Kernels. Nuno Vasconcelos ECE Department, UCSD

Size: px
Start display at page:

Download "Kernels. Nuno Vasconcelos ECE Department, UCSD"

Transcription

1 Kerels Nu Vasels ECE Departmet UCSD

2 Prpal mpet aalyss Dmesalty reut: Last tme we saw that whe the ata lves a subspae t s best t esg ur learg algrthms ths subspae D subspae 3D y φ φ λ λ y ths a be e by mputg the prpal mpets f the ata prpal mpets φ are the egevetrs f Σ prpal legths λ are the egevalues f Σ

3 Prpal mpet aalyss learg 3

4 Prpal mpet aalyss 4

5 PCA by SVD we et saw that PCA a be mpute by the SVD f the ata matr retly gve wth e eample per lum reate the etere ata-matr mpute ts SVD I ΜΠΝ 3 prpal mpets are lums f N egevalues are λ π 5

6 Etess ay we wll tal abut erels turs ut that ay algrthm whh epes the ata thrugh t-pruts ly.e. the matr f elemets a be erele ths s usually beefal we wll see why later fr w we l at the quest f whether PCA a be wrtte the frm abve reall the ata matr s K 6

7 Etess we saw that the etere-ata matr a the varae a be wrtte as I Σ the egevetr φ f egevalue λ s φ α α φ φ hee the egevetr matr s φ α α λ φ λ φ Γ Γ λ α λ α K 7 Γ Γ λ λ K

8 Etess we et te that frm the egevetr empst a.e. Λ Σ Λ Γ Γ Λ Σ Γ Γ ΓΛΓ 8

9 Etess summary we have Σ Λ Γ ΓΛΓ ths meas that we a bta PCA by assemblg - mputg ts ege-empst ΛΓ PCA the prpal mpets are the gve by Γ the egevalues are gve by Λ 9

10 Etess what s terestg here s that we ly ee the matr K M K K K M ths s the matr f t-pruts f the etere ata- M K K ths s the matr f t-pruts f the etere atapts te that yu t ee the pts themselves ly 0 ther t-pruts smlartes

11 Etess t mpute PCA we use the fat that K K but f K has egeempst ΛΓ K K ΓΛΓ ΓΛΓ ΓΛ Γ the - h has egeempst Λ Γ

12 Etess summary t get PCA mpute the t-prut matr K mpute ts ege-empst ΛΓ PCA the prpal mpets are the gve by Γ the egevalues are gve by Λ the pret f the ata-pts the prpal mpets s gve by Γ K Γ ths allws the mputat f the egevalues a PCA effets whe we ly have aess t the t-prut matr K

13 he t prut frm hs turs ut t be the ase fr may learg algrthms If yu mapulate a lttle bt yu a wrte them t prut frm Deft: a learg algrthm s t prut frm f gve a trag set D { y... y } t ly epes the pts thrugh ther t pruts. fr eample let s l at -meas 3

14 Clusterg We saw that t terates bewtee lassfat: re-estmat: estmat: µ * arg m µ ew te that µ µ µ µ µ µ 4

15 Clusterg a b th t t th t t µ mbg the tw we a wrte the tp equat as a fut f the t pruts l l µ 5

16 he erel tr why s ths terestg? ser trasfrmat f the feature spae: true a mappg : Z suh that mz > m f the algrthm ly epes the ata thrugh t-pruts the the trasfrme spae t ly epes 3 φ φ 6

17 he t prut mplemetat the trasfrme spae the learg algrthms ly requres t-pruts te that we -lger ee t stre the ly the t-prut matr terestgly ths hls eve whe s fte mesal we get a reut frm fty t! there s hwever stll e prblem: whe m[ ] s fte the mputat f the t pruts ls mpssble 7

18 he erel tr stea f efg efg mputg fr eah a fr eah par smply pyefe the fut a wr wth t retly. K K s alle a t-prut erel fat se we ly use the erel why efe? ust efe the erel K retly! ths way we ever have t eal wth the mplety f... ths s usually alle the erel tr 8

