Time Indexed Hierarchical Relative Entropy Policy Search

Size: px
Start display at page:

Download "Time Indexed Hierarchical Relative Entropy Policy Search"

Transcription

1 Time Indexed Hierarchical Relative Entropy Policy Search Florentin Mehlbeer June 19, / 15

2 Structure Introduction Reinforcement Learning Relative Entropy Policy Search Hierarchical Relative Entropy Policy Search Time Indexed Hierarchical Relative Entropy Policy Search Evaluation Conclusion References 2 / 15

3 Introduction Example: Texas Hold em Poker Every player gets 2 (pocket-)cards initially In 3 steps 5 (community-)cards are shown: Flop (3), Turn (1), River (1) Betting rounds between the stages Remaining player having the best cards (pocket cards + community cards) wins the chips Question: Optimal strategy? 3 / 15

4 Reinforcement Learning Problem Statement Given a set of states S = {s 1, s 2,..., s n } and actions A = {a 1, a 2,..., a m } find a policy π (a s) : V A [0, 1] maximizing the expected return J (π) Reward R a s is collected for every state transition Transition probabilities P a s t 4 / 15

5 Reinforcement Learning Policy Iteration of Actor-Critic Methods State-value function V π : S R yields (approximate) expected future return for every state s S Therefore V π 1 (s) V π 2 (s) s S iff π 1 is better than π 2 while not converged 1. Policy Evaluation Estimate current policy π by calculating its state-value function V π 2. Policy Improvement Generate samples by executing the current policy π and observe rewards Compute error (critic) Adjust the policy s probabilities accordingly 5 / 15

6 Relative Entropy Policy Search Problem Statement Maximize the expected return max p J (π) = max p so that in every iteration s S,a A D (p q) = p (s, a) log µ (s) π (a s) }{{} p(s,a) p (s, a) q (s, a) ɛ Analytical solution yields ( ) q (s, a) exp 1 η δ (s, a) p (s, a) = ( ) b A q (s, b) exp 1 η δ (s, b) R a s 6 / 15

7 Relative Entropy Policy Search Algorithm while not converged do Obtain N samples (s i, a i, t i, r i ) using current policy π k for i = 1 N do δ (s i, a i ) δ (s i, a i ) + [r i + V (t i ) V (s i )] end for (η, V ) Solve Optimization problem π k+1 (a s) = p(s,a) b A p(s,b) end while 7 / 15

8 Hierarchical Relative Entropy Policy Search Idea Goal: Versatile solutions with hierarchical structure Introduce high level actions called options O = {o 1, o 2,..., o n } Option = Sequence of actions Execute 1 option per episode 2 policies needed Supervisory Policy: π (o s) Sub-policy: π (a o, s) 8 / 15

9 Hierarchical Relative Entropy Policy Search Approach Goal: Determine p (s, a, o) Problem: Marginals q (s, a) can be sampled only Idea: Treat both policies as one mixture-of-options policy π (a s) = o O π (o s) π (a o, s) and compute responsibilities p (o s, a) p (o s, a) = q (o s, a) Additional constraint: Bound Entropy of responsibilities p (o s, a) log p (o s, a) κ s S,a A p (s, a) o O Analytical solution yields p (s, a, o) = ( ) q (s, a) p (o s, a) 1+η/ξ exp 1 η δ (s, a) ( ) b A q (s, b) p (o s, b)1+η/ξ exp 1 η δ (s, b) 9 / 15

10 Hierarchical Relative Entropy Policy Search Algorithm while not converged do Obtain N samples (s i, a i, t i, r i ) using current policy π k for i = 1 N do δ (s i, a i ) δ (s i, a i ) + [r i + V (t i ) V (s i )] end for (η, ξ, V ) Solve Optimization problem π k+1 (o s) = π k+1 (a o, s) = end while a A p(s,a,o) t S,a A p(t,a,o) p(s,a,o) b A p(s,b,o) 10 / 15

11 Time Indexed Hierarchical Relative Entropy Policy Search Idea and approach Idea Sequences of L options to reach a certain goal Execute 1 sequence per episode Each option takes 1 of the L time steps Approach Expected return J (π) = L µ L+1 (s) r (s) + µ l (s) π l (a s) s S Known constraints for each l l=1 s S,a A 11 / 15

