McFadden Chapter 2. Analysis and Linear Algebra in a Nutshell 18

Size: px
Start display at page:

Download "McFadden Chapter 2. Analysis and Linear Algebra in a Nutshell 18"

Transcription

1 McFadde Chapter. alyss ad Lear lgebra a Nutshell 8 Chapter. NLYSIS ND LINER LGEBR IN NUTSHELL. Sme Elemets f Mathematcal alyss Real umbers are deted by lwer case Greek r Rma umbers; the space f real umbers s the real le, deted by R. The abslute value f a real umber a s deted by a. Cmplex umbers are rarely requred ecmetrcs befre the study f tme seres ad dyamc systems. Fr future referece, a cmplex umber s q====6 wrtte a + bι, where a ad b are real umbers ad ι = e, wth a termed the real part ad ιb termed the magary part. The cmplex umber ca als be wrtte as q====================6 r(cs θ + ι s θ), where r = ea +b s the mdulus f the umber ad θ = cs (a/r). The prpertes f cmplex umbers we wll eed basc ecmetrcs are the rules fr sums, (a+ιb) + (c+ιd) = (a+c)+ι(b+d), ad prducts, (a+ιb) (c+ιd) = (abcd)+ι(ad+bc). Fr sets f bjects ad B, the u B s the set f bjects ether; the tersect B s the set f bjects bth; ad \B s the set f bjects that are t B. The empty set s deted. Set clus s deted B; we say s ctaed B. c ctas t) s deted. The cmplemet f a set (relatve t a set B that famly f sets s dsjt f the tersect f each par s empty. The symbl a meas that a s a member f ; ad a meas that a s t a member f. The symbl meas "there exsts", the symbl meas "fr all", ad the symbl meas "such that". The terms fuct, mappg, ad trasfrmat are used syymusly, ad the tat f: L B wll mea that each bject a the dma s mapped t a bject b =f(a) the rage B. The symbl f(c), termed the mage f C, s used fr the set f all bjects f(a) fr a C. Fr D B, the symbl f (D) detes the

2 McFadde Chapter. alyss ad Lear lgebra a Nutshell 9 verse mage f D: the set f all a such that f(a) D. The fuct f s t f B = f(); t s ete f t s t ad f a,c ad a c mples f(a) f(c). Whe f s ete, the mappg f s a fuct frm B t. If C, defe the fuct : L R by (a) = fr a C, ad (a) = 0 therwse; ths C C C s called the dcatr fuct fr the set C. fuct s termed realvalued f ts rage s R. If s a set f real umbers, the the fmum f, deted f, s the greatest real umber that s less tha r equal t every umber. The supremum f, deted sup, s the least real umber that s greater tha r equal t every umber. typcal applcat has a fuct f:c L R ad = f(c); the sup f(c) s used t dete sup. If the supremum s acheved by a bject d C, s c C f(d) =supf(c), the we wrte f(d) = max f(c) ad d = ar gmax f(c). Ths tat s c C c C c C ambgus whe there s a uque maxmzg argumet; we wll assume that ar gmax f(c) s a select f ay e f the maxmzg argumets. c C defts hld fr f ad m. algus If a s a sequece f real umbers dexed by =,,..., the the sequece s sad t have a lmt (equal t a ) f fr each ε > 0, there exsts such that a a < ε fr all ; the tat fr a lmt s l m a = a r a L a. L The Cauchy crter says that a sequece a has a lmt f ad ly f, fr each ε > 0, there exsts such that a a j < ε fr,j. The tat lmsup a L meas the lmt f the supremum f the sets {a,a +,...}; because t s creasg, t always exsts (but may equal + r ). aalgus deft hlds fr lmf. realvalued fuct ρ(a,b) defed fr pars f bjects a set s a dstace fuct f t s egatve, gves a pstve dstace betwee all

3 McFadde Chapter. alyss ad Lear lgebra a Nutshell 0 dstct pts f, has ρ(a,b) = ρ(b,a), ad satsfes the tragle equalty ρ(a,b) ρ(a,c) + ρ(c,b). set wth a dstace fuct ρ s termed a metrc space. typcal example s the real le R, wth the abslute value f the dfferece f tw umbers take as the dstace betwee them. (ε)eghbrhd f a pt a a metrc space (fr ε > 0) s a set f the frm {b ρ(a,b) <ε}. set C s pe f fr each pt C, sme eghbrhd f ths pt s als ctaed C. set C s clsed f ts cmplemet s pe. The clsure f a set C s the tersect f all clsed sets that cta C. The terr f C s the u f all pe sets ctaed C. cverg f a set C s a famly f pe sets whse u ctas C. The set C s sad t be cmpact f every cverg ctas a fte subfamly whch s als a cverg. famly f sets s sad t have the ftetersect prperty f every fte subfamly has a empty tersect. ther characterzat f a cmpact set s that every famly f clsed subsets wth the fte tersect prperty has a empty tersect. metrc space s separable f there exsts a cutable subset B such that every eghbrhd ctas a member f B. ll f the metrc spaces ecutered ecmetrcs wll be separable. sequece a a separable metrc space s cverget (t a pt a ) f the sequece s evetually ctaed each eghbrhd f a; we wrte a L a r lm a = a t dete a cverget sequece. L set C s cmpact f ad ly f every sequece C has a cverget subsequece (whch cverges t a cluster pt f the rgal sequece). Csder separable metrc spaces ad B, ad a fuct f: L B. The fuct f s ctuus f the verse mage f every pe set s pe. ther characterzat f ctuty s that fr ay sequece satsfyg a L a, e has f(a ) L f(a ); the fuct s sad t be ctuus C f ths prperty

4 McFadde Chapter. alyss ad Lear lgebra a Nutshell hlds fr each a C. Stated ather way, f s ctuus C f fr each ε >0 ad a C, there exsts δ > 0 such that fr each b a δeghbrhd f a, f(b) s a εeghbrhd f f(a). Ctuty f realvalued fucts f ad g s preserved by the perats f abslute value f(a), multplcat f(a) g(a), addt f(a)+g(a), ad maxma r mma max{f(a),g(a)} ad m{f(a),g(a)}. The fuct f s ufrmly ctuus C f fr each ε > 0, there exsts δ > 0 such that fr all a C ad b wth b a δeghbrhd f a, e has f(b) a εeghbrhd f f(a). The dstct betwee ctuty ad ufrm ctuty s that fr the latter a sgle δ > 0 wrks fr all a C. fuct that s ctuus a cmpact set s ufrmly ctuus. Csder a realvalued fuct f R. The dervatve f f at a, deted f (a ), f(a ), r df(a )/da, has the prperty f t exsts that f(b) f(a ) f (a )(ba ) ε(ba ) (ba ), where l m ε(c) = 0. The fuct s cl 0 ctuusly dfferetable at a f f s a ctuus fuct at a. If a fuct s ktmes ctuusly dfferetable a eghbrhd f a pt a, the t has a Taylr s expas k (ba ) ( )(ba ) k s () (k) (k) f(b) = f(a ) + {f (λb+(λ)a )f (a )}, t! k! =0 9 0 () where f detes the th dervatve, λ s a scalar betwee zer ad e, ad b s the eghbrhd. The expetal fuct e a, als wrtte exp(a), ad atural lgarthm lg(a) appear frequetly ecmetrcs. The expetal fuct s defed fr bth real ad cmplex argumets, ad has the prpertes that e a+b = e a e b, e 0 =, ad the Taylr s expas e a = s a t! that s vald fr all a. The trgmetrc fucts =0