19 Quests I am fuse! hw I w that f I p a fut K t s equvalet t? geeral t s t. We wll tal abut ths later. f t s hw I w what s? yu may ever w. E.g. the Gaussa erel K s very ppular. It s t bvus what s... e the pstve se we t w hw t hse. Chsg stea K maes fferee. why s t that usg K s easer/better? mplety. let s l at a eample. σ 9

20 Plymal erels stll R ser the square f the t prut betwee tw vetrs K M K 0 K

21 Plymal erels a be wrtte as M [ ] M K K K K hee we have M K K R R : wth L L L M

22 Plymal erels the pt s that whle has mplety O ret mputat f K has mplety O ret evaluat s mre effet by a fatr f as ges t fty ths maes the ea feasble BW yu ust met ather erel famly ths mplemets plymals f se rer geeral the famly f plymal erels s efe as { L} K I t eve wat t th abut wrtg w!

23 Kerel summary. D t easy t eal wth apply feature trasfrmat : Z suh that mz >> m. mputg t epesve: wrte yur learg algrthm t-prut frm stea f we ly ee 3. stea f mputg efe the t-prut erel K a mpute K retly te: the matr M K L K L M s alle the erel r Gram matr 4. frget abut a use K frm the start! 3

24 Quest what s a g t-prut erel? ths s a ffult quest see Prf. Leret s wr prate the usual repe s: p a erel frm a lbrary f w erels we have alreay met the lear erel K the Gaussa famly K e the plymal famly σ { L } K 4

25 Dt-prut erels ths may t be a ba ea we rp the beefts f a hgh-mesal spae wthut a pre mplety the erel smply as a few parameters σ learg t wul mply trug may parameters up t what f I ee t he whether K s a erel? Deft: a mappg : R y y s a t-prut erel f a ly f y <y> where : H H s a vetr spae a <..> a tprut H 3 H 5

26 Pstve efte matres reall that e.g. Lear Algebra a Applats Strag Deft: eah f the fllwg s a eessary a suffet t fr a real symmetr matr A t be sem pstve efte: A 0 0 all egevalues f A satsfy λ 0 all upper-left submatres A have -egatve etermat v there s a matr R wth epeet rws suh that A R R upper left submatres: A a a a 3 a A A a a a 3 3 a a a 3 a3 a33 a a L 6

27 Pstve efte matres prperty v s partularly terestg R <> > A s a t-prut erel f a ly f A s pstve efte frm v ths hls f a ly f there s R suh that A R R hee wth <y> Ay R Ry y : R R R.e. the t-prut erel A A pstve efte s the staar t-prut the rage spae f the mappg R 7

28 Pstve efte erels hw I ete ths t f pstve efteess t futs? Deft: a fut y s a pstve efte erel f l a {... l } the Gram matr s pstve efte. M K L L M le R ths allws us t he that we have a pstve efte erel 8

29 Dt prut erels herem: y y s a t-prut erel f a ly f t s a pstve efte erel summary t he whether a erel s a t prut: he f the Gram matr s pstve efte fr all pssble sequees {... l } es the erel have t be a t-prut erel? t eessarly. Fr eample eural etwrs a be see as mplemetg erels that are t f ths type hwever: yu lse the parallelsm. what yu w abut the learg mahe may lger hl after yu erele t-prut erels usually lea t ve learg prblems. Usually yu lse ths guaratee fr t-prut 9

30 Clusterg s far ths s mstly theretal hw es t affet my algrthms? ser fr eample the -meas algrthm lassfat: re-estmat: µ * arg m µ ew a we erele the lassfat step? 30

31 Clusterg well we saw that th th b l t l l µ ths a the be erele t µ l µ l l 3

32 Clusterg furthermre ths a be e wth relatve effey µ l l th agal etry f Gram matr the assgmet f the pt ly requres mputg fr eah luster ths s a sum f etres f Gram matr mpute e per luster whe all pts are assge 3

