CS 322 Homework 4 Solutions

Size: px
Start display at page:

Download "CS 322 Homework 4 Solutions"

Transcription

1 CS 322 Homework 4 Solutions out: Thursday 1 March 2007 due: Wednesday 7 March 2007 Problem 1: QR mechanics 1 Prove that a Householder reflection is symmetric and orthogonal. Answer: Symmetry: H T = (I ρuu T ) T = I T ρ(u T ) T u T = I ρuu T = H Orthogonal: HH T = HH = ) ) = I 4uuT + u)u T 4u(uT () 2 = I 4uuT + 4uuT = I Since HH T = I, we can conclude that the matrix H is orthogonal. 2 Show that the Householder vector given on p. 147 in Moler produces a transformation that zeros out all but the k th element of x. Hx = ) u T x u = x 2uT x u = x 2uT x (x + x e k) ( ) = 1 2uT x u T x + x e k u 1

2 CS 322 Homework 4 Solutions 2 We note that the second vector will ( always ) be zero except for the k-th component. Thus, we just need to show that 1 2uT x = 0. In order to prove this, we note that: u T x = (x + x e k ) T x = x T x + x x k = x 2 + x x k and similarly = (x + x e k ) T (x + x e k ) = x T x + 2 x x k + x 2 = 2 x x x k ( ) Substituting these expressions into 1 2uT x, we see that in fact 1 2( x 2 + x x k ) = 2 x 2 +2 x x k 1 1 = 0. Thus, Hx = 0x + x e k = x e k, which as we have already noted, is zero everywhere except possibly the k-th component. 3 Explain why Moler s recommendation for choosing the sign of σ improves accuracy. Answer: Suppose we chose σ to be the sign opposite of x k. Then the computation of the k-th component of u will be a subtraction instead of an addition. If these numbers are relatively close to each other (i.e. x lies close to e k ), then there is the possibility of massive cancellation in the k-th component of u. This is problematic due to the fixed number of mantissa bits in our floating point representation subtracting two similar numbers reduces the number of significant digits left in the answer. If the numbers are close to each other, then we may end up with only one significant digit left, greatly reducing the accuracy in the answer. Choosing the sign as we do preserves the number of significant digits in the k-th component of u and so improves the accuracy in the computed answer. 4 How many floating-point operations (flops) are required to multiply an m n matrix by a Householder reflection? Answer: We note that we can exploit the structure of the Householder transformation H to speed up multiplication:

3 CS 322 Homework 4 Solutions 3 ) HA = u T A u = A 2 uut A = A ρuu T A It will take 2m + 1 flops to compute ρ. Computing u T A is matrix-vector multiplication and will take 2mn flops. Computing ρu is scaling a vector and will take m flops. Computing (ρu)(u T A) is an outer product between two vectors, taking mn flops. Finally, subtracting the outer product from A takes mn flops, for a total of 4mn + 3m + 1 flops, or 4mn flops if we only care about the leading term. 5 What size matrices are updated by the n 1 steps of a QR factorization of an m by n matrix? Answer: Each step i updates the lower right (m i + 1) (n i + 1) portion of the matrix. This is due to both zeros in the Householder transform and in the already processed columns of the matrix. Thus, on the first step we update an m n matrix (i.e. the whole matrix), on the second step we update an (m 1) (n 1) matrix (everything but the first row and column), and so on. 6 If the Q factor is computed as part of the factorization, What size matrices are updated by the n 1 steps of that process? What factor of additional work does this add? Answer: Computing Q requires multiplying all of the n Householder transformations together. We can exploit the zero structure in the HH transform, but this will only allow us to reduce one of the dimensions of data we will update an (m i + 1) m matrix on each iteration. Using the answer from Part 4, we can compute the total cost of these multiplications by summing up the cost of each one as 4m(m i + 1) for i = 1 to n, obtaining 4m 2 n 2mn 2. The work in just computing R is 2mn n3, or just 2mn 2 for large values of m relative to n. Thus, the total work done when computing both Q and R increases by a factor of roughly m n 7 Time the Matlab operations qr(a); and [Q,R] = qr(a); using tic and toc, for matrices large enough to take a few seconds to factor. Is your answer to (6) borne out? Explain. Answer: We timed qr(a); and [Q, R] = qr(a); for various A = rand(1000*i, 1000*j) with i and j varying from 1 to 4. Below is the result of the times, where the table is showing the time of [Q, R] = qr(a); divided by the time of qr(a); n = m =