12 Time Indexed Hierarchical Relative Entropy Policy Search Algorithm while not converged do for l = 1 L do Obtain N samples (s l,i, a l,i, t l,i, r l,i ) using cur. policy π k,l for i = 1 N do δ l (s l,i, a l,i ) δ l (s l,i, a l,i ) + [r l,i + V (t l,i ) V (s l,i )] end for end for (η, ξ, V) Solve Optimization problem for l = 1 L do a A π k+1,l (o s) = p l (s,a,o) end for end while π k+1,l (a o, s) = t S,a A p l (t,a,o) p l (s,a,o) b A p l (s,b,o) 12 / 15

13 Evaluation 13 / 15

14 Conclusion Reinforcement Learning: Improving and executing a policy iteratively REPS solves RL Problem while bounding the KL-Divergence of 2 subsequent state-action distributions Extension to HiREPS introducing options Time Indexed HiREPS: Sequencing of options Applications in sequencing motor tasks 14 / 15

15 References [ 1 ] R. Sutton, A. Barto; Reinforcement Learning: An Introduction; 2005 [ 2 ] J. Peters, K. Mülling, Y. Altün; Relative Entropy Policy Search; 2010 [ 3 ] C. Daniel, G. Neumann, J. Peters; Hierarchical Relative Entropy Policy Search; 2012 [ 4 ] C. Daniel, G. Neumann, O. Kroemer, J. Peters; Learning Sequential Motor Tasks; 2013 [ 5 ] R. Sutton, D. Precup, S. Singh; Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning; / 15

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015

Christopher Watkins and Peter Dayan. Noga Zaslavsky. The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Q-Learning Christopher Watkins and Peter Dayan Noga Zaslavsky The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (67679) November 1, 2015 Noga Zaslavsky Q-Learning (Watkins & Dayan, 1992)

More information

EM-based Reinforcement Learning

EM-based Reinforcement Learning EM-based Reinforcement Learning Gerhard Neumann 1 1 TU Darmstadt, Intelligent Autonomous Systems December 21, 2011 Outline Expectation Maximization (EM)-based Reinforcement Learning Recap : Modelling data

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Markov decision process & Dynamic programming Evaluative feedback, value function, Bellman equation, optimality, Markov property, Markov decision process, dynamic programming, value

More information

Machine Learning I Reinforcement Learning

Machine Learning I Reinforcement Learning Machine Learning I Reinforcement Learning Thomas Rückstieß Technische Universität München December 17/18, 2009 Literature Book: Reinforcement Learning: An Introduction Sutton & Barto (free online version:

More information

Introduction to Reinforcement Learning. Part 6: Core Theory II: Bellman Equations and Dynamic Programming

Introduction to Reinforcement Learning. Part 6: Core Theory II: Bellman Equations and Dynamic Programming Introduction to Reinforcement Learning Part 6: Core Theory II: Bellman Equations and Dynamic Programming Bellman Equations Recursive relationships among values that can be used to compute values The tree

More information

(Deep) Reinforcement Learning

(Deep) Reinforcement Learning Martin Matyášek Artificial Intelligence Center Czech Technical University in Prague October 27, 2016 Martin Matyášek VPD, 2016 1 / 17 Reinforcement Learning in a picture R. S. Sutton and A. G. Barto 2015

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Temporal Difference Learning Temporal difference learning, TD prediction, Q-learning, elibigility traces. (many slides from Marc Toussaint) Vien Ngo Marc Toussaint University of

More information

Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department

Dialogue management: Parametric approaches to policy optimisation. Dialogue Systems Group, Cambridge University Engineering Department Dialogue management: Parametric approaches to policy optimisation Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department 1 / 30 Dialogue optimisation as a reinforcement learning

More information

Reinforcement Learning and NLP

Reinforcement Learning and NLP 1 Reinforcement Learning and NLP Kapil Thadani kapil@cs.columbia.edu RESEARCH Outline 2 Model-free RL Markov decision processes (MDPs) Derivative-free optimization Policy gradients Variance reduction Value

More information

The Reinforcement Learning Problem

The Reinforcement Learning Problem The Reinforcement Learning Problem Slides based on the book Reinforcement Learning by Sutton and Barto Formalizing Reinforcement Learning Formally, the agent and environment interact at each of a sequence

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ Task Grasp the green cup. Output: Sequence of controller actions Setup from Lenz et. al.