33 Clusterg te hwever that we at epltly mpute µ ths s prbably bl fte t mesal... ay ase f we efe a Gram matr K fr eah luster t pruts betwee pts luster a S the sale sum f the etres ths matr S l l 33

34 Clusterg we bta the erel -meas algrthm lassfat: arg m K S l l * l re-estmat: upate l S l l but we lger have aess t the prttype fr eah luster 34

35 Clusterg wth the rght erel ths a wr sgfatly better tha regular -meas -meas erel -meas 35

36 Clusterg but fr ther applats where the prttypes are mprtat ths may be useless e.g. mpress we a try replag the prttype by the lsest vetr but ths s t eessarly ptmal 36

37 PCA we saw that t get PCA mpute the t-prut matr K mpute ts ege-empst ΛΓ PCA the prpal mpets are the gve by Γ the egevalues are gve by Λ the pret f the ata-pts the prpal mpets s gve by K te that mst f ths hls whe we erele we ly have t hage the matr K frm t φ φ the ly thg we a lger aess are the PCs Γ Γ 37

38 Kerel meths mst learg algrthms a be erele erel PCA erel LDA erel ICA et. as -meas smetmes we lse sme f the features f the rgal algrthm but the perfrmae s frequetly better et wee we wll l at the aal applat the supprt vetr mahe 38

39 39

CS 4758 Robot Kinematics. Ashutosh Saxena

CS 4758 Robot Kinematics. Ashutosh Saxena CS 4758 Rt Kemt Ahuth Se Kemt tude the mt f de e re tereted tw emt tp Frwrd Kemt (ge t pt ht u re gve: he egth f eh he ge f eh t ht u fd: he pt f pt (.e. t (,, rdte Ivere Kemt (pt t ge ht u re gve: he

More information

Basics of heteroskedasticity

Basics of heteroskedasticity Sect 8 Heterskedastcty ascs f heterskedastcty We have assumed up t w ( ur SR ad MR assumpts) that the varace f the errr term was cstat acrss bservats Ths s urealstc may r mst ecmetrc applcats, especally

More information

PY3101 Optics. Learning objectives. Wave propagation in anisotropic media Poynting walk-off The index ellipsoid Birefringence. The Index Ellipsoid

PY3101 Optics. Learning objectives. Wave propagation in anisotropic media Poynting walk-off The index ellipsoid Birefringence. The Index Ellipsoid The Ide Ellpsd M.P. Vaugha Learg bjectves Wave prpagat astrpc meda Ptg walk-ff The de ellpsd Brefrgece 1 Wave prpagat astrpc meda The wave equat Relatve permttvt I E. Assumg free charges r currets E. Substtutg

More information

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques Data Mg: cepts ad Techques 3 rd ed. hapter 10 1 Evaluat f lusterg lusterg evaluat assesses the feasblty f clusterg aalyss a data set ad the qualty f the results geerated by a clusterg methd. Three mar

More information

An Introduction to Robot Kinematics. Renata Melamud

An Introduction to Robot Kinematics. Renata Melamud A Itrdut t Rt Kemt Ret Memud Kemt tude the mt f de A Empe -he UMA 56 3 he UMA 56 hsirevute t A revute t h E degree f freedm ( DF tht defed t ge 4 here re tw mre t the ed effetr (the grpper ther t Revute

More information

Lecture 2. Basic Semiconductor Physics

Lecture 2. Basic Semiconductor Physics Lecture Basc Semcductr Physcs I ths lecture yu wll lear: What are semcductrs? Basc crystal structure f semcductrs Electrs ad hles semcductrs Itrsc semcductrs Extrsc semcductrs -ded ad -ded semcductrs Semcductrs

More information

The Simple Linear Regression Model: Theory

The Simple Linear Regression Model: Theory Chapter 3 The mple Lear Regress Mdel: Ther 3. The mdel 3.. The data bservats respse varable eplaatr varable : : Plttg the data.. Fgure 3.: Dsplag the cable data csdered b Che at al (993). There are 79

