Optical Tweezers as an Application of Electrodynamics

Size: px
Start display at page:

Download "Optical Tweezers as an Application of Electrodynamics"

Transcription

1 Optical Tweezers as an Application of Electrodynamics Edda Klipp Humboldt University Berlin Institute for Biology Theoretical Biophysics

2 Yeast Cell as an Osmometer Media 1 Media 2 50µm Eriksson, Lab on Chip, 2006

3 Optical Tweezer l What is it? Optical Tweezers use light to manipulate microscopic objects as small as a single atom. The radiation pressure from a focused laser beam is able to trap small particles. In biological sciences, these instruments have been used to apply forces in the pn-range and to measure displacements in thenm rangeof objects ranging in size from 10 nm to over 100 mm.

4 History First demonstration of optical tweezer: A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm and S. Chu "Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles." Opt. Lett. 11 (5) optical trap: a tightly focused beam of light capable of holding microscopic particles stable in three dimensions 1997: Nobel Prize in Physics for Steven Chu for trapping neutral atoms (0.1 nanometer in diameter) using resonant laser light and a magnetic gradient trap Ashkin was able to trap larger particles (10 to 10,000 nanometers in diameter): an individual tobacco mosaic virus and an Eschericha coli bacterium.

5 Optical tweezers are capable of manipulating nanometer and micrometer-sized dielectric particles by exerting extremely small forces via a highly focused laser beam. The beam is typically focused by sending it through a microscope objective. The narrowest point of the focused beam, known as the beam waist, contains a very strong electric field gradient. It turns out that dielectric particles are attracted along the gradient to the region of strongest electric field, which is the center of the beam. The laser light also tends to apply a force on particles in the beam along the direction of beam propagation. General Description It is easy to understand why if one considers light to be a group of particles, each impinging on the tiny dielectric particle in its path. This is known as the scattering force and results in the particle being displaced slightly downstream from the exact position of the beam waist, as seen in the figure.

6 Laser Light Amplification by Stimulated Emission of Radiation ein sehr enges Frequenzspektrum (d. h. das Licht hat nur eine Farbe, ist also monochromatisch), die Parallelität der Strahlung, die den Laserstrahl auch über große Entfernung kaum breiter werden lässt, und eine große Kohärenzlänge (Strecke über die die Wellen phasengleich sind).

7 More Optical traps are very sensitive instruments and are capable of the manipulation and detection of sub-nanometer displacements for submicrometer dielectric particles. For this reason, they are often used to manipulate and study single molecules by interacting with a bead that has been attached to that molecule. DNA and the proteins and enzymes that interact with it are commonly studied in this way. For quantitative scientific measurements, most optical traps are operated in such a way that the dielectric particle rarely moves far from the trap center. The reason for this is that the force applied to the particle is linear with respect to its displacement from the center of the trap as long as the displacement is small. In this way, an optical trap can be compared to a simple spring, which follows Hooke's law. Federgleichung F=-kx F Rückholkraft x Entfernung aus Gleichgewichtsposition k Federkonstante

8 Particle Size Dependence Proper explanation of optical trapping behavior depends upon the size of the trapped particle relative to the wavelength of light used to trap it. In cases where the dimensions of the particle are much greater than the wavelength, a simple ray optics treatment is sufficient. If the wavelength of light far exceeds the particle dimensions, the particles can be treated as electric dipoles in an electric field. For optical trapping of dielectric objects of dimensions within an order of magnitude of the trapping beam wavelength, the only accurate models involve the treatment of either time dependent or time harmonic maxwell equations using appropriate boundary conditions.

9 Optical Trap Ray Optics Explanation When the bead is displaced from the beam center, as in (a), the larger momentum change of the more intense rays cause a net force to be applied back toward the center of the trap. When the bead is laterally centered on the beam, as in (b), the net force points toward the beam waist.

10 Principles In cases where the diameter of a trapped particle is significantly greater than the wavelength of light, the trapping phenomenon can be explained using ray optics. As shown in the figure, individual rays of light emitted from the laser will be refracted as it enters and exits the dielectric bead. As a result, the ray will exit in a direction different from which it originated. Since light has a momentum associated with it, this change in direction indicates that its momentum has changed. Due to Newton's third law (actio = reactio), there should be an equal and opposite momentum change on the particle.

11 Newton s laws of motion Newton's laws of motion are three physical laws that form the basis for classical mechanics. They are: 1 In the absence of a net force, a body either is at rest or moves in a straight line with constant speed. 2 A body experiencing a force F experiences an acceleration a related to F by F = ma, where m is the mass of the body. Alternatively, force is equal to the time derivative of momentum. 3 Whenever a first body exerts a force F on a second body, the second body exerts a force F on the first body. F and F are equal in magnitude and opposite in direction.