More information

Deep Reinforcement Learning

Deep Reinforcement Learning Martin Matyášek Artificial Intelligence Center Czech Technical University in Prague October 27, 2016 Martin Matyášek VPD, 2016 1 / 50 Reinforcement Learning in a picture R. S. Sutton and A. G. Barto 2015

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Temporal Difference Learning Temporal difference learning, TD prediction, Q-learning, elibigility traces. (many slides from Marc Toussaint) Vien Ngo MLR, University of Stuttgart

More information

Reading Response: Due Wednesday. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Reading Response: Due Wednesday. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Reading Response: Due Wednesday R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Another Example Get to the top of the hill as quickly as possible. reward = 1 for each step where

More information

Lecture 3: The Reinforcement Learning Problem

Lecture 3: The Reinforcement Learning Problem Lecture 3: The Reinforcement Learning Problem Objectives of this lecture: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Relative Entropy Policy Search

Relative Entropy Policy Search Relative Entropy Policy Search Jan Peters, Katharina Mülling, Yasemin Altün Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany {jrpeters,muelling,altun}@tuebingen.mpg.de

More information

Lecture 9: Policy Gradient II 1

Lecture 9: Policy Gradient II 1 Lecture 9: Policy Gradient II 1 Emma Brunskill CS234 Reinforcement Learning. Winter 2019 Additional reading: Sutton and Barto 2018 Chp. 13 1 With many slides from or derived from David Silver and John

More information

Lecture 9: Policy Gradient II (Post lecture) 2

Lecture 9: Policy Gradient II (Post lecture) 2 Lecture 9: Policy Gradient II (Post lecture) 2 Emma Brunskill CS234 Reinforcement Learning. Winter 2018 Additional reading: Sutton and Barto 2018 Chp. 13 2 With many slides from or derived from David Silver

More information

Reinforcement Learning. George Konidaris

Reinforcement Learning. George Konidaris Reinforcement Learning George Konidaris gdk@cs.brown.edu Fall 2017 Machine Learning Subfield of AI concerned with learning from data. Broadly, using: Experience To Improve Performance On Some Task (Tom

More information

Coarticulation in Markov Decision Processes

Coarticulation in Markov Decision Processes Coarticulation in Markov Decision Processes Khashayar Rohanimanesh Department of Computer Science University of Massachusetts Amherst, MA 01003 khash@cs.umass.edu Sridhar Mahadevan Department of Computer

More information

Trust Region Policy Optimization

Trust Region Policy Optimization Trust Region Policy Optimization Yixin Lin Duke University yixin.lin@duke.edu March 28, 2017 Yixin Lin (Duke) TRPO March 28, 2017 1 / 21 Overview 1 Preliminaries Markov Decision Processes Policy iteration

More information

Chapter 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Chapter 7: Eligibility Traces. R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Chapter 7: Eligibility Traces R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1 Midterm Mean = 77.33 Median = 82 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Reinforcement learning Daniel Hennes 4.12.2017 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Reinforcement learning Model based and

More information

Machine Learning. Reinforcement learning. Hamid Beigy. Sharif University of Technology. Fall 1396

Machine Learning. Reinforcement learning. Hamid Beigy. Sharif University of Technology. Fall 1396 Machine Learning Reinforcement learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Machine Learning Fall 1396 1 / 32 Table of contents 1 Introduction

More information

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning

REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning REINFORCE Framework for Stochastic Policy Optimization and its use in Deep Learning Ronen Tamari The Hebrew University of Jerusalem Advanced Seminar in Deep Learning (#67679) February 28, 2016 Ronen Tamari

More information

Fictitious Self-Play in Extensive-Form Games

Fictitious Self-Play in Extensive-Form Games Johannes Heinrich, Marc Lanctot, David Silver University College London, Google DeepMind July 9, 05 Problem Learn from self-play in games with imperfect information. Games: Multi-agent decision making

More information

MDP Preliminaries. Nan Jiang. February 10, 2019

MDP Preliminaries. Nan Jiang. February 10, 2019 MDP Preliminaries Nan Jiang February 10, 2019 1 Markov Decision Processes In reinforcement learning, the interactions between the agent and the environment are often described by a Markov Decision Process

More information

Reinforcement Learning. Machine Learning, Fall 2010

Reinforcement Learning. Machine Learning, Fall 2010 Reinforcement Learning Machine Learning, Fall 2010 1 Administrativia This week: finish RL, most likely start graphical models LA2: due on Thursday LA3: comes out on Thursday TA Office hours: Today 1:30-2:30