5 McFadde Chapter. alyss ad Lear lgebra a Nutshell cs(a) ad s(a) are als defed fr bth real ad cmplex argumets, ad have + s () a s Taylr s expass cs(a) =, ad s(a) = (). a These t ()! t (+)! =0 =0 expass cmbe t shw that e a+ιb = e a (cs(b) + ιs(b)). The lgarthm s defed fr pstve argumets, ad has the prpertes that lg() = 0, lg(a b) = a s lg(a) + lg(b), ad lg(e ) = a. It has a Taylr s expas lg(+a) = a, t = vald fr a <. useful bud lgarthms s that fr a < /3 ad b < /3, Lg(+a+b) a <4 b +3 a.. Vectrs ad Lear Spaces.. ftedmesal lear space s a set wth the prpertes (a) that lear cmbats f pts the set are defed ad are aga the set, ad (b) there s a fte umber f pts the set (a bass) such that every pt the set s a lear cmbat f ths fte umber f pts. The dmes f the space s the mmum umber f pts eeded t frm a bass. pt x a lear space f dmes has a rdate represetat x =(x,x,...,x ), gve a bass fr the space {b,...,b }, where x,...,x are real umbers such that x = x b x b. The pt x s called a vectr, ad x,...,x are called ts cmpets. The tat (x) wll smetmes als be used fr cmpet f a vectr x. I ecmetrcs, we wrk mstly wth ftedmesal real space. Whe ths space s f dmes, t s deted R. Pts ths space are vectrs f real umbers (x,...,x ); ths crrespds t the prevus termlgy wth the bass fr R beg the ut vectrs (,0,..,0), (0,,0,..,0),..., (0,..,0,). Usually, we assume ths represetat wthut beg explct abut the bass fr the space.

6 McFadde Chapter. alyss ad Lear lgebra a Nutshell 3 Hwever, t s wrth tg that the crdate represetat f a vectr depeds the partcular bass chse fr a space. Smetmes ths fact ca be used t chse bases whch vectrs ad trasfrmats have partcularly smple crdate represetats. q=====================================6 The Eucldea rm f a vectr x s NxN = x +...+x. Ths rm ca be used t e defe the dstace betwee vectrs, r eghbrhds f a vectr. Other pssble rms are NxN = x x, NxN = max { x,..., x }, r fr p < +, q e p p p NxN = x x Each rm defes a tplgy the lear space, based p z c eghbrhds f a vectr that are less tha each pstve dstace away. The space R wth the rm NxN ad asscated tplgy s called Eucldea space. The vectr prduct f x ad y R s defed as x y =x y +...+x y. Other tats fr vectr prducts are <x,y> r (whe x ad y are terpreted as rw vectrs) xy r (whe x ad y are terpreted as clum vectrs) x y... lear subspace f a lear space such as R s a subset that has the prperty that all lear cmbats f ts members rema the subset. Examples f lear subspaces are the plae {(a,b,c) b = 0} ad the le {(a,b,c) a = b = c} 3 R. The lear subspace spaed by a set f vectrs {x,...,x J } s the set f all lear cmbats f these vectrs, J L = {xα +...+x α (α,...,α ) R J J J }. The vectrs {x,...,x J } are learly depedet f ad ly f e cat be wrtte as a lear cmbat f the remader. The lear subspace that s spaed by a set f J learly depedet vectrs s sad t be f dmes J. Cversely, each lear space f dmes J ca be represeted as the set f lear cmbats f J

7 McFadde Chapter. alyss ad Lear lgebra a Nutshell 4 learly depedet vectrs, whch are fact a bass fr the subspace. lear subspace f dmes e s a le (thrugh the rg), ad a lear subspace f dmes () s a hyperplae (thrugh the rg). If L s a subspace, the L = {x R x y = 0 fr all y L} s termed the cmplemetary subspace. Subspaces L ad M wth the prperty that x y = 0 fr all y L ad x M are termed rthgal, ad deted L M. The agle θ betwee subspaces L ad M s defed by cs θ = M {x y y L, NyN =,x M, NxN = }. The, the agle betwee rthgal subspaces s π/, ad the agle betwee subspaces that have a zer pt cmm s zer. subspace that s traslated by addg a zer vectr c t all pts the subspace s termed a affe subspace..3. The ccept f a ftedmesal space ca be geeralzed. Fr example, csder, fr p < +, the famly L (R ) f realvalued fucts f R such p p that the tegral NfN = f(x) dx s welldefed ad fte. Ths s a lear p j R space wth rm NfN sce lear cmbats f fucts that satsfy ths p prperty als satsfy (usg cvexty f the rm fuct) ths prperty. Oe ca thk f the fuct f as a vectr L (R ), ad f(x) fr a partcular value f x p as a cmpet f ths vectr. May, but t all, f the prpertes f ftedmesal space exted t fte dmess. I basc ecmetrcs, we wll t eed the ftedmesal geeralzat. It appears mre advaced ecmetrcs, stchastc prcesses tme seres, ad lear ad parametrc prblems.

8 McFadde Chapter. alyss ad Lear lgebra a Nutshell 5 3. Lear Trasfrmats ad Matrces 3.. mappg frm e lear space (ts dma) t ather (ts rage) s a lear trasfrmat f t satsfes (x+z) = (x) + (z) fr ay x ad z the dma. Whe the dma ad rage are ftedmesal lear spaces, a lear trasfrmat ca be represeted as a matrx. Specfcally, a lear trasfrmat frm m R t R ca be represeted by a m array wth elemets a fr m ad, wth y = (x) havg cmpets y = s a x fr m. t j I j= matrx tat, ths s wrtte y = x. matrx s real f all ts elemets are real umbers, cmplex f sme f ts elemets are cmplex umbers. Thrughut these tes, matrces are assumed t be real uless explctly assumed therwse. The set N ={x R x = 0} s termed the ull space f the trasfrmat. The set N f all lear cmbats f the clum vectrs f s termed the clum space f ; t s the cmplemetary subspace t N. If detes a m matrx, the detes ts m traspse (rws becme clums ad vce versa). The detty matrx f dmes s wth e s dw the dagal, zer s elsewhere, ad s deted I, r I f the dmes s clear frm the ctext. permutat matrx s btaed by permutg the clums f a detty matrx. If s a m matrx ad B s a p matrx, the the matrx prduct C = B s f dmes m p wth elemets c k s a b fr m ad k p. t jk j= Fr the matrx prduct t be defed, the umber f clums must equal the umber f rws B (.e., the matrces must be cmmesurate). matrx s square f t has the same umber f rws ad clums. square matrx s symmetrc f =, dagal f all ffdagal elemets are zer, upper (lwer) tragular f

9 McFadde Chapter. alyss ad Lear lgebra a Nutshell 6 all ts elemets belw (abve) the dagal are zer, ad demptet f t s symmetrc ad =. matrx s clum rthrmal f = I; smply rthrmal f t s bth square ad clum rthrmal. Each clum f a m matrx s a vectr m R. The rak f, deted ρ(), s the largest umber f clums that are learly depedet. Frm the deft, s f rak f ad ly f x = 0 s the ly slut t x = 0. matrx f rak s termed sgular; ths matrx has a verse matrx such that = = I f ad ly f s sgular. m 3.. The fllwg tables defe useful matrx ad vectr perats. Table. Basc Operats q===================================================================================================================================================================================================================================================================================================================================================e p p p Name Ntat Deft [] s.matrx Prduct C = B Fr m ad p B,c = ab k t jk j=.scalar Multplcat C = b Fr a scalar b, c = ba 3. Matrx Sum C = +B Fr ad B m, c = a + b 4.Matrx Iverse C = Fr sgular, = I m s 5.Trace c = tr() Fr,c = a t = z ===================================================================================================================================================================================================================================================================================================================================================c $ $ $