12 The Electric Dipole Approximation In cases where the diameter of a trapped particle is significantly smaller than the wavelength of light, the particle can be treated as a point dipole in an inhomogenous electromagnetic field. The force applied on a single charge in an electromagnetic field is the Lorentz force, The force on the dipole can be calculated by substituting two terms for the electric field in the equation above, one for each charge. The polarization of a dipole is p=qd where d is the distance between the two charges. For a point dipole, the distance is infinitesimal, x 1 -x 2 taking into account that the two charges have opposite signs, the force takes the form Notice that the E 1 cancel out. Multiplying through by the charge, q, converts position, x, into polarization, p,

13 The Electric Dipole Approximation, cont. wherein thesecond equality, ithas been assumed that the dielectric particle is linear (i.e. p= E ). In the final steps, two equalities will be used: (1) a Vector Analysis Equality, (2) one of Maxwell's Equations. First, the vector equality will be inserted for the first term in the force equation above. Maxwell's equation will be substituted in for the second term in the vector equality. Then the two terms which contain time derivatives can be combined into a single term.

14 The Electric Dipole Approximation, cont. The second term in the last equality is the time derivative of a quantity that is related through a multiplicative constant to the Poynting vector, which describes the power per unit area passing through a surface. Since thepowerof thelaserisconstantwhen sampling over frequencies much shorter than the frequency of the laser's light ~10 14 Hz, the derivative of this term averages to zero and the force can be written as Thesquareof themagnitudeof theelectricfield is equal to the intensity of the beam as a function of position. Therefore, the result indicates that the force on the dielectric particle, when treated as a point dipole, is proportional to the gradient along the intensity of the beam. In other words, the gradient force described here tends to attract the particle to the region of highest intensity. In reality, the scattering force of the light works against the gradient force in the axial direction of the trap, resulting in an equilibrium position that is displaced slightly downstream of the intensity maximum. The scattering force depends linearly on the intensity of the beam, the cross section of the particle and the index of refraction of the trapping medium (e.g. water).

15 Generic Optical Tweezer The most basic optical tweezer setup will likely include the following components: a laser, a beam expander, some optics used to steer the beam location in the sample plane, a microscope objective and condenser to create the trap in the sample plane, a position detector (e.g. quadrant photodiode) to measure beam displacements and a microscope illumination source coupled to a CCD camera.

16 Applications cell sorting probe the cytoskeleton, measure the visco-elastic properties of biopolymers, and study cell motility Optical Tweezers have been used to trap dielectric spheres, viruses, bacteria, living cells, organelles, small metal particles, and even strands of DNA. Applications include confinement and organization (e.g. for cell sorting), tracking of movement (e.g. of bacteria), application and measurement of small forces, and altering of larger structures (such as cell membranes). Two of the main uses for optical traps have been the study of molecular motors and the physical properties of DNA. In both areas, a biological specimen is biochemically attached to a micron-sized glass or polystyrene bead that is then trapped. By attaching a single molecular motor (such as kinesin, myosin, RNA polymerase etc.) to such a bead, researchers have been able to probe motor properties such as: Does the motor take individual steps? What is the step size? How much force can the motor produce? Similarly, by attaching the beads to the ends of single pieces of DNA, experiments have measured the elasticity of the DNA, as well as the forces under which the DNA breaks or undergoes a phase transition.

17 Cell Sorting Fluorescence-activated cell sorting - FACS One of the more common cell-sorting systems makes use of flow cytometry through fluorescent imaging. In this method, a suspension of biologic cells is sorted into two or more containers, based upon specific fluorescent characteristics of each cell during an assisted flow. By using an electrical charge that the cell is "trapped" in, the cells are then sorted based on the fluorescence intensity measurements. The sorting process is undertaken by an electrostatic deflection system that diverts cells into containers based upon their charge. List of measurable parameters: volume and morphological complexity of cells cell pigments such as chlorophyll or phycoerythrin DNA (cell cycle analysis, cell kinetics, proliferation, etc.), RNA chromosome analysis and sorting (library construction, chromosome paint) protein expression and localization, protein modifications, phospho-proteins transgenic products in vivo, particularly the Green fluorescent protein or related fluorescent * cell surface antigens Intracellular antigens (various cytokines, secondary mediators, etc.) nuclear antigens enzymatic activity, ph, intracellular ionized calcium, magnesium, membrane potential membrane fluidity, apoptosis (quantification, measurement of DNA degradation, mitochondrial membrane potential, permeability changes, caspase activity) cell viability monitoring electropermeabilization of cells oxidative burst characterising multidrug resistance (MDR) in cancer cells glutathione,..