More information

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro

CMU Lecture 12: Reinforcement Learning. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 12: Reinforcement Learning Teacher: Gianni A. Di Caro REINFORCEMENT LEARNING Transition Model? State Action Reward model? Agent Goal: Maximize expected sum of future rewards 2 MDP PLANNING

More information

Policy Search for Path Integral Control

Policy Search for Path Integral Control Policy Search for Path Integral Control Vicenç Gómez 1,2, Hilbert J Kappen 2, Jan Peters 3,4, and Gerhard Neumann 3 1 Universitat Pompeu Fabra, Barcelona Department of Information and Communication Technologies,

More information

Reinforcement Learning for Continuous. Action using Stochastic Gradient Ascent. Hajime KIMURA, Shigenobu KOBAYASHI JAPAN

Reinforcement Learning for Continuous. Action using Stochastic Gradient Ascent. Hajime KIMURA, Shigenobu KOBAYASHI JAPAN Reinforcement Learning for Continuous Action using Stochastic Gradient Ascent Hajime KIMURA, Shigenobu KOBAYASHI Tokyo Institute of Technology, 4259 Nagatsuda, Midori-ku Yokohama 226-852 JAPAN Abstract:

More information

Monte Carlo is important in practice. CSE 190: Reinforcement Learning: An Introduction. Chapter 6: Temporal Difference Learning.

Monte Carlo is important in practice. CSE 190: Reinforcement Learning: An Introduction. Chapter 6: Temporal Difference Learning. Monte Carlo is important in practice CSE 190: Reinforcement Learning: An Introduction Chapter 6: emporal Difference Learning When there are just a few possibilitieo value, out of a large state space, Monte

More information

State Space Abstractions for Reinforcement Learning

State Space Abstractions for Reinforcement Learning State Space Abstractions for Reinforcement Learning Rowan McAllister and Thang Bui MLG RCC 6 November 24 / 24 Outline Introduction Markov Decision Process Reinforcement Learning State Abstraction 2 Abstraction

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

Reinforcement Learning as Variational Inference: Two Recent Approaches

Reinforcement Learning as Variational Inference: Two Recent Approaches Reinforcement Learning as Variational Inference: Two Recent Approaches Rohith Kuditipudi Duke University 11 August 2017 Outline 1 Background 2 Stein Variational Policy Gradient 3 Soft Q-Learning 4 Closing

More information

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation

Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation Lecture 3: Policy Evaluation Without Knowing How the World Works / Model Free Policy Evaluation CS234: RL Emma Brunskill Winter 2018 Material builds on structure from David SIlver s Lecture 4: Model-Free

More information

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer.

This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. This question has three parts, each of which can be answered concisely, but be prepared to explain and justify your concise answer. 1. Suppose you have a policy and its action-value function, q, then you

More information

Lecture 8: Policy Gradient I 2

Lecture 8: Policy Gradient I 2 Lecture 8: Policy Gradient I 2 Emma Brunskill CS234 Reinforcement Learning. Winter 2018 Additional reading: Sutton and Barto 2018 Chp. 13 2 With many slides from or derived from David Silver and John Schulman

More information

Temporal Difference Learning & Policy Iteration

Temporal Difference Learning & Policy Iteration Temporal Difference Learning & Policy Iteration Advanced Topics in Reinforcement Learning Seminar WS 15/16 ±0 ±0 +1 by Tobias Joppen 03.11.2015 Fachbereich Informatik Knowledge Engineering Group Prof.

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Model-Based Reinforcement Learning Model-based, PAC-MDP, sample complexity, exploration/exploitation, RMAX, E3, Bayes-optimal, Bayesian RL, model learning Vien Ngo MLR, University

More information

The convergence limit of the temporal difference learning

The convergence limit of the temporal difference learning The convergence limit of the temporal difference learning Ryosuke Nomura the University of Tokyo September 3, 2013 1 Outline Reinforcement Learning Convergence limit Construction of the feature vector

More information

Machine Learning. Machine Learning: Jordan Boyd-Graber University of Maryland REINFORCEMENT LEARNING. Slides adapted from Tom Mitchell and Peter Abeel

Machine Learning. Machine Learning: Jordan Boyd-Graber University of Maryland REINFORCEMENT LEARNING. Slides adapted from Tom Mitchell and Peter Abeel Machine Learning Machine Learning: Jordan Boyd-Graber University of Maryland REINFORCEMENT LEARNING Slides adapted from Tom Mitchell and Peter Abeel Machine Learning: Jordan Boyd-Graber UMD Machine Learning