10 McFadde Chapter. alyss ad Lear lgebra a Nutshell 7 Table. Operats Elemets q===================================================================================================================================================================================================================================================================================================================================================================e p p p Name Ntat Deft [].Elemet Prduct C =.*B Fr, B m, c = a b.elemet Dvs C=. B Fr, B m, c = a /b 3.Lgcal Cdt C=. B Fr, B m, c = (a b ) [Nte ] 4. Rw Mmum C = vm() Fr m, c = m a [Nte ] j 5. Clum Mmum C = m() Fr m, c = m a [Nte 3] kj k s 6.Cumulatve Sum C = cumsum()fr m,c = a t kj k= z ===================================================================================================================================================================================================================================================================================================================================================================c $ $ $ Table 3. Shapg Operats q===========================================================================================================================================================================================================================================================================================================================================================e p p p Name Ntat Deft [].Krecker Prduct C = B Nte 4.Drect Sum C = B Nte 5 3.dag C = dag(x) C a dagal matrx wth vectr x dw the dagal 4.vec c = vec() vectr c ctas rws f, by rw 5. vech c = vech() vectr c ctas upper tragle f, rw by rw, stacked 6.vecd c = vecd() vectr c ctas dagal f 7.hrztal C = {,B} Partted matrx C = [ B ] ctatat 8.vertcal C = {;B} Partted matrx C = [ B ] ccatat 9.reshape C = rsh(,k) Nte 6 z ===========================================================================================================================================================================================================================================================================================================================================================c $ $ $ NOTES TO TBLES ND 3:. (P) s e f P s true, zer therwse. The cdt s als defed fr the lgcal perats "<", ">", " ", "=", ad " "..C s a m matrx. The perat s als defed fr "max". 3. C s a m matrx, wth all rws the same. The perat s als defed fr "max". 4. ls termed the drect prduct, the Krecker prduct s defed fr a m matrx ad a p q matrx B as the (mp) (q) array

11 McFadde Chapter. alyss ad Lear lgebra a Nutshell 8 q e a B a B... a B a B a B... a B B =. a B a B a B m m m z c 5. The drect sum s defed fr a m matrx ad a p q matrx B by the q e 0 (m+p) (+q) partted array B =. 0 B z c 6. If s m, the k must be a dvsr f m. The perat takes the elemets f rw by rw, ad rewrtes the successve elemets as rws f a matrx C that has k rws ad m /k clums. I addt t the perats the tables abve, there are statstcal perats that ca be perfrmed a matrx whe ts clums are vectrs f bservats varus varables. Dscuss f these perats s pstped utl later. Mst f the perats Tables 3 are avalable as part f the matrx prgrammg laguages ecmetrcs cmputer packages such as SST, TSP, GUSS, r MTLB. The tat these tables s clse t the tat fr the crrespdg matrx cmmads SST ad GUSS The determat f a matrx s deted r det(), ad has the gemetrc terpretat as the vlume f the parallelpped frmed by the clum vectrs f. The matrx s sgular f ad ly f det() 0. mr f a matrx (f rder r) s the determat f a submatrx frmed by strkg ut r rws ad clums. prcpal mr s frmed by strkg ut symmetrc rws ad clums f. leadg prcpal mr (f rder r) s frmed by strkg ut the last r rws ad clums. The mr f a elemet a f s the determat f the submatrx frmed by strkg ut rw ad clum j f. Determats satsfy the recurs relat

12 McFadde Chapter. alyss ad Lear lgebra a Nutshell 9 s +j s det() = () a det( ) = () +j a det( ), t t = j= wth the frst equalty hldg fr ay j ad the secd hldg fr ay. Ths frmula ca be used as a recursve deft f determats, startg frm the result that the determat f a scalar s the scalar. s () +j a det( )/det() = δ, t k kj = where δ kj s e f k = j ad zer therwse. useful related frmula s 3.4. We lst wthut prf a umber f useful elemetary prpertes f matrces: () ( ) =. () If exsts, the ( ) =. (3) If exsts, the ( ) = ( ). (4) (B) =B. (5) If,B are square, sgular, ad cmmesurate, the (B) = B. (6) If s m, the M {m,} ρ() = ρ( ) =ρ( ) = ρ( ). (7) If ad B are cmmesurate, the ρ(b) m(ρ(),ρ(b)). (8) ρ(+b) ρ() + ρ(b). (9) If s, the det() 0 f ad ly f ρ() =. (0) If B ad C are sgular ad cmmesurate wth, the ρ(bc) = ρ(). () If, B are, the ρ(b) ρ() + ρ(b). () det(b) = det() det(b). (3) If c s a scalar ad s, the det(c) = c det() (4) The determat f a matrx s uchaged f a scalar tmes e clum (rw) s added t ather clum (rw).

13 McFadde Chapter. alyss ad Lear lgebra a Nutshell 30 (5) The determat f a dagal r upper tragular matrx s the prduct f the dagal elemets. (6) det( ) = /det(). (7) If s ad B =, the b = () +j det( )/det(). (8) The determat f a rthrmal matrx s + r. (9) If s m ad B s m, the tr(b) = tr(b). (0) tr(i ) =. () tr(+b) = tr() + tr(b). () permutat matrx P s rthrmal; hece, P =P. (3) The verse f a (upper) tragular matrx s (upper) tragular, ad the verse f a dagal matrx D s dagal, wth the recprcals f the dagal elemets f D dw the dagal f D. (4) The prduct f rthrmal matrces s rthrmal, ad the prduct f permutat matrces s a permutat matrx. 4. Egevalues ad Egevectrs egevalue f a matrx s a scalar λ such that x = λx fr sme vectr x 0. The vectr x s called a (rght) egevectr. The cdt (λi)x = 0 asscated wth a egevalue mples λi smgular, ad hece det(λi) = 0. The determetal equat defes a plymal λ f rder ; the rts f ths plymal are the egevalues. Fr each egevalue λ, the cdt that λi s less tha rak mples the exstece f e r mre learly depedet egevectrs; the umber equals the multplcty f the rt λ. The fllwg basc prpertes f egevalues ad egevectrs are stated wthut prf:

14 McFadde Chapter. alyss ad Lear lgebra a Nutshell 3 () If s real ad symmetrc, the ts egevalues ad egevectrs geeral are cmplex. If s real ad symmetrc, the ts egevalues ad egevectrs are real. () The umber f zer egevalues f equals ts rak ρ(). (3) If λ s a egevalue f, the λ k s a egevalue f k, ad /λ s a egevalue f (f the verse exsts). (4) If s real ad symmetrc, ad Λ s a dagal matrx wth the rts f the plymal det(λi) alg the dagal, the there exsts a rthrmal matrx C (whse clums are egevectrs f ) such that C C = I ad C = CΛ, ad hece C C = Λ ad CΛC =. The trasfrmat C s sad t dagalze. (5) If s real ad symmetrc, there exsts a sgular cmplex matrx Q ad a upper tragular cmplex matrx T wth the egevalues f ts dagal such that Q Q = T. (6) real ad symmetrc mples tr() equals the sum f the egevalues f. [Sce = CΛC, tr() = tr(cλc ) = tr(c CΛ) = tr(λ) by.3.9.] (7) If,..., p are real ad symmetrc, the there exsts C rthrmal such that C C, C C,...,C p C are all dagal f ad ly f j = j fr all ad j. Results (4) ad (5) cmbed wth the result.3. that the determat f a matrx prduct s the prduct f the determats f the matrces, mples that the determat f a matrx s the prduct f ts egevalues. The trasfrmats (4) ad (5) are called smlarty trasfrmats, ad ca be terpreted as represetats f the trasfrmat whe the bass f the dma s trasfrmed by C (r Q) ad the bass f the rage s trasfrmed by C (r Q ). These trasfrmats are used extesvely ecmetrc thery.