4 CS 322 Homework 4 Solutions 4 And the table for the computed fraction of additional work 1 + 2m n n = m = We can see that we are a bit off, but we are definitely close to capturing a trend in the data. Possible explanations for this may include variation in the trials (we only timed each matrix once due to the length of time it was taking), but the primary reason is the fact that FLOP counts are not a terribly accurate way of measuring computation time. There are certainly memory transfer and cache hit/miss factors that are not accounted for in our performance analysis, and these can and do play a large role in overall performance. However, overall it appears as if our approximate calculations are supported by this experiment.

5 CS 322 Homework 4 Solutions 5 Problem 2: Subspaces Find the subspaces ran(a), ran(a), null(a), and null(a) for each of the following fullrank matrices. Give orthonormal bases for each subspace and explain how you computed them in your head or by using the QR factorization. Simpler bases found by reasoning are preferable to messier ones found by computation. Note: A single score was assigned to this problem; however, it was weighted by 5 when the final grade was computed Answer: Because the matrix is full rank, we know that for any vector b R 3, there is some x such that Ax = b. Thus, it follows that ran(a) = R 3. An easy orthonormal basis for this subspace is the standard basis vectors e 1 = [1; 0; 0], e 2 = [0; 1; 0], e 3 = [0; 0; 1]. Because the range is R 3, there are no non-zero length vectors that are orthogonal, and so it follows that ran(a) = {0}, with the empty basis. Similarly, since A is nonsingular, the only vector x such that Ax = 0 is in fact x = 0. Thus, null(a) = {0}, with the empty basis. By the reverse of the argument used for ran(a), it follows that null(a) = R 3, and so an orthonormal basis for it is the canonical basis vectors e 1, e 2, and e Answer: Again, because the matrix is full rank, we can conclude that for any vector b = [d; e; f; 0; 0], there is some vector x such that Ax = b. As such, one simple orthonormal basis for ran(a) is {[1; 0; 0; 0; 0], [0; 1; 0; 0; 0], [0; 0; 1; 0; 0]}. A simple set of orthonormal basis vectors for ran(a) is then easily shown to be {[0; 0; 0; 1; 0], [0; 0; 0; 0; 1]}, since these are obviously orthonormal to ran(a). As for the null space, an argument identical to the one used in Part 1 shows that an orthonormal basis for null(a) is the empty basis, and an orthonormal basis for null(a) is {[1; 0; 0], [0; 1; 0], [0; 0; 1]} Answer: We cannot come up with a simple orthonormal basis for the range. As such, we need to resort to the QR factorization of A. The first three columns of Q

6 CS 322 Homework 4 Solutions 6 are orthonormal basis vectors for ran(a), and the last two columns are orthonormal basis vectors for ran(a). Running [Q,R] = qr(a); in MATLAB gives us ran(a) = span , , ran(a) = span , We can, however, come up with a simple orthonormal basis for null(a) and null(a) by using the knowledge that the matrix is full rank. Much like in part 1 and 2, an identical argument shows that an orthonormal basis for null(a) is the empty basis, and an orthonormal basis for null(a) is {[1; 0; 0], [0; 1; 0], [0; 0; 1]} Answer: Because it is full rank, it follows from an argument similar to part 1 that ran(a) = span{[1; 0; 0], [0; 1; 0], [0; 0; 1]} and the orthonormal basis for ran(a) is the empty basis. Here, though, we have a nontrivial nullspace: any vector with zeros in the first three entries produces the zero vector. As such, it follows that null(a) = span{[0; 0; 0; 1; 0], [0; 0; 0; 0; 1]}. An orthogonal basis for the subspace perpendicular to these vectors is easy as well; null(a) = span{[1; 0; 0; 0; 0], [0; 1; 0; 0; 0], [0; 0; 1; 0; 0]} Answer: Much like part 4, because it is full rank an orthonormal basis for the range is trivial to compute, and it follows that ran(a) = span{[1; 0; 0], [0; 1; 0], [0; 0; 1]} and the orthonormal basis for ran(a) is the empty basis. We know we have a nontrivial nullspace of dimension 2 because any set of 5 vectors in R 3 must be linearly dependent, and we know the size of the subspace through the rank-nullity theorem. However, it is not easy to see what an orthonormal basis for the null space should be, and so we need to resort to the QR factorization of A T. If A T = QR, then A = R T Q T, and we can see that any linear combination of the last two rows in Q T (and thus the last two columns of Q) will be multiplied by zeros in R T and so will