18 Movies Movie 1, Fig3 Repositioning spores Movie 2, Fig4 Rotating a germling Movie3, Fig6 Movinga woroninbody Movie 4, Fig7A- Vacuolar repulsion Movie 7, Fig8 Redirection of growth Movie 8, Fig9 Hyphal tip growht force Movie 9, Fig10 Germling growth force Movie 10, Fig11 Hyphal beating

19 Applications, cont.

20 Applications, cont. Controlled release of encapsulated agents Concentration profile around particle

21 Comparison of Techniques

Laser Tweezers and Other Advanced Physical Methods

Laser Tweezers and Other Advanced Physical Methods Phys 6715 - Biomedical Physics Laser Tweezers and Other Advanced Physical Methods Yong-qing Li, PhD Department of Physics, East Carolina University Greenville, NC 27858, USA Email: liy@ecu.edu 1 Optical

More information

Experimental biophysics: Optical tweezer lab Supervisor: Stefan Holm,

Experimental biophysics: Optical tweezer lab Supervisor: Stefan Holm, Experimental biophysics: Optical tweezer lab :, stefan.holm@ftf.lth.se Written by Jason Beech & Henrik Persson, March 2009. Modified 2014 Karl Adolfsson, 2016 Experimental Biophysics: FAF010F, FYST23,

More information

Chapter 2 Physical Principle of Optical Tweezers

Chapter 2 Physical Principle of Optical Tweezers Chapter 2 Physical Principle of Optical Tweezers The radiation pressure of light was first deduced theoretically by James C. Maxwell in 1873 based on his electromagnetic theory [1, 2], and measured experimentally

More information

Optical Tweezers -working principles and applications

Optical Tweezers -working principles and applications Optical Tweezers -working principles and applications Photo taken from the WWW Star Trek Picture Page Biophysics with optical tweezers Optical tweezers use forces of laser radiation pressure to trap small

More information

Optical Tweezers. The Useful Micro-Manipulation Tool in Research

Optical Tweezers. The Useful Micro-Manipulation Tool in Research Optical Tweezers The Useful Micro-Manipulation Tool in Research Student: Nikki Barron Class: Modern Physics/ Biophysics laboratory Advisor: Grant Allen Instructor: David Kleinfeld Date: June 15, 2012 Introduction

More information

Towards Measuring Piconewton Forces with Optical Tweezers

Towards Measuring Piconewton Forces with Optical Tweezers University of Ljubljana Faculty of Mathematics and Physics Seminar II Towards Measuring Piconewton Forces with Optical Tweezers Author: Matjaž Žganec Advisor: doc. dr. Igor Poberaj March 28, 2007 Abstract

More information

Tecniche sperimentali: le optical tweezers

Tecniche sperimentali: le optical tweezers Tecniche sperimentali: le optical tweezers Le tecniche di molecola singola rispetto a quelle di insieme ensemble z z z z z z frequency activity activity time z z z Single molecule frequency activity activity

More information

Optical tweezers. SEMINAR 1b - 1. LETNIK, II. STOPNJA. Author: Matevž Majcen Hrovat. Mentor: prof. dr. Igor Poberaj. Ljubljana, May 2013.

Optical tweezers. SEMINAR 1b - 1. LETNIK, II. STOPNJA. Author: Matevž Majcen Hrovat. Mentor: prof. dr. Igor Poberaj. Ljubljana, May 2013. SEMINAR 1b - 1. LETNIK, II. STOPNJA Optical tweezers Author: Matevž Majcen Hrovat Mentor: prof. dr. Igor Poberaj Ljubljana, May 2013 Abstract The seminar introduces the physics of optical trapping and

More information

Optical Tweezers. BGGN 266, Biophysics Lab. June, Trygve Bakken & Adam Koerner

Optical Tweezers. BGGN 266, Biophysics Lab. June, Trygve Bakken & Adam Koerner Optical Tweezers BGGN 266, Biophysics Lab June, 2009 Trygve Bakken & Adam Koerner Background There are a wide variety of force spectroscopy techniques available to investigators of biological systems.

More information

Optical Trapping Force on a Plasmonic Substrate

Optical Trapping Force on a Plasmonic Substrate Yu Pan Master of Science Thesis Supervisor: Prof. Min Yan(KTH) Examiner: Prof. Min Qiu(KTH) TRITA-ICT-EX-2012: 107 Abstract Optical trapping is currently widely applied in the field of biotechnology, in

More information

Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser

Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser Dru Morrish, Xiaosong Gan and Min Gu Centre for Micro-Photonics, School of Biophysical

More information

Two-photon single-beam particle trapping of active micro-spheres

Two-photon single-beam particle trapping of active micro-spheres Two-photon single-beam particle trapping of active micro-spheres Dru Morrish, Xiaosong Gan and Min Gu * Centre for Mirco-Photonics, School of Biophysical Sciences and Electrical Engineering, Swinburne

More information

Single-beam optical fiber trap

Single-beam optical fiber trap Journal of Physics: Conference Series Single-beam optical fiber trap To cite this article: K Taguchi and N Watanabe 2007 J. Phys.: Conf. Ser. 61 1137 View the article online for updates and enhancements.