More information

Control Systems. Controllability and Observability (Chapter 6)

Control Systems. Controllability and Observability (Chapter 6) 6.53 trl Systems trllaility ad Oservaility (hapter 6) Geeral Framewrk i State-Spae pprah Give a LTI system: x x u; y x (*) The system might e ustale r des t meet the required perfrmae spe. Hw a we imprve

More information

Analyzing Control Structures

Analyzing Control Structures Aalyzg Cotrol Strutures sequeg P, P : two fragmets of a algo. t, t : the tme they tae the tme requred to ompute P ;P s t t Θmaxt,t For loops for to m do P t: the tme requred to ompute P total tme requred

More information

Design maintenanceand reliability of engineering systems: a probability based approach

Design maintenanceand reliability of engineering systems: a probability based approach Desg mateaead relablty of egeerg systems: a probablty based approah CHPTER 2. BSIC SET THEORY 2.1 Bas deftos Sets are the bass o whh moder probablty theory s defed. set s a well-defed olleto of objets.

More information

Goal of the Lecture. Lecture Structure. FWF 410: Analysis of Habitat Data I: Definitions and Descriptive Statistics

Goal of the Lecture. Lecture Structure. FWF 410: Analysis of Habitat Data I: Definitions and Descriptive Statistics FWF : Aalyss f Habtat Data I: Defts ad Descrptve tatstcs Number f Cveys A A B Bur Dsk Bur/Dsk Habtat Treatmet Matthew J. Gray, Ph.D. Cllege f Agrcultural ceces ad Natural Resurces Uversty f Teessee-Kvlle

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza ١ ١ Chapter Chapter 4 Cyl Blo Cyl Blo Codes Codes Ammar Abu-Hudrouss Islam Uversty Gaza Spr 9 Slde ٢ Chael Cod Theory Cyl Blo Codes A yl ode s haraterzed as a lear blo ode B( d wth the addtoal property

More information

Problems and Solutions

Problems and Solutions Problems ad Solutos Let P be a problem ad S be the set of all solutos to the problem. Deso Problem: Is S empty? Coutg Problem: What s the sze of S? Searh Problem: fd a elemet of S Eumerato Problem: fd

More information

Chapter 3.1: Polynomial Functions

Chapter 3.1: Polynomial Functions Ntes 3.1: Ply Fucs Chapter 3.1: Plymial Fuctis I Algebra I ad Algebra II, yu ecutered sme very famus plymial fuctis. I this secti, yu will meet may ther members f the plymial family, what sets them apart

More information

STATISTICS 13. Lecture 5 Apr 7, 2010

STATISTICS 13. Lecture 5 Apr 7, 2010 STATISTICS 13 Leture 5 Apr 7, 010 Revew Shape of the data -Bell shaped -Skewed -Bmodal Measures of eter Arthmet Mea Meda Mode Effets of outlers ad skewess Measures of Varablt A quattatve measure that desrbes

More information

= 2. Statistic - function that doesn't depend on any of the known parameters; examples:

= 2. Statistic - function that doesn't depend on any of the known parameters; examples: of Samplg Theory amples - uemploymet househol cosumpto survey Raom sample - set of rv's... ; 's have ot strbuto [ ] f f s vector of parameters e.g. Statstc - fucto that oes't epe o ay of the ow parameters;

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Non-Cooperative Games

Non-Cooperative Games N-Cperatve Games a ucerta evrmet Rger J-B Wets rbwets@ucavs.eu Uverst Calra, Davs ONR-MURI, Jul 2002 p.1/?? I. Determstc Vers ONR-MURI, Jul 2002 p.2/?? Fg a Nash-equlbrum prblem rmulat the Nash-uct asscate

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

If σis unknown. Properties of t distribution. 6.3 One and Two Sample Inferences for Means. What is the correct multiplier? t