15 McFadde Chapter. alyss ad Lear lgebra a Nutshell 3 5. Partted Matrces It s smetmes useful t partt a matrx t submatrces, q e =, z c where s m, s m, sm, sm, sm, ad m +m = m ad + =. Matrx prducts ca be wrtte fr partted matrces, applyg the usual algrthm t the partt blcks, prvded the blcks are cmmesurate. Fr q e B example, f B s p ad s partted B = B where B s p ad B s p, z c e has q eq e q e B B + B B = =. B B + B z cz c z c Partted matrces have the fllwg elemetary prpertes: () square ad square ad sgular mples det() = det( ) det( ). () ad square ad sgular mples q e + C C = C C z c wth C =.

16 McFadde Chapter. alyss ad Lear lgebra a Nutshell Quadratc Frms The scalar fuct Q(x,) = x x, where s a matrx ad x s a vectr, s termed a quadratc frm; we call x the wgs ad the ceter f the quadratc frm. The value f a quadratc frm s uchaged f s replaced by ts symmetrzed vers (+ )/. Therefre, wll be assumed symmetrc fr the dscuss f quadratc frms. quadratc frm Q(x,) may fall t e f the classes the table belw: q============================================================================================================================================================================================e p Class Defg Cdt [] Pstve Defte x 0 Q(x,) > 0 Pstve Semdefte x 0 Q(x,) 0 Negatve Defte x 0 Q(x,) < 0 Negatve Semdeftex 0 Q(x,) 0 z ============================================================================================================================================================================================c $ The basc prpertes f quadratc frms are lsted belw: () If B s m ad s f rak ρ(b) = r, the B B ad BB are bth pstve semdefte; ad f r = m, the B B s pstve defte. () If s symmetrc ad pstve semdefte (pstve defte), the the egevalues f are egatve (pstve). Smlarly, f s symmetrc ad egatve semdefte (egatve defte), the the egevalues f are pstve (egatve). (3) Every symmetrc pstve semdefte matrx has a symmetrc pstve / semdefte square rt [By.4.4, C C = D fr sme C rthrmal ad D a dagal matrx wth the egatve egevalues dw the dagal. The, / / / = CDC ad = CD C wth D a dagal matrx f the pstve square rts f the dagal f D.] (4) If s pstve defte, the s pstve defte.

17 McFadde Chapter. alyss ad Lear lgebra a Nutshell 34 (5) B pstve defte ad B pstve semdefte mply B pstve semdefte. (6) The fllwg cdts are equvalet: () s pstve defte () The prcpal mrs f are pstve () The leadg prcpal mrs f are pstve. 7. The LDU ad Chlesky Factrzats f a Matrx matrx has a LDU factrzat f t ca be wrtte = LDU, where D s a dagal matrx, L s a lwer tragular matrx, ad U s a upper tragular matrx. Ths factrzat s useful fr cmputat f verses, as tragular matrces are easly verted by recurs. Therem. Fr each matrx, = PLDUQ, where P ad Q are permutat matrces, L s a lwer tragular matrx ad U s a upper tragular matrx, each wth es the dagal, ad D s a dagal matrx. If the leadg prcpal mrs f are all zer, the P ad Q ca be take t be detty matrces. Prf: Frst assume that the leadg prcpal mrs f are all zer. We gve a recursve cstruct f the requred L ad U. Suppse the result has bee establshed fr matrces up t rder. The, wrte the requred decmpst = LDU fr a matrx partted frm q e q eq eq e L 0 D 0 U U =, L 0 D 0 z c z cz cz c where, L, D, ad U, are () (), L s (), U s (), ad ad D are. ssume that L, D, ad U have bee defed s that =

18 McFadde Chapter. alyss ad Lear lgebra a Nutshell 35 L D U, ad that L ad U als exst ad have bee cmputed. Let S = L ad T = U, ad partt S ad T cmmesurately wth L ad U. The, the remag elemets satsfy the equats = L D U L = U D T D = L D U U = D L D S =L D U +D D = T D S = S = L S T = T U where det() = det( ) det( ) 0 mples D 0. Sce the decmpst s trval fr =, ths recurs establshes the result, ad furthermre gves the tragular matrces S ad T frm the same recurs that ca be multpled t gve = TD S. Nw assume that s f rak r <, ad that the frst r clums f are learly depedet, wth zer leadg prcpal mrs up t rder r. Partt q e q eq e q e L 0 D 0 U U =, L I I z c z cz c z c where s r r ad the remag blcks are cmmesurate. The, U = D S ad L = T D, ad e must satsfy = L D U = T D S =. But the rak cdt requres that the last

19 McFadde Chapter. alyss ad Lear lgebra a Nutshell 36 q e r clums ca be wrtte as lear cmbats f the frst r clums, r z c q e = C fr sme r (r) matrx C. But = C mples C = ad hece z c = C = as requred. Fally, csder ay real matrx f rak r. By clum permutats, the frst r clums ca be made learly depedet. The, by rw permutats, the frst r rws f these r clums ca be made learly depedet. Repeat ths prcess recursvely the remag rthwest prcpal submatrces t bta prducts f permutat matrces that gve zer leadg prcpal mrs up t rder r. Ths defes P ad Q, ad cmpletes the prf f the therem. p Crllary. If s symmetrc, the L = U. Crllary. (LU Factrzat) If has zer leadg prcpal mrs, the ca be wrtte = LU, ~ where U ~ = DU s upper tragular wth a dagal ccdg wth that f D. Crllary 3. (Chlesky Factrzat) If s symmetrc ad pstve defte, the ca be wrtte = U U, ~~ where U ~ s upper tragular wth a pstve dagal. Crllary 4. symmetrc pstve semdefte mples = PU UP, ~~ wth U ~ upper tragular wth a egatve dagal, P a permutat matrx. Crllary 5. If s m wth m, the there exsts a factrzat = PLDUQ, wth D dagal, P a m m permutat matrx, Q a permutat matrx, U a upper tragular matrx wth es the dagal, ad L a m lwer q e L tragular matrx wth es the dagal (.e., L has the frm L = L wth L z c

20 McFadde Chapter. alyss ad Lear lgebra a Nutshell 37 ad lwer tragular wth es the dagal, ad L (m). Further, f ρ() =, the ( ) = QUD(L L) L P. T shw Crllary 3, te that a pstve defte matrx has pstve leadg prcpal mrs, ad te frm the prf f the therem that ths mples that the ~ / / dagal f D s pstve. Take U = D U, where D s the pstve square rt. The same cstruct appled t the LDU factrzat f after permutat gves Crllary 4. T shw Crllary 5, te frst that the rws f ca be permuted s that the q e frst rws are f maxmum rak ρ(). Suppse = s f ths frm, ad apply z c the therem t bta = P L DUQ. The rak cdt mples that = F fr sme (m) array F. The, = L DUQ, wth L = FP L, s that q eq e P 0 L = 0 I L DUQ. m z cz c T cmplete the prf, apply a left permutat f ecessary t ud the tal rw permutat f. mplcat f the last result Crllary 5 s that f the system f equats x = y wth m f rak has a slut, the the slut s gve by x = ( ) y = QU D (L L) L P y. The recurs the prf f the therem s called Crut s algrthm, ad s the methd fr matrx vers used may cmputer prgrams. It s uecessary t d the permutats advace f the factrzats; they ca als be carred ut recursvely, brgg rws ( what s termed a pvt) t make the successve elemets f D as large magtude as pssble. Ths pvt step s mprtat fr umercal accuracy.