More information

Optical Trapping. The catalyst which motivated the development of optical trapping is often

Optical Trapping. The catalyst which motivated the development of optical trapping is often DeSantis 1 Optical Trapping The catalyst which motivated the development of optical trapping is often attributed to James Clark Maxwell when he unveiled the concept of radiation pressure. Apart from the

More information

OPTICAL TWEEZERS AND SPANNERS PHELIM DORAN Colin Phelan

OPTICAL TWEEZERS AND SPANNERS PHELIM DORAN Colin Phelan OPTICAL TWEEZERS AND SPANNERS PHELIM DORAN 97449067 & Colin Phelan 97081540 Contents: Chapter: Page: 1. Introduction. 2 2. The Physics. 3 3. Applications. 6 4. Appendix. 8 5. References. 9 Introduction:

More information

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015)

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) The Influence of the Focus on the Counter-Propagating Optical Trapping Liang Zhu 1 FuLi Zhao 1a 1 State

More information

Experimental Optics. Optical Tweezers. Contact: Dr. Robert Kammel, Last edition: Dr. Robert Kammel, February 2016

Experimental Optics. Optical Tweezers. Contact: Dr. Robert Kammel,   Last edition: Dr. Robert Kammel, February 2016 Experimental Optics Contact: Dr. Robert Kammel, e-mail: Robert.Kammel@uni-jena.de Last edition: Dr. Robert Kammel, February 2016 Optical Tweezers Contents 1 Overview 2 2 Safety Issues 2 3 Theoretical background

More information

Optical Tweezers for Scanning Probe Microscopy

Optical Tweezers for Scanning Probe Microscopy Optical Tweezers for Scanning Probe Microscopy Dr P H Jones Department of Physics and Astronomy UCL www.ucl.ac.uk/~ucapphj CoMPLEx ITPL course MSc Nanotechnology 07 October 2014 Contents 0. Introduction

More information

Optical Tweezers for Scanning Probe Microscopy

Optical Tweezers for Scanning Probe Microscopy Optical Tweezers for Scanning Probe Microscopy Dr P H Jones Department of Physics and Astronomy UCL www.ucl.ac.uk/~ucapphj CoMPLEx ITPL course MSc Nanotechnology 09 October 2012 Contents 0. Introduction

More information

BMB November 17, Single Molecule Biophysics (I)

BMB November 17, Single Molecule Biophysics (I) BMB 178 2017 November 17, 2017 14. Single Molecule Biophysics (I) Goals 1. Understand the information SM experiments can provide 2. Be acquainted with different SM approaches 3. Learn to interpret SM results

More information

Push-Pull Phenomenon of a Dielectric Particle in a Rectangular Waveguide

Push-Pull Phenomenon of a Dielectric Particle in a Rectangular Waveguide Progress In Electromagnetics Research, Vol. 151, 73 81, 2015 Push-Pull Phenomenon of a Dielectric Particle in a Rectangular Waveguide NayanK.PaulandBrandonA.Kemp * Abstract The electromagnetic force acting

More information

Setting up an Optical Trap

Setting up an Optical Trap Setting up an Optical Trap Using light to trap and manipulate particles? That sounded like science fiction, when Arthur Ashkin first published that idea in 1970. Today, this method for studying and manipulating

More information

Exact radiation trapping force calculation based on vectorial diffraction theory

Exact radiation trapping force calculation based on vectorial diffraction theory Exact radiation trapping force calculation based on vectorial diffraction theory Djenan Ganic, Xiaosong Gan, and Min Gu Centre for Micro-Photonics, School of Biophysical Sciences and Electrical Engineering

More information

Dr. Filippo Pierini. IPPT PAN Department of Mechanics and Physics of Fluids (ZMiFP) Dr. Filippo Pierini

Dr. Filippo Pierini. IPPT PAN Department of Mechanics and Physics of Fluids (ZMiFP) Dr. Filippo Pierini IPPT PAN Department of Mechanics and Physics of Fluids (ZMiFP) 2. Principles 3. Configurations 4. Applications OUTLINE 1)Introduction 2)Principles of Optical Tweezers Trapping Forces 3)The Optical Tweezers

More information

Optical tweezers application to single molecule manipulation

Optical tweezers application to single molecule manipulation Optical tweezers application to single molecule manipulation Nathalie Westbrook Laboratoire Charles Fabry de l Institut d Optique nathalie.westbrook@institutoptique.fr Optical tweezer: dielectric objects

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Atomic and molecular interactions. Scanning probe microscopy.