7 CS 322 Homework 4 Solutions 7 result in the zero vector. Thus, the last two columns of Q is an orthonormal basis for the null space, and the first three columns are an orthonormal basis for null(a) T. Using MATLAB to compute the QR factorization, we obtain: null(a) = span , null(a) = span , ,

Since the determinant of a diagonal matrix is the product of its diagonal elements it is trivial to see that det(a) = α 2. = max. A 1 x.

Since the determinant of a diagonal matrix is the product of its diagonal elements it is trivial to see that det(a) = α 2. = max. A 1 x. APPM 4720/5720 Problem Set 2 Solutions This assignment is due at the start of class on Wednesday, February 9th. Minimal credit will be given for incomplete solutions or solutions that do not provide details

More information

Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y)/2. Hence the solution space consists of all vectors of the form

Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y)/2. Hence the solution space consists of all vectors of the form Math 2 Homework #7 March 4, 2 7.3.3. Find the solution set of 2x 3y = 5. Answer: We solve for x = (5 + 3y/2. Hence the solution space consists of all vectors of the form ( ( ( ( x (5 + 3y/2 5/2 3/2 x =

More information

Math 21b: Linear Algebra Spring 2018

Math 21b: Linear Algebra Spring 2018 Math b: Linear Algebra Spring 08 Homework 8: Basis This homework is due on Wednesday, February 4, respectively on Thursday, February 5, 08. Which of the following sets are linear spaces? Check in each

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

Math 407: Linear Optimization

Math 407: Linear Optimization Math 407: Linear Optimization Lecture 16: The Linear Least Squares Problem II Math Dept, University of Washington February 28, 2018 Lecture 16: The Linear Least Squares Problem II (Math Dept, University

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

The QR Factorization

The QR Factorization The QR Factorization How to Make Matrices Nicer Radu Trîmbiţaş Babeş-Bolyai University March 11, 2009 Radu Trîmbiţaş ( Babeş-Bolyai University) The QR Factorization March 11, 2009 1 / 25 Projectors A projector

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

Orthogonal Transformations

Orthogonal Transformations Orthogonal Transformations Tom Lyche University of Oslo Norway Orthogonal Transformations p. 1/3 Applications of Qx with Q T Q = I 1. solving least squares problems (today) 2. solving linear equations

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

18.06 Problem Set 3 Solution Due Wednesday, 25 February 2009 at 4 pm in Total: 160 points.

18.06 Problem Set 3 Solution Due Wednesday, 25 February 2009 at 4 pm in Total: 160 points. 8.6 Problem Set 3 Solution Due Wednesday, 25 February 29 at 4 pm in 2-6. Total: 6 points. Problem : Consider the matrix A = 2 4 2 6 3 4 2 7 (a) Reduce A to echelon form U, find a special solution for each

More information

Lecture # 5 The Linear Least Squares Problem. r LS = b Xy LS. Our approach, compute the Q R decomposition, that is, n R X = Q, m n 0