If σis unknown. Properties of t distribution. 6.3 One and Two Sample Inferences for Means. What is the correct multiplier? t /8/009 6.3 Oe a Tw Samle Iferece fr Mea If i kw a 95% Cfiece Iterval i 96 ±.96 96.96 ± But i ever kw. If i ukw Etimate by amle taar eviati The etimate taar errr f the mea will be / Uig the etimate taar

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

n -dimensional vectors follow naturally from the one

n -dimensional vectors follow naturally from the one B. Vectors ad sets B. Vectors Ecoomsts study ecoomc pheomea by buldg hghly stylzed models. Uderstadg ad makg use of almost all such models requres a hgh comfort level wth some key mathematcal sklls. I

More information

The fuzzy decision of transformer economic operation

The fuzzy decision of transformer economic operation The fuzzy decs f trasfrmer ecmc perat WENJUN ZHNG, HOZHONG CHENG, HUGNG XIONG, DEXING JI Departmet f Electrcal Egeerg hagha Jatg Uversty 954 Huasha Rad, 3 hagha P. R. CHIN bstract: - Ths paper presets

More information

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

Principal Component Analysis. Nuno Vasconcelos ECE Department, UCSD

Principal Component Analysis. Nuno Vasconcelos ECE Department, UCSD Priipal Compoet Aalysis Nuo Vasoelos ECE Departmet, UCSD Curse of dimesioality typial observatio i Bayes deisio theory: error ireases whe umber of features is large problem: eve for simple models (e.g.

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Dimensionality reduction Feature selection

Dimensionality reduction Feature selection CS 675 Itroucto to ache Learg Lecture Dmesoalty reucto Feature selecto los Hauskrecht mlos@cs.ptt.eu 539 Seott Square Dmesoalty reucto. otvato. L methos are sestve to the mesoalty of ata Questo: Is there

More information

Ch5 Appendix Q-factor and Smith Chart Matching

Ch5 Appendix Q-factor and Smith Chart Matching h5 Appedx -factr ad mth hart Matchg 5B-1 We-ha a udwg, F rcut Desg Thery ad Applcat, hapter 8 Frequecy espse f -type Matchg Netwrks 5B- Fg.8-8 Tw desg realzats f a -type matchg etwrk.65pf, 80 f 1 GHz Fg.8-9

More information

What characteristics distinguish irreversible (real) transformations from reversible (idealized) transformations?

What characteristics distinguish irreversible (real) transformations from reversible (idealized) transformations? bbs Free Eergy: ptaety ad Equlbrum What haratersts dstgush rreversble real trasfrmats frm reversble dealzed trasfrmats? t every stage f a reversble trasfrmat the system departs frm ulbrum ly ftesmally.

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process

Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process Ru Probablty-Based Ital Captal of the Dsrete-Tme Surplus Proess by Parote Sattayatham, Kat Sagaroo, ad Wathar Klogdee AbSTRACT Ths paper studes a surae model uder the regulato that the surae ompay has

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

Generalized Linear Regression with Regularization

Generalized Linear Regression with Regularization Geeralze Lear Regresso wth Regularzato Zoya Bylsk March 3, 05 BASIC REGRESSION PROBLEM Note: I the followg otes I wll make explct what s a vector a what s a scalar usg vec t or otato, to avo cofuso betwee

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

Solutions. Definitions pertaining to solutions

Solutions. Definitions pertaining to solutions Slutis Defiitis pertaiig t slutis Slute is the substace that is disslved. It is usually preset i the smaller amut. Slvet is the substace that des the disslvig. It is usually preset i the larger amut. Slubility

More information

A Mean- maximum Deviation Portfolio Optimization Model

A Mean- maximum Deviation Portfolio Optimization Model A Mea- mamum Devato Portfolo Optmzato Model Wu Jwe Shool of Eoom ad Maagemet, South Cha Normal Uversty Guagzhou 56, Cha Tel: 86-8-99-6 E-mal: wujwe@9om Abstrat The essay maes a thorough ad systemat study

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Section 2:00 ~ 2:50 pm Thursday in Maryland 202 Sep. 29, 2005