Atomic and molecular interactions. Scanning probe microscopy. Atomic and molecular interactions. Scanning probe microscopy. Balázs Kiss Nanobiotechnology and Single Molecule Research Group, Department of Biophysics and Radiation Biology 27. November 2013. 2 Atomic

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Physical Science DCI Progression Chart

Physical Science DCI Progression Chart DCI Progression Chart PS1: Matter and Its Interactions Grade Bands PS1.A Structure & Properties of Matter Grades K-2 Grades 3-5 Grades 6-8 Grades 9-12 Second Grade * Different kinds of matter exist and

More information

LASER TRAPPING MICRO-PROBE FOR NANO-CMM

LASER TRAPPING MICRO-PROBE FOR NANO-CMM LASER TRAPPING MICRO-PROBE FOR NANO-CMM T. Miyoshi, Y. Takaya and S. Takahashi Division of Production and Measurement System Engineering Department of Mechanical Engineering and Systems Osaka University,

More information

CASE STUDY FOR USE WITH SECTION B

CASE STUDY FOR USE WITH SECTION B GCE A level 1325/01-A PHYSICS ASSESSMENT UNIT PH5 A.M. MONDAY, 27 June 2011 CASE STUDY FOR USE WITH SECTION B Examination copy To be given out at the start of the examination. The pre-release copy must

More information

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS?

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Anatoly B. Kolomeisky Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Motor Proteins Enzymes that convert the chemical energy into mechanical

More information

Introduction to Biomedical Engineering

Introduction to Biomedical Engineering Introduction to Biomedical Engineering Biomedical optics II Kung-Bin Sung 1 Outline Chapter 17: Biomedical optics and lasers Fundamentals of light Light-matter interaction Optical imaging Optical sensing:

More information

Optical Trapping Experiment - Optical Tweezers. PHY 431 Optics, Fall 2011

Optical Trapping Experiment - Optical Tweezers. PHY 431 Optics, Fall 2011 Optical Trapping Experiment - Optical Tweezers PHY 431 Optics, Fall 2011 Sources: Advanced Physics Laboratory, J. Shen et al., University of Toronto Phys 2010, Optical Tweezers, Brown Universiyt Optical

More information

Laser Tweezers and Orbital Angular Momentum Photons

Laser Tweezers and Orbital Angular Momentum Photons Laser Tweezers and Orbital Angular Momentum Photons Elizabeth Rubino, Sean Cruikshank and Grigoriy Kreymerman Department of Physics Abstract: A photon can be considered both a particle and a wave in quantum

More information

ECE280: Nano-Plasmonics and Its Applications. Week8

ECE280: Nano-Plasmonics and Its Applications. Week8 ECE280: Nano-Plasmonics and Its Applications Week8 Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER) Raman Scattering Chandrasekhara

More information

Measurements of interaction forces in (biological) model systems

Measurements of interaction forces in (biological) model systems Measurements of interaction forces in (biological) model systems Marina Ruths Department of Chemistry, UMass Lowell What can force measurements tell us about a system? Depending on the technique, we might

More information

High School Curriculum Standards: Physics

High School Curriculum Standards: Physics High School Curriculum Standards: Physics Students will understand and apply scientific concepts, principles, and theories pertaining to the physical setting and living environment and recognize the historical

More information

Laser Cooling and Trapping of Atoms

Laser Cooling and Trapping of Atoms Chapter 2 Laser Cooling and Trapping of Atoms Since its conception in 1975 [71, 72] laser cooling has revolutionized the field of atomic physics research, an achievement that has been recognized by the

More information

Solution set for EXAM IN TFY4265/FY8906 Biophysical microtechniques

Solution set for EXAM IN TFY4265/FY8906 Biophysical microtechniques ENGLISH NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF PHYSICS Contact during exam: Magnus Borstad Lilledahl Telefon: 73591873 (office) 92851014 (mobile) Solution set for EXAM IN TFY4265/FY8906

More information

CORE MOLIT ACTIVITIES at a glance

CORE MOLIT ACTIVITIES at a glance CORE MOLIT ACTIVITIES at a glance 1. Amplification of Biochemical Signals: The ELISA Test http://molit.concord.org/database/activities/248.html The shape of molecules affects the way they function. A test

More information

Laser-Trapped Mirrors in Space

Laser-Trapped Mirrors in Space Laser-Trapped Mirrors in Space Elizabeth F. McCormack Bryn Mawr College Jean-Marc Fournier Institute of Imaging and Applied Optics Swiss Federal Institute of Technology Tomasz Grzegorczyk Massachusetts

More information

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/08/06 Prof. C. Ortiz, MIT-DMSE I LECTURE 2 : THE FORCE TRANSDUCER

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/08/06 Prof. C. Ortiz, MIT-DMSE I LECTURE 2 : THE FORCE TRANSDUCER I LECTURE 2 : THE FORCE TRANSDUCER Outline : LAST TIME : WHAT IS NANOMECHANICS... 2 HOW CAN WE MEASURE SUCH TINY FORCES?... 3 EXAMPLE OF A FORCE TRANSDUCER... 4 Microfabricated cantilever beams with nanosized

More information

Electromagnetic Waves

Electromagnetic Waves Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 23 Electromagnetic Waves Marilyn Akins, PhD Broome Community College Electromagnetic Theory Theoretical understanding of electricity and magnetism