More information

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Artificial Intelligence Review manuscript No. (will be inserted by the editor) Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Mostafa D. Awheda Howard M. Schwartz Received:

More information

University of Alberta

University of Alberta University of Alberta NEW REPRESENTATIONS AND APPROXIMATIONS FOR SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY by Tao Wang A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

More information

Reinforcement Learning II. George Konidaris

Reinforcement Learning II. George Konidaris Reinforcement Learning II George Konidaris gdk@cs.brown.edu Fall 2017 Reinforcement Learning π : S A max R = t=0 t r t MDPs Agent interacts with an environment At each time t: Receives sensor signal Executes

More information

arxiv: v1 [cs.ai] 5 Nov 2017

arxiv: v1 [cs.ai] 5 Nov 2017 arxiv:1711.01569v1 [cs.ai] 5 Nov 2017 Markus Dumke Department of Statistics Ludwig-Maximilians-Universität München markus.dumke@campus.lmu.de Abstract Temporal-difference (TD) learning is an important

More information

Reinforcement Learning: An Introduction

Reinforcement Learning: An Introduction Introduction Betreuer: Freek Stulp Hauptseminar Intelligente Autonome Systeme (WiSe 04/05) Forschungs- und Lehreinheit Informatik IX Technische Universität München November 24, 2004 Introduction What is

More information

Reinforcement Learning II. George Konidaris

Reinforcement Learning II. George Konidaris Reinforcement Learning II George Konidaris gdk@cs.brown.edu Fall 2018 Reinforcement Learning π : S A max R = t=0 t r t MDPs Agent interacts with an environment At each time t: Receives sensor signal Executes

More information

15-780: Graduate Artificial Intelligence. Reinforcement learning (RL)

15-780: Graduate Artificial Intelligence. Reinforcement learning (RL) 15-780: Graduate Artificial Intelligence Reinforcement learning (RL) From MDPs to RL We still use the same Markov model with rewards and actions But there are a few differences: 1. We do not assume we

More information

Stochastic Primal-Dual Methods for Reinforcement Learning

Stochastic Primal-Dual Methods for Reinforcement Learning Stochastic Primal-Dual Methods for Reinforcement Learning Alireza Askarian 1 Amber Srivastava 1 1 Department of Mechanical Engineering University of Illinois at Urbana Champaign Big Data Optimization,

More information

Exercises, II part Exercises, II part

Exercises, II part Exercises, II part Inference: 12 Jul 2012 Consider the following Joint Probability Table for the three binary random variables A, B, C. Compute the following queries: 1 P(C A=T,B=T) 2 P(C A=T) P(A, B, C) A B C 0.108 T T

More information

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction

MS&E338 Reinforcement Learning Lecture 1 - April 2, Introduction MS&E338 Reinforcement Learning Lecture 1 - April 2, 2018 Introduction Lecturer: Ben Van Roy Scribe: Gabriel Maher 1 Reinforcement Learning Introduction In reinforcement learning (RL) we consider an agent

More information

Actor-critic methods. Dialogue Systems Group, Cambridge University Engineering Department. February 21, 2017

Actor-critic methods. Dialogue Systems Group, Cambridge University Engineering Department. February 21, 2017 Actor-critic methods Milica Gašić Dialogue Systems Group, Cambridge University Engineering Department February 21, 2017 1 / 21 In this lecture... The actor-critic architecture Least-Squares Policy Iteration

More information

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm

Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Balancing and Control of a Freely-Swinging Pendulum Using a Model-Free Reinforcement Learning Algorithm Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 2778 mgl@cs.duke.edu

More information

Q-Learning in Continuous State Action Spaces

Q-Learning in Continuous State Action Spaces Q-Learning in Continuous State Action Spaces Alex Irpan alexirpan@berkeley.edu December 5, 2015 Contents 1 Introduction 1 2 Background 1 3 Q-Learning 2 4 Q-Learning In Continuous Spaces 4 5 Experimental

More information

Lecture 23: Reinforcement Learning

Lecture 23: Reinforcement Learning Lecture 23: Reinforcement Learning MDPs revisited Model-based learning Monte Carlo value function estimation Temporal-difference (TD) learning Exploration November 23, 2006 1 COMP-424 Lecture 23 Recall:

More information

Active Policy Iteration: Efficient Exploration through Active Learning for Value Function Approximation in Reinforcement Learning