Section 2:00 ~ 2:50 pm Thursday in Maryland 202 Sep. 29, 2005 Seto 2:00 ~ 2:50 pm Thursday Marylad 202 Sep. 29, 2005. Homework assgmets set ad 2 revews: Set : P. A box otas 3 marbles, red, gree, ad blue. Cosder a expermet that ossts of takg marble from the box, the

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Unsupervised Learning and Other Neural Networks

Unsupervised Learning and Other Neural Networks CSE 53 Soft Computg NOT PART OF THE FINAL Usupervsed Learg ad Other Neural Networs Itroducto Mture Destes ad Idetfablty ML Estmates Applcato to Normal Mtures Other Neural Networs Itroducto Prevously, all

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Line Fitting and Regression

Line Fitting and Regression Marquette Uverst MSCS6 Le Fttg ad Regresso Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 8 b Marquette Uverst Least Squares Regresso MSCS6 For LSR we have pots

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

CHAPTER 5 ENTROPY GENERATION Instructor: Prof. Dr. Uğur Atikol

CHAPTER 5 ENTROPY GENERATION Instructor: Prof. Dr. Uğur Atikol CAPER 5 ENROPY GENERAION Istructr: Pr. Dr. Uğur Atkl Chapter 5 Etrpy Geerat (Exergy Destruct Outle st Avalable rk Cycles eat ege cycles Rergerat cycles eat pump cycles Nlw Prcesses teady-flw Prcesses Exergy

More information

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES 0/5/04 ITERESTIG FIITE AD IFIITE PRODUCTS FROM SIMPLE ALGEBRAIC IDETITIES Thomas J Osler Mathematcs Departmet Rowa Uversty Glassboro J 0808 Osler@rowaedu Itroducto The dfferece of two squares, y = + y

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Dimensionality reduction Feature selection

Dimensionality reduction Feature selection CS 750 Mache Learg Lecture 3 Dmesoalty reducto Feature selecto Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 750 Mache Learg Dmesoalty reducto. Motvato. Classfcato problem eample: We have a put data

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

1) When an object is placed at the center of curvature of a concave mirror, the image is.

1) When an object is placed at the center of curvature of a concave mirror, the image is. ) Whe a bjet is plae at the eter f urature f a ae mirrr, the image is. a) upright a irtual b) ierte a real ) larger a irtual ) Whe a bjet is plae ery far frm the fal pit f a ergig les, the image is. a)

More information

Generative classification models

Generative classification models CS 75 Mache Learg Lecture Geeratve classfcato models Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Data: D { d, d,.., d} d, Classfcato represets a dscrete class value Goal: lear f : X Y Bar classfcato

More information

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier

Bayesian Classification. CS690L Data Mining: Classification(2) Bayesian Theorem: Basics. Bayesian Theorem. Training dataset. Naïve Bayes Classifier Baa Classfcato CS6L Data Mg: Classfcato() Referece: J. Ha ad M. Kamber, Data Mg: Cocepts ad Techques robablstc learg: Calculate explct probabltes for hypothess, amog the most practcal approaches to certa

More information

1) When an object is placed outside the center of curvature of a convex mirror, the image is.

1) When an object is placed outside the center of curvature of a convex mirror, the image is. ) Whe a bjet is plae utsie the eter f urature f a ex mirrr, the image is. a) upright a irtual b) ierte a smaller ) larger a real ) Whe a bjet is plae isie the fal pit f a ergig les, the image is. a) upright

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

element k Using FEM to Solve Truss Problems

element k Using FEM to Solve Truss Problems sng EM t Slve Truss Prblems A truss s an engneerng structure cmpsed straght members, a certan materal, that are tpcall pn-ned at ther ends. Such members are als called tw-rce members snce the can nl transmt

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

UNIT 7 RANK CORRELATION

UNIT 7 RANK CORRELATION UNIT 7 RANK CORRELATION Rak Correlato Structure 7. Itroucto Objectves 7. Cocept of Rak Correlato 7.3 Dervato of Rak Correlato Coeffcet Formula 7.4 Te or Repeate Raks 7.5 Cocurret Devato 7.6 Summar 7.7