21 McFadde Chapter. alyss ad Lear lgebra a Nutshell The Sgular Value Decmpst f a Matrx factrzat that s useful as a tl fr fdg the egevalues ad egevectrs f a symmetrc matrx, ad fr calculat f verses f mmet matrces f data wth hgh multcllearty, s the sgular value decmpst (SVD): Every real m matrx f rak r ca be decmpsed t a prduct = UDV, where D s a r r dagal matrx wth pstve creasg elemets dw the dagal, U s m r, V s r, ad U ad V are clumrthrmal;.e., U U =I r = V V. T prve that the SVD s pssble, te frst that the m m matrx s symmetrc ad pstve semdefte. The, there exsts a m m rthrmal matrx W, partted W = [W W ] wth W f dmes m r, such that W ( )W = Λ s dagal wth pstve, creasg dagal elemets, ad W ( )W = 0, mplyg W = 0. Defe D frm Λ by replacg the dagal elemets f Λ by ther pstve square rts. Nte that W W=I=WW W W +W W. Defe U = W ad V =D U. The, U U = I r ad V V =D U UD = D ΛD = I r. Further, = (I m W W ) = UU = UDV. Ths establshes the decmpst. If s symmetrc, the U s the array f egevectrs f crrespdg t the zer rts, s that U = UD, wth D the r r dagal matrx wth the zer egevalues decedg magtude dw the dagal. I ths case, V = UD = UD D. Sce the elemets f D ad D are detcal except pssbly fr sg, the clums f U ad V are ether equal (fr pstve rts) r reversed sg (fr egatve rts). The, the SVD f a square symmetrc sgular matrx prvdes the peces ecessary t wrte dw ts egevalues ad egevectrs. Fr a pstve defte matrx, the cect s drect.

22 McFadde Chapter. alyss ad Lear lgebra a Nutshell 39 Whe the m matrx s f rak, s that s symmetrc ad pstve defte, the SVD prvdes a methd f calculatg ( ) that s partcularly umercally accurate: Substtutg the frm = UDV, e btas ( ) = VD V. / Oe als btas cveet frms fr a square rt f ad ts verse, ( ) / = VDV ad ( ) = VD V. The umercal accuracy f the SVD s mst advatageus whe m s large ad sme f the rws f are early learly depedet. The, rudff errrs the matrx prduct ca lead t qute accurate results whe a matrx verse f s cmputed drectly. The SVD extracts the requred frmat frm befre the rudff errrs are trduced. Cmputer prgrams fr the Sgular Value Decmpst ca be fud Press et al, Numercal Recpes, Cambrdge Uversty Press, Prjects ad Idemptet Matrces Let x be a vectr R, expressed as a array, ad let L be a subspace f ~ R. The prject f x the subspace L s the pt y = ar gm NzxN that z L mmzes the Eucldea dstace betwee x ad L. Suppse L s f dmes k ad {b,...,b } s a bass fr L, ad let B be the k matrx whse clums are these k k bass vectrs. The L = {Bw w R }. The prject f x L ca the be calculated by slvg m w (xbw) (xbw). Oe ca shw by wrtg ths ut ad usg calculus that the mmum ccurs at w ~ = (B B) B x ad that the pt L clsest t xs ~ y = Bw ~ B(B B) B x. T verfy that ~ y achves the mmum, te that (xy) B ~ = x [IB(B B) B ]B = 0;.e., xy ~ s rthgal t L. Let c = w w, ~ ad rewrte the crter ~ ~ (xbw) (xbw) = (xbwbc) (xbwbc)

23 McFadde Chapter. alyss ad Lear lgebra a Nutshell 40 = (xbw) (xbw) ~ ~ + c B Bc (xbw) Bc ~ = (xbw) (xbw) ~ ~ + c B Bc (xbw) (xbw). ~ ~ The lear trasfrmat = B(B B) B s termed a prject matrx, ad s smetmes wrtte P B r P t emphasze that t s a trasfrmat that prjects L vectrs R t the subspace L r L B (.e., the subspace spaed by B). It has the prpertes that t s symmetrc wth =, s that t s demptet. Gemetrcally, ths says that ce a vectr s prjected t a subspace, tha repeated applcats f the same prject leave t uchaged. Cversely, every demptet matrx ca be terpreted as a prject matrx t sme subspace. mprtat ad useful prperty f prjects s that they deped ly the subspace, ad t the partcular chce f bass fr ths subspace. Thus, f B ad C are matrces that spa the cmm kdmesal subspace L, the P B = P C = P. L Further, t s rrelevat whether the clums f B r C are all learly depedet, as e ca smply dscard learly depedet clums befre frmg the prject matrx = B(B B) B. Sme f the prpertes f a demptet matrx are lsted belw: () The egevalues f are ether zer r e. () The rak f s the dmes f the lear space t whch the prject s made, ad ρ() = tr(). (3) The matrces I, 0, ad I are demptet. (4) If B s a rthrmal matrx, the B B s demptet. (5) If ρ() = r, the there exsts a r matrx B f rak r such that = B(B B) B, ad thus = P B. (6), B demptet mples B = 0 f ad ly f +B demptet. (7), B demptet ad B = B mples B demptet.

24 McFadde Chapter. alyss ad Lear lgebra a Nutshell 4 (8), B demptet mples B demptet f ad ly f B = B. Suppse X s r f rak r ad Z s s f rak s, ad csder the subspaces L X ad L Z ad the prjects = P X = X(X X) X ad B = P Z = Z(Z Z) Z. If X ad Z are clumrthgal (.e., X Z = 0), the B = 0 ad (6) mples that +B s the prject t L. If X ctas all the clums f Z, s that L L [X Z] Z X, the a prject e stage t L s equvalet t a prject t L Z X fllwed a secd stage by a further prject t L Z, s that B = B, ad a prject t L s left varat by a further prject t L Z X, s that B = B. Frm (8), ths mples that B s demptet; ths s the prject t the subspace f L X that x s rthgal t L ;.e., the subspace L L. Every vectr w R Z X Z has a uque x decmpst w = x + z + y, where x = Bw L, z = (B)w = (IB)w L L X X Z, ad y x (I)w L X. The prjects B ad I are rthgal, mplyg that I+B s als a x prject, t L L X Z. drect matrx mapulat gves a alteratve demstrat f (8). Suppse X = [Z W] s a partted matrx where Z s s, W s t, ad X s f rak r = +t <. Defe = X(X X) X ad B = Z(Z Z) Z. The q eq e q e Z Z Z W Z I B = [Z W] Z(Z Z) Z =[ZW] W Z (Z Z) Z = Z(Z Z) Z =B, W W W 0 z c z c z c s that (8) mples B s demptet, thus als I+B. 0. Geeralzed Iverses k m matrx s a MrePerse geeralzed verse f a m k matrx f t has three prpertes: () =, () =, () ad are symmetrc.

25 McFadde Chapter. alyss ad Lear lgebra a Nutshell 4 There are ther geeralzed verse defts that have sme, but t all, f these prpertes. Results geeralzed verses, partcularly fr partted r brdered matrces, ca be fud R.M. Prgle ad. Rayer Geeralzed Iverse Matrces, Grff, 97. Let r dete the rak f. Recall that has a sgular value decmpst = UDV, where D s a r r dagal matrx wth a pstve creasg umbers dw the dagal, U s k r ad clumrthrmal, ad V s m r ad clumrthrmal. The MrePerse geeralzed verse f s the the matrx = VD U. It s easy t check that ths deft satsfes prpertes ()() abve, as well as the fllwg prpertes: () = f s square ad sgular. () ad are demptet, ad are prject matrces, respectvely, t the subspace f m k R spaed by the clums f ad t the subspace f R spaed by the rws f. (3) The system f equats x = y, wth m k, has a slut f ad ly f y = y (.e., y s the lear subspace spaed by the clums f ). If t has a slut, the the affe lear subspace f all sluts s k k {x R x = y + [I ]z fr all z R }. slut s uque f ad ly f = I (.e., s f rak k.) (4) If s square, symmetrc, ad pstve semdefte, the there exsts Q pstve defte, R demptet, such that = QRQ ad = Q RQ. (5) If s demptet, the =. (6) If = BCB wth B sgular, the = (B ) C B.