Lecture # 5 The Linear Least Squares Problem. r LS = b Xy LS. Our approach, compute the Q R decomposition, that is, n R X = Q, m n 0 Lecture # 5 The Linear Least Squares Problem Let X R m n,m n be such that rank(x = n That is, The problem is to find y LS such that We also want Xy =, iff y = b Xy LS 2 = min y R n b Xy 2 2 (1 r LS = b

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo

Least Squares. Tom Lyche. October 26, Centre of Mathematics for Applications, Department of Informatics, University of Oslo Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 26, 2010 Linear system Linear system Ax = b, A C m,n, b C m, x C n. under-determined

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

Dot product and linear least squares problems

Dot product and linear least squares problems Dot product and linear least squares problems Dot Product For vectors u,v R n we define the dot product Note that we can also write this as u v = u,,u n u v = u v + + u n v n v v n = u v + + u n v n The

More information

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST me me ft-uiowa-math255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following

More information

Orthonormal Transformations

Orthonormal Transformations Orthonormal Transformations Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 25, 2010 Applications of transformation Q : R m R m, with Q T Q = I 1.

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

Notes on Householder QR Factorization

Notes on Householder QR Factorization Notes on Householder QR Factorization Robert A van de Geijn Department of Computer Science he University of exas at Austin Austin, X 7872 rvdg@csutexasedu September 2, 24 Motivation A fundamental problem

More information

Math 265 Midterm 2 Review

Math 265 Midterm 2 Review Math 65 Midterm Review March 6, 06 Things you should be able to do This list is not meant to be ehaustive, but to remind you of things I may ask you to do on the eam. These are roughly in the order they

More information

Review 1 Math 321: Linear Algebra Spring 2010

Review 1 Math 321: Linear Algebra Spring 2010 Department of Mathematics and Statistics University of New Mexico Review 1 Math 321: Linear Algebra Spring 2010 This is a review for Midterm 1 that will be on Thursday March 11th, 2010. The main topics

More information

Orthonormal Transformations and Least Squares

Orthonormal Transformations and Least Squares Orthonormal Transformations and Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 30, 2009 Applications of Qx with Q T Q = I 1. solving

More information

Math 2174: Practice Midterm 1

Math 2174: Practice Midterm 1 Math 74: Practice Midterm Show your work and explain your reasoning as appropriate. No calculators. One page of handwritten notes is allowed for the exam, as well as one blank page of scratch paper.. Consider

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

Stability of the Gram-Schmidt process

Stability of the Gram-Schmidt process Stability of the Gram-Schmidt process Orthogonal projection We learned in multivariable calculus (or physics or elementary linear algebra) that if q is a unit vector and v is any vector then the orthogonal

More information

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.3: QR Factorization, SVD 2 / 66 QR Factorization 3 / 66 QR Factorization

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015 Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See

More information

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

More information

7. Dimension and Structure.

7. Dimension and Structure. 7. Dimension and Structure 7.1. Basis and Dimension Bases for Subspaces Example 2 The standard unit vectors e 1, e 2,, e n are linearly independent, for if we write (2) in component form, then we obtain

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 7: More on Householder Reflectors; Least Squares Problems Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 15 Outline

More information

Jim Lambers MAT 610 Summer Session Lecture 1 Notes

Jim Lambers MAT 610 Summer Session Lecture 1 Notes Jim Lambers MAT 60 Summer Session 2009-0 Lecture Notes Introduction This course is about numerical linear algebra, which is the study of the approximate solution of fundamental problems from linear algebra

More information

Notes on Eigenvalues, Singular Values and QR

Notes on Eigenvalues, Singular Values and QR Notes on Eigenvalues, Singular Values and QR Michael Overton, Numerical Computing, Spring 2017 March 30, 2017 1 Eigenvalues Everyone who has studied linear algebra knows the definition: given a square

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

Linear Algebra, part 3 QR and SVD

Linear Algebra, part 3 QR and SVD Linear Algebra, part 3 QR and SVD Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2012 Going back to least squares (Section 1.4 from Strang, now also see section 5.2). We

More information

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6 Chapter 6 Orthogonality 6.1 Orthogonal Vectors and Subspaces Recall that if nonzero vectors x, y R n are linearly independent then the subspace of all vectors αx + βy, α, β R (the space spanned by x and

More information

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank

More information

Linear algebra I Homework #1 due Thursday, Oct Show that the diagonals of a square are orthogonal to one another.