More information

Tail Factor Convergence in Sherman s Inverse Power Curve Loss Development Factor Model

Tail Factor Convergence in Sherman s Inverse Power Curve Loss Development Factor Model Tal Fator Covergee Sherma s Iverse Power Curve Loss Developmet Fator Model Jo Evas ABSTRACT The fte produt of the age-to-age developmet fators Sherma s verse power urve model s prove to overge to a fte

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 17

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 17 Itroucto to Ecoometrcs (3 r Upate Eto) by James H. Stock a Mark W. Watso Solutos to O-Numbere E-of-Chapter Exercses: Chapter 7 (Ths erso August 7, 04) 05 Pearso Eucato, Ic. Stock/Watso - Itroucto to Ecoometrcs

More information

Reproducing kernel Hilbert spaces. Nuno Vasconcelos ECE Department, UCSD

Reproducing kernel Hilbert spaces. Nuno Vasconcelos ECE Department, UCSD Reprucng ernel Hlbert spaces Nun Vascncels ECE Department UCSD Classfcatn a classfcatn prblem has tw tpes f varables X -vectr f bservatns features n the wrl Y - state class f the wrl Perceptrn: classfer

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

ON A NEUMANN EQUILIBRIUM STATES IN ONE MODEL OF ECONOMIC DYNAMICS

ON A NEUMANN EQUILIBRIUM STATES IN ONE MODEL OF ECONOMIC DYNAMICS oral of re ad Appled Mathemats: Advaes ad Applatos Volme 8 Nmber 2 207 ages 87-95 Avalable at http://setfadvaes.o. DO: http://d.do.org/0.8642/pamaa_7002866 ON A NEUMANN EQULBRUM STATES N ONE MODEL OF ECONOMC

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

All-Pairs shortest paths via fast matrix multiplication

All-Pairs shortest paths via fast matrix multiplication All-Pars shortest paths va fast matrx multplato Ur Zw Tel Avv Uversty Summer Shool o Shortest Paths (PATH0) DIKU, Uversty of Copehage 1. Algebra matrx multplato a. Strasse s algorthm b. Retagular matrx

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

Intermediate Division Solutions

Intermediate Division Solutions Itermediate Divisi Slutis 1. Cmpute the largest 4-digit umber f the frm ABBA which is exactly divisible by 7. Sluti ABBA 1000A + 100B +10B+A 1001A + 110B 1001 is divisible by 7 (1001 7 143), s 1001A is

More information

Section 3. Measurement Errors

Section 3. Measurement Errors eto 3 Measuremet Errors Egeerg Measuremets 3 Types of Errors Itrs errors develops durg the data aqusto proess. Extrs errors foud durg data trasfer ad storage ad are due to the orrupto of the sgal y ose.

More information

5.1 Two-Step Conditional Density Estimator

5.1 Two-Step Conditional Density Estimator 5.1 Tw-Step Cditial Desity Estimatr We ca write y = g(x) + e where g(x) is the cditial mea fucti ad e is the regressi errr. Let f e (e j x) be the cditial desity f e give X = x: The the cditial desity

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

Stage 9:30am Ride Out 10:00am Sharp. Ride out 10:00 am Sharp WE WILL RE-SCHEDULE! This is an OPEN RIDE so bring all your friends!!!

Stage 9:30am Ride Out 10:00am Sharp. Ride out 10:00 am Sharp WE WILL RE-SCHEDULE! This is an OPEN RIDE so bring all your friends!!! Vst ur web ste... www.rrtrals.cm www.rrtrals.cm Rversde Recr ecreatal eatal Trals Brea Hlls Rde Saturday May 12, 2012 Saturday, March 10, 2019 Stage 9:30am Rde ut 10:00 am Sharp Stage 9:30am Rde Out 10:00am