Active Policy Iteration: Efficient Exploration through Active Learning for Value Function Approximation in Reinforcement Learning Active Policy Iteration: fficient xploration through Active Learning for Value Function Approximation in Reinforcement Learning Takayuki Akiyama, Hirotaka Hachiya, and Masashi Sugiyama Department of Computer

More information

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms *

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms * Proceedings of the 8 th International Conference on Applied Informatics Eger, Hungary, January 27 30, 2010. Vol. 1. pp. 87 94. Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms

More information

Reinforcement Learning Part 2

Reinforcement Learning Part 2 Reinforcement Learning Part 2 Dipendra Misra Cornell University dkm@cs.cornell.edu https://dipendramisra.wordpress.com/ From previous tutorial Reinforcement Learning Exploration No supervision Agent-Reward-Environment

More information

Reinforcement Learning II

Reinforcement Learning II Reinforcement Learning II Andrea Bonarini Artificial Intelligence and Robotics Lab Department of Electronics and Information Politecnico di Milano E-mail: bonarini@elet.polimi.it URL:http://www.dei.polimi.it/people/bonarini

More information

Open Theoretical Questions in Reinforcement Learning

Open Theoretical Questions in Reinforcement Learning Open Theoretical Questions in Reinforcement Learning Richard S. Sutton AT&T Labs, Florham Park, NJ 07932, USA, sutton@research.att.com, www.cs.umass.edu/~rich Reinforcement learning (RL) concerns the problem

More information

An Adaptive Clustering Method for Model-free Reinforcement Learning

An Adaptive Clustering Method for Model-free Reinforcement Learning An Adaptive Clustering Method for Model-free Reinforcement Learning Andreas Matt and Georg Regensburger Institute of Mathematics University of Innsbruck, Austria {andreas.matt, georg.regensburger}@uibk.ac.at

More information

Coarticulation in Markov Decision Processes Khashayar Rohanimanesh Robert Platt Sridhar Mahadevan Roderic Grupen CMPSCI Technical Report 04-33

Coarticulation in Markov Decision Processes Khashayar Rohanimanesh Robert Platt Sridhar Mahadevan Roderic Grupen CMPSCI Technical Report 04-33 Coarticulation in Markov Decision Processes Khashayar Rohanimanesh Robert Platt Sridhar Mahadevan Roderic Grupen CMPSCI Technical Report 04- June, 2004 Department of Computer Science University of Massachusetts

More information

Lecture 25: Learning 4. Victor R. Lesser. CMPSCI 683 Fall 2010

Lecture 25: Learning 4. Victor R. Lesser. CMPSCI 683 Fall 2010 Lecture 25: Learning 4 Victor R. Lesser CMPSCI 683 Fall 2010 Final Exam Information Final EXAM on Th 12/16 at 4:00pm in Lederle Grad Res Ctr Rm A301 2 Hours but obviously you can leave early! Open Book

More information

Online regret in reinforcement learning

Online regret in reinforcement learning University of Leoben, Austria Tübingen, 31 July 2007 Undiscounted online regret I am interested in the difference (in rewards during learning) between an optimal policy and a reinforcement learner: T T

More information

Batch, Off-policy and Model-free Apprenticeship Learning

Batch, Off-policy and Model-free Apprenticeship Learning Batch, Off-policy and Model-free Apprenticeship Learning Edouard Klein 13, Matthieu Geist 1, and Olivier Pietquin 12 1. Supélec-Metz Campus, IMS Research group, France, prenom.nom@supelec.fr 2. UMI 2958

More information

A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation

A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation A reinforcement learning scheme for a multi-agent card game with Monte Carlo state estimation Hajime Fujita and Shin Ishii, Nara Institute of Science and Technology 8916 5 Takayama, Ikoma, 630 0192 JAPAN

More information

Reinforcement Learning. Introduction

Reinforcement Learning. Introduction Reinforcement Learning Introduction Reinforcement Learning Agent interacts and learns from a stochastic environment Science of sequential decision making Many faces of reinforcement learning Optimal control

More information

Policy Search for Path Integral Control

Policy Search for Path Integral Control Policy Search for Path Integral Control Vicenç Gómez 1,2, Hilbert J Kappen 2,JanPeters 3,4, and Gerhard Neumann 3 1 Universitat Pompeu Fabra, Barcelona Department of Information and Communication Technologies,