More information

Larbert High School. Quanta and Waves. Homework Exercises ADVANCED HIGHER PHYSICS

Larbert High School. Quanta and Waves. Homework Exercises ADVANCED HIGHER PHYSICS Larbert High School ADVANCED HIGHER PHYSICS Quanta and Waves Homework Exercises 3.1 3.6 3.1 Intro to Quantum Theory HW 1. (a) Explain what is meant by term black body. (1) (b) State two observations that

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Radiation pressure and the distribution of electromagnetic force in dielectric media (II)

Radiation pressure and the distribution of electromagnetic force in dielectric media (II) Radiation pressure and the distribution of electromagnetic force in dielectric media (II) References Armis R. Zakharian, Masud Mansuripur, and Jerome V. Moloney Optical Sciences Center, The University

More information

8.01. Determine arc length, angular velocity, and angular acceleration.

8.01. Determine arc length, angular velocity, and angular acceleration. 8.01. Determine arc length, angular velocity, and angular acceleration. 8.02 Demonstrate conceptual knowledge of angular momentum and how it is affected by changing rotational velocity and moment of inertia.

More information

NYU Physics Preliminary Examination in Electricity & Magnetism Fall 2011

NYU Physics Preliminary Examination in Electricity & Magnetism Fall 2011 This is a closed-book exam. No reference materials of any sort are permitted. Full credit will be given for complete solutions to the following five questions. 1. An impenetrable sphere of radius a carries

More information

Medical Biophysics II. Final exam theoretical questions 2013.

Medical Biophysics II. Final exam theoretical questions 2013. Medical Biophysics II. Final exam theoretical questions 2013. 1. Early atomic models. Rutherford-experiment. Franck-Hertz experiment. Bohr model of atom. 2. Quantum mechanical atomic model. Quantum numbers.

More information

qq k d Chapter 16 Electric and Magnetic Forces Electric charge Electric charges Negative (electron) Positive (proton)

qq k d Chapter 16 Electric and Magnetic Forces Electric charge Electric charges Negative (electron) Positive (proton) Chapter 16 Electric and Magnetic Forces Electric charge Electric charges Negative (electron) Positive (proton) Electrons and protons in atoms/molecules Ions: atoms/molecules with excess of charge Ions

More information

Physics Common Assessment Unit 5-8 3rd Nine Weeks

Physics Common Assessment Unit 5-8 3rd Nine Weeks 1) What is the direction of the force(s) that maintain(s) circular motion? A) one force pulls the object inward toward the radial center while another force pushes the object at a right angle to the first

More information

object objective lens eyepiece lens

object objective lens eyepiece lens Advancing Physics G495 June 2015 SET #1 ANSWERS Field and Particle Pictures Seeing with electrons The compound optical microscope Q1. Before attempting this question it may be helpful to review ray diagram

More information

Administrative details:

Administrative details: Administrative details: Anything from your side? www.photonics.ethz.ch 1 Where do we stand? Optical imaging: Focusing by a lens Angular spectrum Paraxial approximation Gaussian beams Method of stationary

More information

Prentice Hall. Physics: Principles with Applications, Updated 6th Edition (Giancoli) High School

Prentice Hall. Physics: Principles with Applications, Updated 6th Edition (Giancoli) High School Prentice Hall Physics: Principles with Applications, Updated 6th Edition (Giancoli) 2009 High School C O R R E L A T E D T O Physics I Students should understand that scientific knowledge is gained from

More information

BMB Class 17, November 30, Single Molecule Biophysics (II)

BMB Class 17, November 30, Single Molecule Biophysics (II) BMB 178 2018 Class 17, November 30, 2018 15. Single Molecule Biophysics (II) New Advances in Single Molecule Techniques Atomic Force Microscopy Single Molecule Manipulation - optical traps and tweezers

More information

Questions on Electric Fields

Questions on Electric Fields Questions on Electric Fields 1. The diagram shows a positively charged oil drop held at rest between two parallel conducting plates A and B. Oil drop A B 2.50 cm The oil drop has a mass 9.79 x 10 15 kg.

More information

PHYSICS CURRICULUM. Unit 1: Measurement and Mathematics

PHYSICS CURRICULUM. Unit 1: Measurement and Mathematics Chariho Regional School District - Science Curriculum September, 2016 PHYSICS CURRICULUM Unit 1: Measurement and Mathematics OVERVIEW Summary Mathematics is an essential tool of physics. This unit will

More information

Chapter 21. Electric Fields

Chapter 21. Electric Fields Chapter 21 Electric Fields The Origin of Electricity The electrical nature of matter is inherent in the atoms of all substances. An atom consists of a small relatively massive nucleus that contains particles

More information

Magnetic Torque Tweezers: measuring torsional stiffness in DNA and RecA DNA filaments

