Research Article Runge-Kutta Type Methods for Directly Solving Special Fourth-Order Ordinary Differential Equations

Size: px
Start display at page:

Download "Research Article Runge-Kutta Type Methods for Directly Solving Special Fourth-Order Ordinary Differential Equations"

Transcription

1 Hndaw Publhng Corporaton Mathematcal Problem n Engneerng Volume 205, Artcle ID , page Reearch Artcle Runge-Kutta Type Method for Drectly Solvng Specal Fourth-Order Ordnary Dfferental Equaton Kam Huan,,2 Fudzah Imal,,3 and Norazak Senu,3 Department of Mathematc, Faculty of Scence, Unvert Putra Malaya (UPM), Serdang, Selangor, Malaya 2 Department of Mathematc, College of Scence, Al-Mutanrya Unverty, Baghdad, Iraq 3 Inttute for Mathematcal Reearch, Unvert Putra Malaya (UPM), Serdang, Selangor, Malaya Correpondence hould be addreed to Fudzah Imal; Receved 25 May 205; Reved 4 July 205; Accepted 2 July 205 Academc Edtor: Yan-Jun Lu Copyrght 205 Kam Huan et al. Th an open acce artcle dtrbuted under the Creatve Common Attrbuton Lcene, whch permt unretrcted ue, dtrbuton, and reproducton n any medum, provded the orgnal work properly cted. A Runge-Kutta type method for drectly olvng pecal fourth-order ordnary dfferental equaton (ODE) whch denoted by RKFD method contructed. The order condton of RKFD method up to order fve are derved; baed on the order condton, three-tage fourth- and ffth-order Runge-Kutta type method are contructed. Zero-tablty of the RKFD method proven. Numercal reult obtaned are compared wth the extng Runge-Kutta method n the centfc lterature after reducng the problem nto a ytem of frt-order ODE and olvng them. Numercal reult are preented to llutrate the robutne and competency of the new method n term of accuracy and number of functon evaluaton.. Introducton Th paper deal wth the numercal ntegraton of the pecal fourth-order ordnary dfferental equaton (ODE) of the form wth ntal condton y (V) (x) f(x, y), () y(x 0 )y 0, y (x 0 )y 0, y (x 0 )y 0, y (x 0 )y 0, n whch the frt, econd, and thrd dervatve do not appear explctly. Th type of problem often are n many feld of appled cence uch a mechanc, atrophyc, quantum chemtry, and electronc and control engneerng. The general approach for olvng the hgher-order ordnary dfferental equaton (ODE) by tranformng t nto an equvalent frt-order ytem of dfferental equaton and (2) then applyng the approprate numercal method to olve the reultng ytem (ee [ 5]).However,the applcaton of uch technque take a lot of computatonal tme (ee [6, 7]). Drect ntegraton method propoed to avod uch computatonal encumbrance and ncreae the effcency of the method. Many author have propoed everal numercal method for drectly approxmatng the oluton for the hgher-order ODE; for example, Kayode [8] propoed zero-table predctor-corrector method for olvng fourthorder ordnary dfferental equaton. Majd and Suleman [9] derved one pont method to olve ytem of hgherorder ODE. Jan et al. [0] contructed fnte dfference method for olvng fourth-order ODE. Waeleh et al. [] contructed a new block method for olvng drectly hgherorder ODE. Awoyem and Idowu [2] propoedahybrd collocaton method for olvng thrd-order ODE. Hybrd lnearmulttepmethodwththreeteptoolveecondorder ODE wa ntroduced by Jator [3],andallthemethod dcued above are multtep n nature. Th paper prmarly am to contruct a one-tep method of order four and fve to olve pecal fourth-order ODE drectly; thee new method are elf-tartng n nature. The paper organzed a follow. In Secton 2, the dervaton

2 2 Mathematcal Problem n Engneerng of the order condton of RKFD method preented. In Secton 3, the zero-tablty of RKFD method gven. In Secton 4, three-tage RKFD method of order four and order fve are contructed. In Secton 5, numercal example are gven to how the effectvene and competency of the new RKFDmethodacomparedwththewellknownRunge- Kutta method from the centfc lterature. Concluon are gven n Secton Dervaton of the RKFD Method The general form of RKFD method wth -tage for drectly olvng pecal fourth-order ODE () can be wrtten a follow: where y n+ y n +hy n + h2 2 y n + h3 6 y n +h4 b k, (3) y n+ y n +h2 y n + h2 2 y n +h3 b k, (4) y n+ y n +hy y n+ y n +h n +h2 k, (5) k, (6) k f(x n,y n ), (7) k f(x n +c h, y n +hc y n + h2 2 c2 y n + h3 6 c3 y n +h 4 j a j k j ). 2, 3,...,. All parameter b, b, b,, a j,andc of the RKFD method areuedfor, j, 2,...,and are uppoed to be real. The RKFD method an explct method f a j 0for jand an mplct method f a j 0for j. The RKFD method canberepreentedbybutchertableauafollow: c A b T b T T T (8) (9) approach depend on the dervaton of order condton for the Runge-Kutta method propoed n Dormand [4]. The RKFD method n (3) (6) can be wrtten a follow: y n+ y n +hψ(x n,y n ), y n+ y n +hψ (x n,y n ), y n+ y n +hψ (x n,y n ), y n+ y n +hψ (x n,y n ), where the ncrement functon are ψ(x n,y n )y n + h 2 y n + h2 6 y n +h3 b k, ψ (x n,y n )y n + h 2 y n +h2 b k, ψ (x n,y n )y n ψ (x n,y n ) +h k, k, (0) () where k gven n (8). The frt few elementary dfferental for the calar equaton are F (4) y (V) f, F (5) f x +f y y, F (6) f xx + 2f xy y +f y y +f yy (y F (7) f xxx + 3f xxy y + 3f xyy (y ) 2 + 3f xy y + 3f yy y y +f yyy (y ) 3 +f y y. (2) We aume that the Taylor ere ncrement functon Δ. The local truncaton error of y(x), y (x), y (x), and y (x) can be obtaned after ubttutng the exact oluton of () nto () a follow: To determne the parameter of the RKFD method gven n (3) (8), the RKFD method expreon expanded ung the Taylor ere expanon. After performng ome algebrac manpulaton, th expanon equated to the true oluton that gven by the Taylor ere expanon. The drect expanon of the local truncaton error ued to derve the general order condton for the RKFD method. Th τ n+ h[ψ Δ], τ n+ h[ψ Δ ], τ n+ h[ψ Δ ], τ n+ h[ψ Δ ]. (3)