More information

Computational Reinforcement Learning: An Introduction

Computational Reinforcement Learning: An Introduction Computational Reinforcement Learning: An Introduction Andrew Barto Autonomous Learning Laboratory School of Computer Science University of Massachusetts Amherst barto@cs.umass.edu 1 Artificial Intelligence

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 23: Markov Decision Processes Policy Iteration Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology December

More information

Lecture 3: Markov Decision Processes

Lecture 3: Markov Decision Processes Lecture 3: Markov Decision Processes Joseph Modayil 1 Markov Processes 2 Markov Reward Processes 3 Markov Decision Processes 4 Extensions to MDPs Markov Processes Introduction Introduction to MDPs Markov

More information

Progress in Learning 3 vs. 2 Keepaway

Progress in Learning 3 vs. 2 Keepaway Progress in Learning 3 vs. 2 Keepaway Gregory Kuhlmann Department of Computer Sciences University of Texas at Austin Joint work with Peter Stone RoboCup and Reinforcement Learning Reinforcement Learning

More information

Introduction to Reinforcement Learning

Introduction to Reinforcement Learning Introduction to Reinforcement Learning Rémi Munos SequeL project: Sequential Learning http://researchers.lille.inria.fr/ munos/ INRIA Lille - Nord Europe Machine Learning Summer School, September 2011,

More information

In Advances in Neural Information Processing Systems 6. J. D. Cowan, G. Tesauro and. Convergence of Indirect Adaptive. Andrew G.

In Advances in Neural Information Processing Systems 6. J. D. Cowan, G. Tesauro and. Convergence of Indirect Adaptive. Andrew G. In Advances in Neural Information Processing Systems 6. J. D. Cowan, G. Tesauro and J. Alspector, (Eds.). Morgan Kaufmann Publishers, San Fancisco, CA. 1994. Convergence of Indirect Adaptive Asynchronous

More information

Multiagent (Deep) Reinforcement Learning

Multiagent (Deep) Reinforcement Learning Multiagent (Deep) Reinforcement Learning MARTIN PILÁT (MARTIN.PILAT@MFF.CUNI.CZ) Reinforcement learning The agent needs to learn to perform tasks in environment No prior knowledge about the effects of

More information

Exploration. 2015/10/12 John Schulman

Exploration. 2015/10/12 John Schulman Exploration 2015/10/12 John Schulman What is the exploration problem? Given a long-lived agent (or long-running learning algorithm), how to balance exploration and exploitation to maximize long-term rewards

More information

ilstd: Eligibility Traces and Convergence Analysis

ilstd: Eligibility Traces and Convergence Analysis ilstd: Eligibility Traces and Convergence Analysis Alborz Geramifard Michael Bowling Martin Zinkevich Richard S. Sutton Department of Computing Science University of Alberta Edmonton, Alberta {alborz,bowling,maz,sutton}@cs.ualberta.ca

More information

Reinforcement Learning In Continuous Time and Space

Reinforcement Learning In Continuous Time and Space Reinforcement Learning In Continuous Time and Space presentation of paper by Kenji Doya Leszek Rybicki lrybicki@mat.umk.pl 18.07.2008 Leszek Rybicki lrybicki@mat.umk.pl Reinforcement Learning In Continuous

More information

Tutorial on Policy Gradient Methods. Jan Peters

Tutorial on Policy Gradient Methods. Jan Peters Tutorial on Policy Gradient Methods Jan Peters Outline 1. Reinforcement Learning 2. Finite Difference vs Likelihood-Ratio Policy Gradients 3. Likelihood-Ratio Policy Gradients 4. Conclusion General Setup

More information

Efficient Learning in Linearly Solvable MDP Models

Efficient Learning in Linearly Solvable MDP Models Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Efficient Learning in Linearly Solvable MDP Models Ang Li Department of Computer Science, University of Minnesota

More information

Learning Control for Air Hockey Striking using Deep Reinforcement Learning

Learning Control for Air Hockey Striking using Deep Reinforcement Learning Learning Control for Air Hockey Striking using Deep Reinforcement Learning Ayal Taitler, Nahum Shimkin Faculty of Electrical Engineering Technion - Israel Institute of Technology May 8, 2017 A. Taitler,

More information

Replacing eligibility trace for action-value learning with function approximation

Replacing eligibility trace for action-value learning with function approximation Replacing eligibility trace for action-value learning with function approximation Kary FRÄMLING Helsinki University of Technology PL 5500, FI-02015 TKK - Finland Abstract. The eligibility trace is one