Magnetic Torque Tweezers: measuring torsional stiffness in DNA and RecA DNA filaments Magnetic Torque Tweezers: measuring torsional stiffness in DNA and RecA DNA filaments Lipfert, J., Kerssemakers, J. W., Jager, T. & Dekker, N. H. Magnetic torque tweezers: measuring torsional stiffness

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

Unified School District of De Pere Physics Benchmarks

Unified School District of De Pere Physics Benchmarks Content Standards: A. Students will understand that among the science disciplines, there are unifying themes: systems, order, organization, and interactions; evidence, models, and explanations; constancy,

More information

Pinze ottiche. Ciro Cecconi Dipartimento di Fisica, Informatica e Matematica Università degli Studi di Modena and Reggio Emilia

Pinze ottiche. Ciro Cecconi Dipartimento di Fisica, Informatica e Matematica Università degli Studi di Modena and Reggio Emilia Pinze ottiche Ciro Cecconi Dipartimento di Fisica, Informatica e Matematica Università degli Studi di Modena and Reggio Emilia UNIVERSITA DEGLI STUDI di Modena e Reggio Emilia E-mail: ciro.cecconi@unimore.it

More information

Phys Biomedical Physics: Yong-qing Li, PhD. Department of Physics, East Carolina University Greenville, NC 27858, USA.

Phys Biomedical Physics: Yong-qing Li, PhD. Department of Physics, East Carolina University Greenville, NC 27858, USA. Phys 6715 - Biomedical Physics: Optical Trapping in Air Yong-qing Li, PhD Department of Physics, East Carolina University Greenville, NC 27858, USA Email: liy@ecu.edu 1 Outline 1. Why optical trapping

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electricity and Magnetism The laws of electricity and magnetism play a central role in the operation of many modern devices. The interatomic and intermolecular forces responsible

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline CHAPTER 3 Cell Structure and Genetic Control Chapter 3 Outline Plasma Membrane Cytoplasm and Its Organelles Cell Nucleus and Gene Expression Protein Synthesis and Secretion DNA Synthesis and Cell Division

More information

AP PHYSICS 2 FRAMEWORKS

AP PHYSICS 2 FRAMEWORKS 1 AP PHYSICS 2 FRAMEWORKS Big Ideas Essential Knowledge Science Practices Enduring Knowledge Learning Objectives ELECTRIC FORCE, FIELD AND POTENTIAL Static Electricity; Electric Charge and its Conservation

More information

Improved axial position detection in optical tweezers measurements

Improved axial position detection in optical tweezers measurements Improved axial position detection in optical tweezers measurements Jakob Kisbye Dreyer, Kirstine Berg-Sørensen, and Lene Oddershede We investigate the axial position detection of a trapped microsphere

More information

Homework 3. 1 Coherent Control [22 pts.] 1.1 State vector vs Bloch vector [8 pts.]

Homework 3. 1 Coherent Control [22 pts.] 1.1 State vector vs Bloch vector [8 pts.] Homework 3 Contact: jangi@ethz.ch Due date: December 5, 2014 Nano Optics, Fall Semester 2014 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch 1 Coherent Control [22 pts.] In the first part of this

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 2 Course Objectives correlated to the College Board AP Physics 2 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring Understanding 1.A:

More information

Contents. xiii. Preface v

Contents. xiii. Preface v Contents Preface Chapter 1 Biological Macromolecules 1.1 General PrincipIes 1.1.1 Macrornolecules 1.2 1.1.2 Configuration and Conformation Molecular lnteractions in Macromolecular Structures 1.2.1 Weak

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

NYS STANDARD/KEY IDEA/PERFORMANCE INDICATOR 5.1 a-e. 5.1a Measured quantities can be classified as either vector or scalar.

NYS STANDARD/KEY IDEA/PERFORMANCE INDICATOR 5.1 a-e. 5.1a Measured quantities can be classified as either vector or scalar. INDICATOR 5.1 a-e September Unit 1 Units and Scientific Notation SI System of Units Unit Conversion Scientific Notation Significant Figures Graphical Analysis Unit Kinematics Scalar vs. vector Displacement/dis

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique

Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique Zhigang Chen and Allen Taflove Department of Electrical and Computer

More information

PROCEEDINGS OF SPIE. Sorting and measurement of single gold nanoparticles in an optofluidic chip

PROCEEDINGS OF SPIE. Sorting and measurement of single gold nanoparticles in an optofluidic chip PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Sorting and measurement of single gold nanoparticles in an optofluidic chip Y. Z. Shi, S. Xiong, Y. Zhang, L. K. Chin, J. H. Wu,

More information

Chapter 13. Simple Harmonic Motion

Chapter 13. Simple Harmonic Motion Chapter 13 Simple Harmonic Motion Hooke s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring and a small

More information

Optical recoil of asymmetric nano-optical antenna

Optical recoil of asymmetric nano-optical antenna Optical recoil of asymmetric nano-optical antenna Jung-Hwan Song, 1 Jonghwa Shin, 1,* Hee-Jin Lim, 1 and Yong-Hee Lee 1,2 1 Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon

More information

Biophysik der Moleküle!

