f(β) 0 (that is, β is a feasible point for the constraints) xvi 2. The lasso for linear models 2.10 Bibliographic notes Appendix Convex optimization with constraints In this Appendix we present an overview of convex optimization concepts that are particularly useful

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

More on Lagrange multipliers

More on Lagrange multipliers More on Lagrange multipliers CE 377K April 21, 2015 REVIEW The standard form for a nonlinear optimization problem is min x f (x) s.t. g 1 (x) 0. g l (x) 0 h 1 (x) = 0. h m (x) = 0 The objective function

More information

Nonlinear Manifold Learning Summary

Nonlinear Manifold Learning Summary Nonlinear Manifold Learning 6.454 Summary Alexander Ihler ihler@mit.edu October 6, 2003 Abstract Manifold learning is the process of estimating a low-dimensional structure which underlies a collection

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Support Vector Machines Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique

More information

Global Layout Optimization of Olfactory Cortex and of Amygdala of Rat

Global Layout Optimization of Olfactory Cortex and of Amygdala of Rat UMIACS-TR-2007-14 CS-TR-4861 Global Layout Optimization of Olfactory Cortex and of Amygdala of Rat Raul Rodriguez-Esteban and Christopher Cherniak June 2005 Committee for Philosophy and the Sciences, Department

More information

Appendix A Taylor Approximations and Definite Matrices

Appendix A Taylor Approximations and Definite Matrices Appendix A Taylor Approximations and Definite Matrices Taylor approximations provide an easy way to approximate a function as a polynomial, using the derivatives of the function. We know, from elementary

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Columbia Workshop on Brain Circuits, Memory and Computation

Columbia Workshop on Brain Circuits, Memory and Computation Columbia University Center for Neural Engineering and Computation Columbia Workshop on Brain Circuits, Memory and Computation Thursday and Friday, March 21-22, 2019 Davis Auditorium, CEPSR Organizer and

More information

"That which we call a rose by any other name would smell as sweet": How the Nose knows!

That which we call a rose by any other name would smell as sweet: How the Nose knows! "That which we call a rose by any other name would smell as sweet": How the Nose knows! Nobel Prize in Physiology or Medicine 2004 Sayanti Saha, Parvathy Ramakrishnan and Sandhya S Vis'Wes'Wariah Richard

More information

Derived Distance: Beyond a model, towards a theory

Derived Distance: Beyond a model, towards a theory Derived Distance: Beyond a model, towards a theory 9.520 April 23 2008 Jake Bouvrie work with Steve Smale, Tomaso Poggio, Andrea Caponnetto and Lorenzo Rosasco Reference: Smale, S., T. Poggio, A. Caponnetto,

More information

Bayesian probability theory and generative models

Bayesian probability theory and generative models Bayesian probability theory and generative models Bruno A. Olshausen November 8, 2006 Abstract Bayesian probability theory provides a mathematical framework for peforming inference, or reasoning, using

More information

Chasing down the neural code with mathematics and modeling

Chasing down the neural code with mathematics and modeling ABOUT 45 mins... WITH LOTS OF ASIDES... FITS IF DELETE THE STUFF AFTER THE MOVIE OF DOTS AND GO STRAIGHT TO QUESTION -- HOW DOES THIS HAPPEN, NO NET MODEL NEEDED HERE. Chasing down the neural code with

More information

Information Processing in the Mammalian Olfactory System

Information Processing in the Mammalian Olfactory System Physiol Rev 85: 281 317, 2005; doi:10.1152/physrev.00008.2004. Information Processing in the Mammalian Olfactory System PIERRE-MARIE LLEDO, GILLES GHEUSI, AND JEAN-DIDIER VINCENT Laboratory of Perception

More information

5. Duality. Lagrangian

5. Duality. Lagrangian 5. Duality Convex Optimization Boyd & Vandenberghe Lagrange dual problem weak and strong duality geometric interpretation optimality conditions perturbation and sensitivity analysis examples generalized

More information

Newton-Type Algorithms for Nonlinear Constrained Optimization

Newton-Type Algorithms for Nonlinear Constrained Optimization Newton-Type Algorithms for Nonlinear Constrained Optimization Angelika Altmann-Dieses Faculty of Management Science and Engineering Karlsruhe University of Applied Sciences Moritz Diehl Department of Microsystems

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Ryan M. Rifkin Google, Inc. 2008 Plan Regularization derivation of SVMs Geometric derivation of SVMs Optimality, Duality and Large Scale SVMs The Regularization Setting (Again)

More information

Collin College BIOL Week 10. Special Senses. General Organization

Collin College BIOL Week 10. Special Senses. General Organization Collin College BIOL 2401 Week 10 Special Senses 1 General Organization Organs of the Special senses are structurally more complex than the structures that make up the general senses. Special senses classification

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

Deep learning in the visual cortex

Deep learning in the visual cortex Deep learning in the visual cortex Thomas Serre Brown University. Fundamentals of primate vision. Computational mechanisms of rapid recognition and feedforward processing. Beyond feedforward processing:

More information

Chapter 1. Introduction. 1.1 Studying the Sensory Nervous System

Chapter 1. Introduction. 1.1 Studying the Sensory Nervous System 1 Chapter 1 Introduction 1.1 Studying the Sensory Nervous System To interact with its environment, an organism needs a mechanism with which to gather information about its environment, process that information

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

common By Richard Saltus Illustration by Hannah Stouffer

common By Richard Saltus Illustration by Hannah Stouffer common Flavors, aromas, and chemical signals released from animals can make the mouth water, evoke vivid memories, and perhaps even signal stress or fertility. How does the brain sort it all out? senses

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 18 Feb 2000

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 18 Feb 2000 Odor recognition and segmentation by a model olfactory bulb and cortex Zhaoping Li and John Hertz arxiv:cond-mat/0002289v1 [cond-mat.dis-nn] 18 Feb 2000 Gatsby Computational Neuroscience Unit 17 Queen

More information

Support vector machines

Support vector machines Support vector machines Guillaume Obozinski Ecole des Ponts - ParisTech SOCN course 2014 SVM, kernel methods and multiclass 1/23 Outline 1 Constrained optimization, Lagrangian duality and KKT 2 Support

More information

CO 250 Final Exam Guide

CO 250 Final Exam Guide Spring 2017 CO 250 Final Exam Guide TABLE OF CONTENTS richardwu.ca CO 250 Final Exam Guide Introduction to Optimization Kanstantsin Pashkovich Spring 2017 University of Waterloo Last Revision: March 4,

More information