Linear algebra I Homework #1 due Thursday, Oct Show that the diagonals of a square are orthogonal to one another. Homework # due Thursday, Oct. 0. Show that the diagonals of a square are orthogonal to one another. Hint: Place the vertices of the square along the axes and then introduce coordinates. 2. Find the equation

More information

4 ORTHOGONALITY ORTHOGONALITY OF THE FOUR SUBSPACES 4.1

4 ORTHOGONALITY ORTHOGONALITY OF THE FOUR SUBSPACES 4.1 4 ORTHOGONALITY ORTHOGONALITY OF THE FOUR SUBSPACES 4.1 Two vectors are orthogonal when their dot product is zero: v w = orv T w =. This chapter moves up a level, from orthogonal vectors to orthogonal

More information

Vector Spaces, Orthogonality, and Linear Least Squares

Vector Spaces, Orthogonality, and Linear Least Squares Week Vector Spaces, Orthogonality, and Linear Least Squares. Opening Remarks.. Visualizing Planes, Lines, and Solutions Consider the following system of linear equations from the opener for Week 9: χ χ

More information

Section 6.2, 6.3 Orthogonal Sets, Orthogonal Projections

Section 6.2, 6.3 Orthogonal Sets, Orthogonal Projections Section 6. 6. Orthogonal Sets Orthogonal Projections Main Ideas in these sections: Orthogonal set = A set of mutually orthogonal vectors. OG LI. Orthogonal Projection of y onto u or onto an OG set {u u

More information

Math 369 Exam #2 Practice Problem Solutions

Math 369 Exam #2 Practice Problem Solutions Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.

More information

EE731 Lecture Notes: Matrix Computations for Signal Processing

EE731 Lecture Notes: Matrix Computations for Signal Processing EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University September 22, 2005 0 Preface This collection of ten

More information

The Singular Value Decomposition and Least Squares Problems

The Singular Value Decomposition and Least Squares Problems The Singular Value Decomposition and Least Squares Problems Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 27, 2009 Applications of SVD solving

More information

MA 527 first midterm review problems Hopefully final version as of October 2nd

MA 527 first midterm review problems Hopefully final version as of October 2nd MA 57 first midterm review problems Hopefully final version as of October nd The first midterm will be on Wednesday, October 4th, from 8 to 9 pm, in MTHW 0. It will cover all the material from the classes

More information

18.06SC Final Exam Solutions

18.06SC Final Exam Solutions 18.06SC Final Exam Solutions 1 (4+7=11 pts.) Suppose A is 3 by 4, and Ax = 0 has exactly 2 special solutions: 1 2 x 1 = 1 and x 2 = 1 1 0 0 1 (a) Remembering that A is 3 by 4, find its row reduced echelon

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

EXAM. Exam #2. Math 2360 Summer II, 2000 Morning Class. Nov. 15, 2000 ANSWERS

EXAM. Exam #2. Math 2360 Summer II, 2000 Morning Class. Nov. 15, 2000 ANSWERS EXAM Exam # Math 6 Summer II Morning Class Nov 5 ANSWERS i Problem Consider the matrix 6 pts A = 6 4 9 5 7 6 5 5 5 4 The RREF of A is the matrix R = A Find a basis for the nullspace of A Solve the homogeneous

More information

Chap 3. Linear Algebra

Chap 3. Linear Algebra Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

More information

18.06 Professor Johnson Quiz 1 October 3, 2007

18.06 Professor Johnson Quiz 1 October 3, 2007 18.6 Professor Johnson Quiz 1 October 3, 7 SOLUTIONS 1 3 pts.) A given circuit network directed graph) which has an m n incidence matrix A rows = edges, columns = nodes) and a conductance matrix C [diagonal