More information

Chapter 3: The Reinforcement Learning Problem

Chapter 3: The Reinforcement Learning Problem Chapter 3: The Reinforcement Learning Problem Objectives of this chapter: describe the RL problem we will be studying for the remainder of the course present idealized form of the RL problem for which

More information

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Mostafa D. Awheda Department of Systems and Computer Engineering Carleton University Ottawa, Canada KS 5B6 Email: mawheda@sce.carleton.ca

More information

Toward Good Abstractions for Lifelong Learning

Toward Good Abstractions for Lifelong Learning Toward Good Abstractions for Lifelong Learning David Abel, Dilip Arumugam, Lucas Lehnert, Michael L. Littman Department of Computer Science Brown University Providence, RI 02906 {david abel,dilip arumugam,lucas

More information

David Silver, Google DeepMind

David Silver, Google DeepMind Tutorial: Deep Reinforcement Learning David Silver, Google DeepMind Outline Introduction to Deep Learning Introduction to Reinforcement Learning Value-Based Deep RL Policy-Based Deep RL Model-Based Deep

More information

Module 8 Linear Programming. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo

Module 8 Linear Programming. CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo Module 8 Linear Programming CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo Policy Optimization Value and policy iteration Iterative algorithms that implicitly solve

More information

Approximate Optimal-Value Functions. Satinder P. Singh Richard C. Yee. University of Massachusetts.

Approximate Optimal-Value Functions. Satinder P. Singh Richard C. Yee. University of Massachusetts. An Upper Bound on the oss from Approximate Optimal-Value Functions Satinder P. Singh Richard C. Yee Department of Computer Science University of Massachusetts Amherst, MA 01003 singh@cs.umass.edu, yee@cs.umass.edu

More information

I D I A P. Online Policy Adaptation for Ensemble Classifiers R E S E A R C H R E P O R T. Samy Bengio b. Christos Dimitrakakis a IDIAP RR 03-69

I D I A P. Online Policy Adaptation for Ensemble Classifiers R E S E A R C H R E P O R T. Samy Bengio b. Christos Dimitrakakis a IDIAP RR 03-69 R E S E A R C H R E P O R T Online Policy Adaptation for Ensemble Classifiers Christos Dimitrakakis a IDIAP RR 03-69 Samy Bengio b I D I A P December 2003 D a l l e M o l l e I n s t i t u t e for Perceptual

More information

A Polynomial-time Nash Equilibrium Algorithm for Repeated Games

A Polynomial-time Nash Equilibrium Algorithm for Repeated Games A Polynomial-time Nash Equilibrium Algorithm for Repeated Games Michael L. Littman mlittman@cs.rutgers.edu Rutgers University Peter Stone pstone@cs.utexas.edu The University of Texas at Austin Main Result

More information

Learning Control Under Uncertainty: A Probabilistic Value-Iteration Approach

Learning Control Under Uncertainty: A Probabilistic Value-Iteration Approach Learning Control Under Uncertainty: A Probabilistic Value-Iteration Approach B. Bischoff 1, D. Nguyen-Tuong 1,H.Markert 1 anda.knoll 2 1- Robert Bosch GmbH - Corporate Research Robert-Bosch-Str. 2, 71701

More information

CS599 Lecture 2 Function Approximation in RL

CS599 Lecture 2 Function Approximation in RL CS599 Lecture 2 Function Approximation in RL Look at how experience with a limited part of the state set be used to produce good behavior over a much larger part. Overview of function approximation (FA)

More information

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning

Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Complexity of stochastic branch and bound methods for belief tree search in Bayesian reinforcement learning Christos Dimitrakakis Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1 Reinforcement Learning Mainly based on Reinforcement Learning An Introduction by Richard Sutton and Andrew Barto Slides are mainly based on the course material provided by the

More information

COMP9444 Neural Networks and Deep Learning 10. Deep Reinforcement Learning. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 10. Deep Reinforcement Learning. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 10. Deep Reinforcement Learning COMP9444 17s2 Deep Reinforcement Learning 1 Outline History of Reinforcement Learning Deep Q-Learning for Atari Games Actor-Critic

More information

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization Prof. Daniel Cremers 6. Mixture Models and Expectation-Maximization Motivation Often the introduction of latent (unobserved) random variables into a model can help to express complex (marginal) distributions

More information