More information

i 2 σ ) i = 1,2,...,n , and = 3.01 = 4.01

i 2 σ ) i = 1,2,...,n , and = 3.01 = 4.01 ECO 745, Homework 6 Le Cabrera. Assume that the followg data come from the lear model: ε ε ~ N, σ,,..., -6. -.5 7. 6.9 -. -. -.9. -..6.4.. -.6 -.7.7 Fd the mamum lkelhood estmates of,, ad σ ε s.6. 4. ε

More information

Machine Learning. Topic 4: Measuring Distance

Machine Learning. Topic 4: Measuring Distance Mache Learg Topc 4: Measurg Dstace Bra Pardo Mache Learg: EECS 349 Fall 2009 Wh measure dstace? Clusterg requres dstace measures. Local methods requre a measure of localt Search eges requre a measure of

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES Joural of Sees Islam Republ of Ira 4(3): 7-75 (003) Uversty of Tehra ISSN 06-04 ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES HR Nl Sa * ad A Bozorga Departmet of Mathemats Brjad Uversty

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis)

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis) We have covered: Selecto, Iserto, Mergesort, Bubblesort, Heapsort Next: Selecto the Qucksort The Selecto Problem - Varable Sze Decrease/Coquer (Practce wth algorthm aalyss) Cosder the problem of fdg the

More information

Sx [ ] = x must yield a

Sx [ ] = x must yield a Math -b Leture #5 Notes This wee we start with a remider about oordiates of a vetor relative to a basis for a subspae ad the importat speial ase where the subspae is all of R. This freedom to desribe vetors

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples

CS 2750 Machine Learning Lecture 8. Linear regression. Supervised learning. a set of n examples CS 75 Mache Learg Lecture 8 Lear regresso Mlos Hauskrecht los@cs.tt.eu 59 Seott Square Suervse learg Data: D { D D.. D} a set of eales D s a ut vector of sze s the esre outut gve b a teacher Obectve: lear

More information

Linear Regression with One Regressor

Linear Regression with One Regressor Lear Regresso wth Oe Regressor AIM QA.7. Expla how regresso aalyss ecoometrcs measures the relatoshp betwee depedet ad depedet varables. A regresso aalyss has the goal of measurg how chages oe varable,

More information

MATH Midterm Examination Victor Matveev October 26, 2016

MATH Midterm Examination Victor Matveev October 26, 2016 MATH 33- Midterm Examiati Victr Matveev Octber 6, 6. (5pts, mi) Suppse f(x) equals si x the iterval < x < (=), ad is a eve peridic extesi f this fucti t the rest f the real lie. Fid the csie series fr

More information

(This summarizes what you basically need to know about joint distributions in this course.)

(This summarizes what you basically need to know about joint distributions in this course.) HG Ot. ECON 430 H Extra exerses for o-semar week 4 (Solutos wll be put o the et at the ed of the week) Itroduto: Revew of multdmesoal dstrbutos (Ths summarzes what you basally eed to kow about jot dstrbutos

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter LOGISTIC REGRESSION Notato Model Logstc regresso regresses a dchotomous depedet varable o a set of depedet varables. Several methods are mplemeted for selectg the depedet varables. The followg otato s

More information

Regression and the LMS Algorithm

Regression and the LMS Algorithm CSE 556: Itroducto to Neural Netorks Regresso ad the LMS Algorthm CSE 556: Regresso 1 Problem statemet CSE 556: Regresso Lear regresso th oe varable Gve a set of N pars of data {, d }, appromate d b a

More information

Final Exam Spring 2014 SOLUTION

Final Exam Spring 2014 SOLUTION Appled Opts H-464/564 C 594 rtland State nverst A. La Rsa Fnal am Sprng 14 SOLTION Name There are tw questns 1%) plus an ptnal bnus questn 1%) 1. Quarter wave plates and half wave plates The fgures belw

More information

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s).

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s). CHAPTER STATISTICS Pots to Remember :. Facts or fgures, collected wth a defte pupose, are called Data.. Statstcs s the area of study dealg wth the collecto, presetato, aalyss ad terpretato of data.. The

More information