More information

REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION

REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION REVIEW FOR EXAM III The exam covers sections 4.4, the portions of 4. on systems of differential equations and on Markov chains, and..4. SIMILARITY AND DIAGONALIZATION. Two matrices A and B are similar

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

Chapter 6 - Orthogonality

Chapter 6 - Orthogonality Chapter 6 - Orthogonality Maggie Myers Robert A. van de Geijn The University of Texas at Austin Orthogonality Fall 2009 http://z.cs.utexas.edu/wiki/pla.wiki/ 1 Orthogonal Vectors and Subspaces http://z.cs.utexas.edu/wiki/pla.wiki/

More information

MTH 362: Advanced Engineering Mathematics

MTH 362: Advanced Engineering Mathematics MTH 362: Advanced Engineering Mathematics Lecture 5 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 26, 2017 1 Linear Independence and Dependence of Vectors

More information

σ 11 σ 22 σ pp 0 with p = min(n, m) The σ ii s are the singular values. Notation change σ ii A 1 σ 2

σ 11 σ 22 σ pp 0 with p = min(n, m) The σ ii s are the singular values. Notation change σ ii A 1 σ 2 HE SINGULAR VALUE DECOMPOSIION he SVD existence - properties. Pseudo-inverses and the SVD Use of SVD for least-squares problems Applications of the SVD he Singular Value Decomposition (SVD) heorem For

More information

Numerical Methods I Solving Square Linear Systems: GEM and LU factorization

Numerical Methods I Solving Square Linear Systems: GEM and LU factorization Numerical Methods I Solving Square Linear Systems: GEM and LU factorization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 18th,

More information

P = A(A T A) 1 A T. A Om (m n)

P = A(A T A) 1 A T. A Om (m n) Chapter 4: Orthogonality 4.. Projections Proposition. Let A be a matrix. Then N(A T A) N(A). Proof. If Ax, then of course A T Ax. Conversely, if A T Ax, then so Ax also. x (A T Ax) x T A T Ax (Ax) T Ax

More information

Answer Key for Exam #2

Answer Key for Exam #2 Answer Key for Exam #. Use elimination on an augmented matrix: 8 6 7 7. The corresponding system is x 7x + x, x + x + x, x x which we solve for the pivot variables x, x x : x +7x x x x x x x x x x x Therefore

More information

Section 4.4 Reduction to Symmetric Tridiagonal Form

Section 4.4 Reduction to Symmetric Tridiagonal Form Section 4.4 Reduction to Symmetric Tridiagonal Form Key terms Symmetric matrix conditioning Tridiagonal matrix Similarity transformation Orthogonal matrix Orthogonal similarity transformation properties

More information

ELE/MCE 503 Linear Algebra Facts Fall 2018

ELE/MCE 503 Linear Algebra Facts Fall 2018 ELE/MCE 503 Linear Algebra Facts Fall 2018 Fact N.1 A set of vectors is linearly independent if and only if none of the vectors in the set can be written as a linear combination of the others. Fact N.2

More information

Linear Systems. Carlo Tomasi

Linear Systems. Carlo Tomasi Linear Systems Carlo Tomasi Section 1 characterizes the existence and multiplicity of the solutions of a linear system in terms of the four fundamental spaces associated with the system s matrix and of

More information

GEOMETRY OF MATRICES x 1

GEOMETRY OF MATRICES x 1 GEOMETRY OF MATRICES. SPACES OF VECTORS.. Definition of R n. The space R n consists of all column vectors with n components. The components are real numbers... Representation of Vectors in R n.... R. The

More information

1. Select the unique answer (choice) for each problem. Write only the answer.

1. Select the unique answer (choice) for each problem. Write only the answer. MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

More information

9. Numerical linear algebra background

9. Numerical linear algebra background Convex Optimization Boyd & Vandenberghe 9. Numerical linear algebra background matrix structure and algorithm complexity solving linear equations with factored matrices LU, Cholesky, LDL T factorization