Biophysik der Moleküle! Biophysik der Moleküle!!"#$%&'()*+,-$./0()'$12$34!4! Molecular Motors:! - linear motors" 6. Dec. 2010! Muscle Motors and Cargo Transporting Motors! There are striking structural similarities but functional

More information

Physics Important Terms and their Definitions

Physics Important Terms and their Definitions Physics Important Terms and their S.No Word Meaning 1 Acceleration The rate of change of velocity of an object with respect to time 2 Angular Momentum A measure of the momentum of a body in rotational

More information

# Ans Workings / Remarks

# Ans Workings / Remarks # Ans Workings / Remarks 1 A The positive zero error is +0.03 mm. The reading is 1.84 mm. Thus, final reading = 1.84 (+0.03) = 1.81 mm 2 A We can use parallelogram of forces to determine the final resultant

More information

CHAPTER 4 TEST REVIEW

CHAPTER 4 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 74 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 4 TEST REVIEW 1. In which of the following regions of the electromagnetic spectrum is radiation

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. chapter 7 Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Who was one of the first people to identify and see cork cells? a. Anton van

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Single-Molecule Micromanipulation Techniques

Single-Molecule Micromanipulation Techniques Annu. Rev. Mater. Res. 2007. 37:33 67 First published online as a Review in Advance on January 11, 2007 The Annual Review of Materials Research is online at http://matsci.annualreviews.org This article

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics FI 3103 Quantum Physics Alexander A. Iskandar Physics of Magnetism and Photonics Research Group Institut Teknologi Bandung General Information Lecture schedule 17 18 9136 51 5 91 Tutorial Teaching Assistant

More information

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high?

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high? STM STM With a scanning tunneling microscope, images of surfaces with atomic resolution can be readily obtained. An STM uses quantum tunneling of electrons to map the density of electrons on the surface

More information

7-1 Life Is Cellular. Copyright Pearson Prentice Hall

7-1 Life Is Cellular. Copyright Pearson Prentice Hall 7-1 Life Is Cellular The Discovery of the Cell What is the cell theory? The Discovery of the Cell The cell theory states: All living things are composed of cells. Cells are the basic units of structure

More information

Prentice Hall: Conceptual Physics 2002 Correlated to: Tennessee Science Curriculum Standards: Physics (Grades 9-12)

Prentice Hall: Conceptual Physics 2002 Correlated to: Tennessee Science Curriculum Standards: Physics (Grades 9-12) Tennessee Science Curriculum Standards: Physics (Grades 9-12) 1.0 Mechanics Standard: The student will investigate the laws and properties of mechanics. The student will: 1.1 investigate fundamental physical

More information

Chapter Topic Subtopic

Chapter Topic Subtopic Specification of the test on Physics for Unified National Testing and Complex Testing (Approved for use in the Unified National Testing and Complex Testing from 2018) The document was developed in accordance

More information

C) D) Base your answers to questions 22 through 24 on the information below.

C) D) Base your answers to questions 22 through 24 on the information below. 1. The threshold frequency in a photoelectric experiment is most closely related to the A) brightness of the incident light B) thickness of the photoemissive metal C) area of the photoemissive metal D)

More information

SPECIES OF ARCHAEA ARE MORE CLOSELY RELATED TO EUKARYOTES THAN ARE SPECIES OF PROKARYOTES.

SPECIES OF ARCHAEA ARE MORE CLOSELY RELATED TO EUKARYOTES THAN ARE SPECIES OF PROKARYOTES. THE TERMS RUN AND TUMBLE ARE GENERALLY ASSOCIATED WITH A) cell wall fluidity. B) cell membrane structures. C) taxic movements of the cell. D) clustering properties of certain rod-shaped bacteria. A MAJOR

More information

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion 1. Simple harmonic motion and the greenhouse effect (a) A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion. 1. 2. (b) In a simple model

More information

MCQs E M WAVES. Physics Without Fear.

MCQs E M WAVES. Physics Without Fear. MCQs E M WAVES Physics Without Fear Electromagnetic Waves At A Glance Ampere s law B. dl = μ 0 I relates magnetic fields due to current sources. Maxwell argued that this law is incomplete as it does not

More information

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz.

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz. Single-Molecule Microscopy Group Nonlinear Optics Physical Optics 21-06-2017 Maria Dienerowitz maria.dienerowitz@med.uni-jena.de www.single-molecule-microscopy.uniklinikum-jena.de Contents Introduction

More information

Microscopy, Staining, and Classification

Microscopy, Staining, and Classification PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 4 Microscopy, Staining, and Classification Microscopy Light Microscopy 1) Bright-field

More information