26 McFadde Chapter. alyss ad Lear lgebra a Nutshell 43 (7) If s k k ad pstve semdefte wth rak r, the there exsts a k r clumrthrmal matrx U such that U U = I r, UU = D s a dagal matrx wth a pstve dagal, = UDU, ad = UD U. (8) If s square, symmetrc, ad pstve semdefte, the t has a / symmetrc square rt B =, ad = B B. (9) ( ) = = ( ) =(). (0) ( ) = ( ) () ( ) = ( ) s s () If = wth = 0 ad = 0 fr j, the =. t j j t Mst f these results are easy csequeces f the sgular value decmpst, r ca be checked by verfyg that cdts ()() hld. T prve (4), let W = [U V] be a rthrmal matrx dagalzg. The, U U = D, a dagal matrx f q e q e / I 0 pstve egevalues, ad V = 0. Defe Q = W D 0 W ad R = Wr W z c z c. Krecker Prducts If s a m matrx ad B s a p q matrx, the the Krecker (drect) prduct f ad B s the (mp) (q) partted array q e a B a B... a B a B a B... a B B =. a B a B a B m m m z c I geeral, B B. The Krecker prduct has the fllwg prpertes: () Fr a scalar c, (c) B = (cb) = c( B). () ( B) C = (B C).

27 McFadde Chapter. alyss ad Lear lgebra a Nutshell 44 (3) ( B) =( ) (B ). (4) tr( B) = (tr()) (tr(b)). (5) If the matrx prducts C ad BF are defed, the ( B)(C F) = (C) (BF). (6) If ad B are square ad sgular, the ( B) = B. (7) If ad B are rthrmal, the B s rthrmal. (8) If ad B are pstve semdefte, the B s pstve semdefte. (9) If s k k ad B s, the det( B) = det() det(b) k. (0) ρ( B) = ρ() ρ(b). () (+B) C = C +B C.. Shapg Operats The mst cmm perats used t reshape vectrs ad matrces are () C = dag(x) whch creates a dagal matrx wth the elemets f the vectr x dw the dagal; () c = vec() whch creates a vectr by stackg the clums f ; (3) c = vech() whch creates a vectr by stackg the prprts f the clums f that are the upper tragle f the matrx; ad (4) c = vecd() whch creates a vectr ctag the dagal f. There are a few rules that ca be used t mapulate these perats: () If x ad y are cmmesurate vectrs, dag(x+y) = dag(x) + dag(y). () vec(+b) = vec() + vec(b). (3) If s m k ad B s k, the vec(b) = (I )vec(b) = (B I m )vec(). (4) If s m k, B s k, C s p, the vec(bc) = (I p (B))vec(C) = (C )vec(b) = ((C B ) I m )vec().

28 McFadde Chapter. alyss ad Lear lgebra a Nutshell 45 (5) If s, the vech() s f legth (+)/. (6) vecd(dag(x)) = x ad dag(vecd()) =. 3. Vectr ad Matrx Dervatves The dervatves f fucts wth respect t the elemets f vectrs r matrces ca smetmes be expressed a cveet matrx frm. Frst, a scalar fuct f a vectr f varables, f(x), has partal dervatves that are usually wrtte as the arrays q e q e df/dx df /dx df /dx dx... df /dx dx df/dx df/dx = df /dx dx df /dx... df /dx dx, df /dxdx =. df/dx df /dx dx df /dx dx... df /dx z c z c Other cmm tat s f (x) r f(x) fr the vectr f frst dervatves, ad x x f (x) r f(x) fr the matrx f secd dervatves. Smetmes, the vectr f xx x frst dervatves wll be terpreted as a rw vectr rather tha a clum vectr. Sme examples f scalar fucts f a vectr are the lear fuct f(x) = a x, whch has f = a, ad the quadratc fuct f(x) = x x, whch has f = x. x x k Whe f s a clum vectr f scalar fucts, f(x) = [f (x) f (x)... f (x)], the the array f frst partal dervatves s called the Jacbea matrx ad s wrtte q e df /dx df /dx... df /dx J(x) = df /dx df /dx... df /dx. k k k df /dx df /dx... df /dx z c

29 McFadde Chapter. alyss ad Lear lgebra a Nutshell 46 Whe calculatg multvarate tegrals f the frm g(y)dy, where y R, R, j ad g s a scalar r vectr fuct f y, e may wat t make a lear ete trasfrmat f varables y = f(x). I terms f the trasfrmed varables, the tegral becmes g(y)dy = g(f(x)) det(j(x)) dx, j j f () where f () s the set f x vectrs that map t, ad the Jacbea matrx s square ad sgular fr wellbehaved ete trasfrmats. The tut fr the presece f the determat f the Jacbea the trasfrmed tegral s that "dy" s the vlum f a small rectagle yspace, ad because determats gve the vlum f the parallelpped frmed by the clums f a lear trasfrmat, det(j(x))dx gves the vlum (wth a plus r mus sg) f the mage xspace f the "dy" rectagle yspace. It s useful t defe the dervatve f a scalar fuct wth respect t a matrx as a array f cmmesurate dmess. Csder the blear frm f() = x y, where x s, y s m, ad s m. By cllectg the dvdual terms df/d = xy, e btas the result df/d = xy. ther example fr a matrx s f() = tr(), whch has df/d = I. There are a few ther dervatves that are partcularly useful fr statstcal applcats. I these frmulas, s a square sgular matrx. We d t requre that be symmetrc, ad the dervatves d t mpse symmetry. Oe wll stll get vald calculats vlvg dervatves whe these expresss are evaluated at matrces that hape t be symmetrc. There

30 McFadde Chapter. alyss ad Lear lgebra a Nutshell 47 are alteratve, ad smewhat mre cmplcated, dervatve frmulas that hld whe symmetry s mpsed. Fr aalyss, t s uecessary t trduce ths cmplcat. () If det() > 0, the dlg(det())/d =. () If s sgular, the d(x y)/d = xy. (3) If = TT, wth T square ad sgular, the d(x y)/dt =xy T. s We prve the frmulas rder. Recall that det() = () +k a det( k ), where k t k k s the mr f a. The, ddet()/d = () +j det( k ). Frm.3.7, the elemet f s () +j det( )/det(). Ths establshes (). T shw (), frst apply the cha rule t the detty I t get + d /d 0, where detes a matrx wth a e rw ad clum j, zers elsewhere. The, dx y/d = x y = ( x) ( y) j. Ths establshes (). T shw (3), frst te that d /dt = δ T +δ T. Cmbe ths wth () t get rs r js jr s ss dx y/dt = ( x) ( y) (δ T +δ T ) rs tt j r js jr s j s s = ( x) ( y)t + ( x)( y) T t r j js t r s j = ( xy T). rs 4. Updatg ad Backdatg Matrx Operats Ofte statstcal applcats, e eeds t mdfy the calculat f a matrx verse r ther matrx perat t accmdate the addt f data, r

31 McFadde Chapter. alyss ad Lear lgebra a Nutshell 48 delet f data btstrap methds. It s cveet t have quck methds fr these calculats. Sme f the useful frmulas are gve belw: () If s ad sgular, ad has bee calculated, ad f B ad C are arrays that are k f rak k, the (+BC ) = B(I +C B) C, k prvded I k +C B s sgular. requred the updatg. If k =, the matrx vers s () If s m wth m ad ρ() =, s that t has a LDU factrzat = PLDUQ wth D dagal, P ad Q permutat matrces, L lwer q e tragular, U upper tragular, the the array, wth B k, has the LDU B z c q e q eq e P 0L factrzat = 0 I DUQ, where C = BQU D. B kc z c z cz c q e ~ (3) Suppse s m f rak, ad B = ( ) y. Suppse = wth C k, C z c q e ~ y y= ~ ~ ~ ~ ~ wth w k, ad B = ( ) y. The, w z c BB ~ = ( ) C [I +C( ) C ] k (wcb) ~~ ~~ =( ) C [I C( ) C ] (wcb). ~ k Oe ca verfy () by multplcat. T shw (), use Crllary 5 f Therem 5.. T shw (3), apply () t ~~ = +C C, r t = ~~ C C, ad use ~~ y = y + Cw.