More information

Final Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015

Final Review Written by Victoria Kala SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Final Review Written by Victoria Kala vtkala@mathucsbedu SH 6432u Office Hours R 12:30 1:30pm Last Updated 11/30/2015 Summary This review contains notes on sections 44 47, 51 53, 61, 62, 65 For your final,

More information

Computational math: Assignment 1

Computational math: Assignment 1 Computational math: Assignment 1 Thanks Ting Gao for her Latex file 11 Let B be a 4 4 matrix to which we apply the following operations: 1double column 1, halve row 3, 3add row 3 to row 1, 4interchange

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences. Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.. Recall that P 3 denotes the vector space of polynomials of degree less

More information

Designing Information Devices and Systems I Discussion 4B

Designing Information Devices and Systems I Discussion 4B Last Updated: 29-2-2 9:56 EECS 6A Spring 29 Designing Information Devices and Systems I Discussion 4B Reference Definitions: Matrices and Linear (In)Dependence We ve seen that the following statements

More information

Linear Algebra. Linear Algebra. Chih-Wei Yi. Dept. of Computer Science National Chiao Tung University. November 12, 2008

Linear Algebra. Linear Algebra. Chih-Wei Yi. Dept. of Computer Science National Chiao Tung University. November 12, 2008 Linear Algebra Chih-Wei Yi Dept. of Computer Science National Chiao Tung University November, 008 Section De nition and Examples Section De nition and Examples Section De nition and Examples De nition

More information

Matrix invertibility. Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n

Matrix invertibility. Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n Matrix invertibility Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n Corollary: Let A be an R C matrix. Then A is invertible if and only if R = C and the columns of A are linearly

More information

Chapter 5 Eigenvalues and Eigenvectors

Chapter 5 Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n

More information

March 27 Math 3260 sec. 56 Spring 2018

March 27 Math 3260 sec. 56 Spring 2018 March 27 Math 3260 sec. 56 Spring 2018 Section 4.6: Rank Definition: The row space, denoted Row A, of an m n matrix A is the subspace of R n spanned by the rows of A. We now have three vector spaces associated

More information

18.06 Spring 2012 Problem Set 3

18.06 Spring 2012 Problem Set 3 8.6 Spring 22 Problem Set 3 This problem set is due Thursday, March, 22 at 4pm (hand in to Room 2-6). The textbook problems are out of the 4th edition. For computational problems, please include a printout

More information

Index. book 2009/5/27 page 121. (Page numbers set in bold type indicate the definition of an entry.)

Index. book 2009/5/27 page 121. (Page numbers set in bold type indicate the definition of an entry.) page 121 Index (Page numbers set in bold type indicate the definition of an entry.) A absolute error...26 componentwise...31 in subtraction...27 normwise...31 angle in least squares problem...98,99 approximation

More information

Chapter 2 Subspaces of R n and Their Dimensions

Chapter 2 Subspaces of R n and Their Dimensions Chapter 2 Subspaces of R n and Their Dimensions Vector Space R n. R n Definition.. The vector space R n is a set of all n-tuples (called vectors) x x 2 x =., where x, x 2,, x n are real numbers, together

More information

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MATH 3 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left

More information

Homework 5. (due Wednesday 8 th Nov midnight)

Homework 5. (due Wednesday 8 th Nov midnight) Homework (due Wednesday 8 th Nov midnight) Use this definition for Column Space of a Matrix Column Space of a matrix A is the set ColA of all linear combinations of the columns of A. In other words, if

More information

What is A + B? What is A B? What is AB? What is BA? What is A 2? and B = QUESTION 2. What is the reduced row echelon matrix of A =

What is A + B? What is A B? What is AB? What is BA? What is A 2? and B = QUESTION 2. What is the reduced row echelon matrix of A = STUDENT S COMPANIONS IN BASIC MATH: THE ELEVENTH Matrix Reloaded by Block Buster Presumably you know the first part of matrix story, including its basic operations (addition and multiplication) and row

More information

Lecture 23: 6.1 Inner Products

Lecture 23: 6.1 Inner Products Lecture 23: 6.1 Inner Products Wei-Ta Chu 2008/12/17 Definition An inner product on a real vector space V is a function that associates a real number u, vwith each pair of vectors u and v in V in such

More information

MATH 235: Inner Product Spaces, Assignment 7

MATH 235: Inner Product Spaces, Assignment 7 MATH 235: Inner Product Spaces, Assignment 7 Hand in questions 3,4,5,6,9, by 9:3 am on Wednesday March 26, 28. Contents Orthogonal Basis for Inner Product Space 2 2 Inner-Product Function Space 2 3 Weighted

More information

May 9, 2014 MATH 408 MIDTERM EXAM OUTLINE. Sample Questions

May 9, 2014 MATH 408 MIDTERM EXAM OUTLINE. Sample Questions May 9, 24 MATH 48 MIDTERM EXAM OUTLINE This exam will consist of two parts and each part will have multipart questions. Each of the 6 questions is worth 5 points for a total of points. The two part of

More information

Dimension and Structure

Dimension and Structure 96 Chapter 7 Dimension and Structure 7.1 Basis and Dimensions Bases for Subspaces Definition 7.1.1. A set of vectors in a subspace V of R n is said to be a basis for V if it is linearly independent and

More information

Math 308 Practice Test for Final Exam Winter 2015

Math 308 Practice Test for Final Exam Winter 2015 Math 38 Practice Test for Final Exam Winter 25 No books are allowed during the exam. But you are allowed one sheet ( x 8) of handwritten notes (back and front). You may use a calculator. For TRUE/FALSE

More information

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax = . (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)

More information

Linear Algebra in A Nutshell

Linear Algebra in A Nutshell Linear Algebra in A Nutshell Gilbert Strang Computational Science and Engineering Wellesley-Cambridge Press. 2007. Outline 1 Matrix Singularity 2 Matrix Multiplication by Columns or Rows Rank and nullspace

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

SUMMARY OF MATH 1600

SUMMARY OF MATH 1600 SUMMARY OF MATH 1600 Note: The following list is intended as a study guide for the final exam. It is a continuation of the study guide for the midterm. It does not claim to be a comprehensive list. You

More information

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg Linear Algebra, part 3 Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2010 Going back to least squares (Sections 1.7 and 2.3 from Strang). We know from before: The vector

More information

Answer Key for Exam #2

Answer Key for Exam #2 . Use elimination on an augmented matrix: Answer Key for Exam # 4 4 8 4 4 4 The fourth column has no pivot, so x 4 is a free variable. The corresponding system is x + x 4 =, x =, x x 4 = which we solve

More information

x = t 1 x 1 + t 2 x t k x k

x = t 1 x 1 + t 2 x t k x k Def.: Given vectors x,...,x k in R n, the set of all their linear combinations is called their span, and is denoted by span(x,...,x k ) Thm.: span(x,...,x k ) is a subspace of R n Def.: If V is a subspace

More information

Linear Systems. Carlo Tomasi. June 12, r = rank(a) b range(a) n r solutions

Linear Systems. Carlo Tomasi. June 12, r = rank(a) b range(a) n r solutions Linear Systems Carlo Tomasi June, 08 Section characterizes the existence and multiplicity of the solutions of a linear system in terms of the four fundamental spaces associated with the system s matrix

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

Image Registration Lecture 2: Vectors and Matrices

Image Registration Lecture 2: Vectors and Matrices Image Registration Lecture 2: Vectors and Matrices Prof. Charlene Tsai Lecture Overview Vectors Matrices Basics Orthogonal matrices Singular Value Decomposition (SVD) 2 1 Preliminary Comments Some of this

More information

Notes on Solving Linear Least-Squares Problems

Notes on Solving Linear Least-Squares Problems Notes on Solving Linear Least-Squares Problems Robert A. van de Geijn The University of Texas at Austin Austin, TX 7871 October 1, 14 NOTE: I have not thoroughly proof-read these notes!!! 1 Motivation

More information