32 McFadde Chapter. alyss ad Lear lgebra a Nutshell 49 NOTES ND COMMENTS The basc results f lear algebra, cludg the results stated wthut prf ths summary, ca be fud stadard lear algebra texts, such as G. Hadley (96) Lear lgebra, ddswesley r F. Graybll (983) Matrces wth pplcats Statstcs, Wadswrth. The rgazat f ths summary s based the admrable sypss f matrx thery the frst chapter f F. Graybll (96) Itrduct t Lear Statstcal Mdels, McGrawHll. Fr cmputats vlvg matrces, W. Press et al (986) Numercal Recpes, Cambrdge Uv. Press, prvdes a gd dscuss f algrthms ad accmpayg cmputer cde. Fr umercal ssues statstcal cmputat, see R.Thsted (988) Elemets f Statstcal Cmputg, Chapma ad Hall.

The Simple Linear Regression Model: Theory

The Simple Linear Regression Model: Theory Chapter 3 The mple Lear Regress Mdel: Ther 3. The mdel 3.. The data bservats respse varable eplaatr varable : : Plttg the data.. Fgure 3.: Dsplag the cable data csdered b Che at al (993). There are 79

More information

Basics of heteroskedasticity

Basics of heteroskedasticity Sect 8 Heterskedastcty ascs f heterskedastcty We have assumed up t w ( ur SR ad MR assumpts) that the varace f the errr term was cstat acrss bservats Ths s urealstc may r mst ecmetrc applcats, especally

More information

PY3101 Optics. Learning objectives. Wave propagation in anisotropic media Poynting walk-off The index ellipsoid Birefringence. The Index Ellipsoid

PY3101 Optics. Learning objectives. Wave propagation in anisotropic media Poynting walk-off The index ellipsoid Birefringence. The Index Ellipsoid The Ide Ellpsd M.P. Vaugha Learg bjectves Wave prpagat astrpc meda Ptg walk-ff The de ellpsd Brefrgece 1 Wave prpagat astrpc meda The wave equat Relatve permttvt I E. Assumg free charges r currets E. Substtutg

More information

6 Levi-Civita Connection on a Surface and Associated Covariant Derivative

6 Levi-Civita Connection on a Surface and Associated Covariant Derivative 6 Lev-Cvta Cect a Surface ad Asscated Cvarat Dervatve 6. Sect Overvew ad Summary A summary f ths sect s as fllws. Let S be a surface R 3 parameterzed by the crdate fucts q (u )(...3...2) terms f the (geeralzed

More information

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques Data Mg: cepts ad Techques 3 rd ed. hapter 10 1 Evaluat f lusterg lusterg evaluat assesses the feasblty f clusterg aalyss a data set ad the qualty f the results geerated by a clusterg methd. Three mar

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

MATHEMATICAL PROGRAMMING-BASED PERTURBATION ANALYSIS FOR GI/G/1 QUEUES. He Zhang Wai Kin (Victor) Chan

MATHEMATICAL PROGRAMMING-BASED PERTURBATION ANALYSIS FOR GI/G/1 QUEUES. He Zhang Wai Kin (Victor) Chan Prceedgs f the 007 Wter Smulat Cferece S. G. Heders,. ller, M.-H. Hseh, J. Shrtle, J. D. ew, ad R. R. art, eds. MAHEMAICAL PROGRAMMING-ASED PERURAION ANALYSIS FOR GI/G/ QUEUES He Zhag Wa K (Vctr Cha Departmet

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Goal of the Lecture. Lecture Structure. FWF 410: Analysis of Habitat Data I: Definitions and Descriptive Statistics

Goal of the Lecture. Lecture Structure. FWF 410: Analysis of Habitat Data I: Definitions and Descriptive Statistics FWF : Aalyss f Habtat Data I: Defts ad Descrptve tatstcs Number f Cveys A A B Bur Dsk Bur/Dsk Habtat Treatmet Matthew J. Gray, Ph.D. Cllege f Agrcultural ceces ad Natural Resurces Uversty f Teessee-Kvlle

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

Introduction to Matrices and Matrix Approach to Simple Linear Regression

Introduction to Matrices and Matrix Approach to Simple Linear Regression Itroducto to Matrces ad Matrx Approach to Smple Lear Regresso Matrces Defto: A matrx s a rectagular array of umbers or symbolc elemets I may applcatos, the rows of a matrx wll represet dvduals cases (people,

More information

n -dimensional vectors follow naturally from the one

n -dimensional vectors follow naturally from the one B. Vectors ad sets B. Vectors Ecoomsts study ecoomc pheomea by buldg hghly stylzed models. Uderstadg ad makg use of almost all such models requres a hgh comfort level wth some key mathematcal sklls. I

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Lattices. Mathematical background

Lattices. Mathematical background Lattces Mathematcal backgroud Lattces : -dmesoal Eucldea space. That s, { T x } x x = (,, ) :,. T T If x= ( x,, x), y = ( y,, y), the xy, = xy (er product of xad y) x = /2 xx, (Eucldea legth or orm of

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Lecture 2. Basic Semiconductor Physics

Lecture 2. Basic Semiconductor Physics Lecture Basc Semcductr Physcs I ths lecture yu wll lear: What are semcductrs? Basc crystal structure f semcductrs Electrs ad hles semcductrs Itrsc semcductrs Extrsc semcductrs -ded ad -ded semcductrs Semcductrs

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

What regression does. so β. β β β

What regression does. so β. β β β Sect Smple Regress What regress des Relatshp Ofte ecmcs we beleve that there s a (perhaps causal) relatshp betwee tw varables Usually mre tha tw, but that s deferred t ather day Frm Is the relatshp lear?

More information

The fuzzy decision of transformer economic operation

The fuzzy decision of transformer economic operation The fuzzy decs f trasfrmer ecmc perat WENJUN ZHNG, HOZHONG CHENG, HUGNG XIONG, DEXING JI Departmet f Electrcal Egeerg hagha Jatg Uversty 954 Huasha Rad, 3 hagha P. R. CHIN bstract: - Ths paper presets

More information

MECH6661 lectures 10/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University

MECH6661 lectures 10/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University Outle Revew ublattce Mdel Example ublattce Mdel Thermdyamc Mdelg Itrduct Example lly Desg Terary Phase Dagrams Gbbs Phase Rule Thermdyamcs f Multcmpet ystems Mech. Eg. Dept. - crda Uversty Revew: ublattce

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

On the construction of symmetric nonnegative matrix with prescribed Ritz values

On the construction of symmetric nonnegative matrix with prescribed Ritz values Joural of Lear ad Topologcal Algebra Vol. 3, No., 14, 61-66 O the costructo of symmetrc oegatve matrx wth prescrbed Rtz values A. M. Nazar a, E. Afshar b a Departmet of Mathematcs, Arak Uversty, P.O. Box

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions:

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions: Smplex ad Rectagle Elemets Mult-dex Notato = (,..., ), o-egatve tegers = = β = ( β,..., β ) the + β = ( + β,..., + β ) + x = x x x x = x x β β + D = D = D D x x x β β Defto: The set P of polyomals of degree

More information

CHAPTER 5 ENTROPY GENERATION Instructor: Prof. Dr. Uğur Atikol

CHAPTER 5 ENTROPY GENERATION Instructor: Prof. Dr. Uğur Atikol CAPER 5 ENROPY GENERAION Istructr: Pr. Dr. Uğur Atkl Chapter 5 Etrpy Geerat (Exergy Destruct Outle st Avalable rk Cycles eat ege cycles Rergerat cycles eat pump cycles Nlw Prcesses teady-flw Prcesses Exergy

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Descriptive Statistics

Descriptive Statistics Page Techcal Math II Descrptve Statstcs Descrptve Statstcs Descrptve statstcs s the body of methods used to represet ad summarze sets of data. A descrpto of how a set of measuremets (for eample, people

More information

ON THE LAGRANGIAN RHEONOMIC MECHANICAL SYSTEMS

ON THE LAGRANGIAN RHEONOMIC MECHANICAL SYSTEMS THE PUBISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Seres A, OF THE ROMANIAN ACADEMY Vlume 1, Number 1/9, pp. ON THE AGRANGIAN RHEONOMIC MECHANICA SYSTEMS Radu MIRON*, Tmak KAWAGUCHI**, Hrak KAWAGUCHI***

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD Last week - egedecomposto We wat to lear how the matrx A works: A 2 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much.

More information

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations. III- G. Bref evew of Grad Orthogoalty Theorem ad mpact o epresetatos ( ) GOT: h [ () m ] [ () m ] δδ δmm ll GOT puts great restrcto o form of rreducble represetato also o umber: l h umber of rreducble

More information

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD Sgular Value Decomosto Lear Algera (3) m Cootes Ay m x matrx wth m ca e decomosed as follows Dagoal matrx A UWV m x x Orthogoal colums U U I w1 0 0 w W M M 0 0 x Orthoormal (Pure rotato) VV V V L 0 L 0

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific CIS 54 - Iterpolato Roger Crawfs Basc Scearo We are able to prod some fucto, but do ot kow what t really s. Ths gves us a lst of data pots: [x,f ] f(x) f f + x x + August 2, 25 OSU/CIS 54 3 Taylor s Seres

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Kernels. Nuno Vasconcelos ECE Department, UCSD

Kernels. Nuno Vasconcelos ECE Department, UCSD Kerels Nu Vasels ECE Departmet UCSD Prpal mpet aalyss Dmesalty reut: Last tme we saw that whe the ata lves a subspae t s best t esg ur learg algrthms ths subspae D subspae 3D y φ φ λ λ y ths a be e by

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Byeong-Joo Lee

Byeong-Joo Lee yeg-j Lee OSECH - MSE calphad@pstech.ac.r yeg-j Lee www.pstech.ac.r/~calphad Fudametals Mcrscpc vs. Macrscpc Vew t State fuct vs. rcess varable Frst Law f hermdyamcs Specal prcesses 1. Cstat-Vlume rcess:

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

Dr. Shalabh. Indian Institute of Technology Kanpur

Dr. Shalabh. Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Expermets-I MODULE -I LECTURE - SOME RESULTS ON LINEAR ALGEBRA, MATRIX THEORY AND DISTRIBUTIONS Dr. Shalabh Departmet t of Mathematcs t ad Statstcs t t Ida Isttute of Techology

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I

MMJ 1113 FINITE ELEMENT METHOD Introduction to PART I MMJ FINITE EEMENT METHOD Cotut requremets Assume that the fuctos appearg uder the tegral the elemet equatos cota up to (r) th order To esure covergece N must satsf Compatblt requremet the fuctos must have

More information

Intermediate Division Solutions

Intermediate Division Solutions Itermediate Divisi Slutis 1. Cmpute the largest 4-digit umber f the frm ABBA which is exactly divisible by 7. Sluti ABBA 1000A + 100B +10B+A 1001A + 110B 1001 is divisible by 7 (1001 7 143), s 1001A is

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i ENUMERATON OF FNTE GROUPS OF THE FORM R ( 2 = (RfR^'u =1. 21 THE COMPLETE ENUMERATON OF FNTE GROUPS OF THE FORM R 2 ={R R j ) k -= H. S. M. COXETER*. ths paper, we vestgate the abstract group defed by

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Ch5 Appendix Q-factor and Smith Chart Matching

Ch5 Appendix Q-factor and Smith Chart Matching h5 Appedx -factr ad mth hart Matchg 5B-1 We-ha a udwg, F rcut Desg Thery ad Applcat, hapter 8 Frequecy espse f -type Matchg Netwrks 5B- Fg.8-8 Tw desg realzats f a -type matchg etwrk.65pf, 80 f 1 GHz Fg.8-9

More information

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table. CURVE FITTING Obectve curve ttg s t represet set dscrete dt b uct curve. Csder set dscrete dt s gve tble. 3 3 = T use the dt eectvel, curve epress s tted t the gve dt set, s = + = + + = e b ler uct plml

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A Desty of dagoalzable square atrces Studet: Dael Cervoe; Metor: Saravaa Thyagaraa Uversty of Chcago VIGRE REU, Suer 7. For ths etre aer, we wll refer to V as a vector sace over ad L(V) as the set of lear

More information

Entropies & Information Theory

Entropies & Information Theory Etropes & Iformato Theory LECTURE II Nlajaa Datta Uversty of Cambrdge,U.K. See lecture otes o: http://www.q.damtp.cam.ac.uk/ode/223 quatum system States (of a physcal system): Hlbert space (fte-dmesoal)

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

Lecture Notes 2. The ability to manipulate matrices is critical in economics.

Lecture Notes 2. The ability to manipulate matrices is critical in economics. Lecture Notes. Revew of Matrces he ablt to mapulate matrces s crtcal ecoomcs.. Matr a rectagular arra of umbers, parameters, or varables placed rows ad colums. Matrces are assocated wth lear equatos. lemets

More information

Ahmed Elgamal. MDOF Systems & Modal Analysis

Ahmed Elgamal. MDOF Systems & Modal Analysis DOF Systems & odal Aalyss odal Aalyss (hese otes cover sectos from Ch. 0, Dyamcs of Structures, Al Chopra, Pretce Hall, 995). Refereces Dyamcs of Structures, Al K. Chopra, Pretce Hall, New Jersey, ISBN

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

CLASS NOTES. for. PBAF 528: Quantitative Methods II SPRING Instructor: Jean Swanson. Daniel J. Evans School of Public Affairs

CLASS NOTES. for. PBAF 528: Quantitative Methods II SPRING Instructor: Jean Swanson. Daniel J. Evans School of Public Affairs CLASS NOTES for PBAF 58: Quattatve Methods II SPRING 005 Istructor: Jea Swaso Dael J. Evas School of Publc Affars Uversty of Washgto Ackowledgemet: The structor wshes to thak Rachel Klet, Assstat Professor,

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

On the Borda Method for Multicriterial Decision-Making

On the Borda Method for Multicriterial Decision-Making O the Brda Methd r Multcrteral Decs-Makg Radu A. Pău Iteratal Metary Fud Isttute 700 9 th Street, N.W. Washgt, D.C. 2043 rpau@m.rg r radupau@yah.cm Abstract The preset paper dscusses tw ssues wth multcrteral

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

Generalized Linear Regression with Regularization

Generalized Linear Regression with Regularization Geeralze Lear Regresso wth Regularzato Zoya Bylsk March 3, 05 BASIC REGRESSION PROBLEM Note: I the followg otes I wll make explct what s a vector a what s a scalar usg vec t or otato, to avo cofuso betwee

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

Design maintenanceand reliability of engineering systems: a probability based approach

Design maintenanceand reliability of engineering systems: a probability based approach Desg mateaead relablty of egeerg systems: a probablty based approah CHPTER 2. BSIC SET THEORY 2.1 Bas deftos Sets are the bass o whh moder probablty theory s defed. set s a well-defed olleto of objets.

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 2006, #A12 LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX Hacèe Belbachr 1 USTHB, Departmet of Mathematcs, POBox 32 El Ala, 16111,

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information