3 Mathematcal Problem n Engneerng 3 The Taylor ere ncrement functon of y(x), y (x), y (x), and y (x) canbeexpreedafollow: Δy + 2 hy + 6 h2 y + 24 h3 F (4) + 20 h4 F (5) h5 F (6) +O(h 6 ), Δ y + 2 hy + 6 h2 F (4) + 24 h3 F (5) + 20 h4 F (6) h5 F (7) +O(h 6 ), Δ y + 2 hf(4) + 6 h2 F (5) + 24 h3 F (6) + 20 h4 F (7) h5 F (8) +O(h 6 ), Δ F (4) + 2 hf(5) + 6 h2 F (6) + 24 h3 F (7) h4 F (8) +O(h 5 ). (4) Subttutng (2) nto (), the ncrement functon ψ, ψ, ψ, and ψ for RKFD method become a follow: b k + 2 b f+ b k b k b F (4) b c (f x +f y y )h b c 2 (f xx + 2f xy y +f y y +f yy (y ) 2 )h 2 + b c hf (5) + b 2 c 2 h2 F (6) b f+ b c (f x +f y y )h + 2 b k b F(4) + b c2 (f xx + 2f xy y +f y y +f yy (y ) 2 )h 2 b c hf (5) + b 2 c2 h2 F (6) k + 2 k f+ c (f x +f y y )h c 2 (f xx + 2f xy y +f y y +f yy (y ) 2 )h 2 F (4) + k + 2 f+ k c hf (5) + c 2 2 h2 F (6) c (f x +f y y )h c 2 (f xx + 2f xy y +f y y +f yy (y ) 2 )h 2 F (4) + +O(h 3 ). c hf (5) + c 2 2 h2 F (6) (5) Ung () and (4), the local truncaton error (3) can be wrtten a follow: τ n+ h 4 [ τ n+ h3 [ τ b k ( 24 F(4) + b k ( 6 F(4) + 20 hf(5) 24 hf(5) + )], + )], n+ h2 [ k ( 2 F(4) + 6 hf(5) + )], τ n+ h[ k (F (4) + 2 hf(5) + 6 h2 F (6) + )]. (6)

4 4 Mathematcal Problem n Engneerng By offettng (5) nto (6) and expandng a a Taylor ere expanon ung computer algebra package MAPLE (ee [5]), the local truncaton error or the order condton for tage ffth-order RKFD method can be wrtten a follow. The order condton for y are fourth order: b 24, (7) thrd order: fourth order: c 2 3, (28) c 3 4, (29) ffth order: The order condton for y are thrd order: fourth order: ffth order: b c 20. (8) The order condton for y are econd order: thrd order: fourth order: ffth order: b 6, (9) b c 24, (20) b c2 60. (2) The order condton for y are frt order: econd order: 2, (22) c 6, (23) c 2 2, (24) c (25), (26) c 2, (27) ffth order:,j c 4 5, a j Zero-Stablty of the RKFD Method (30) In th ecton, we dcu the convergence of the RKFD method by ntroducng the concept of zero-tablty of the RKFD method. A good numercal method a method n whch the numercal approxmaton to the oluton converge, and zero-tablty a gnfcant crteron for convergence. The zero-tablty concept for thoe numercal method that are ued for olvng frt- and econd-order ODEcanbeeennLambert[6], Dormand [4], and Butcher [4]. The RKFD method (3) (8) can be expreed n the matrx form a follow: y n hy 2 6 y n n+ [ ] [ h 2 y 0 hy n 2 n+] [ ] [ h 3 y [ 0 0 [ h 2 y, (3) n ] ] n+] [ [ h 3 y n ] ] where I[ ] the dentty matrx coeffcent of y n+, hy n+, h2 y n+,andh3 y /2 /6 n+,repectvely,anda[ 0 /2 ] matrx coeffcent of y n, hy n, h2 y n,andh3 y n,repectvely. The charactertc polynomal of the RKFD method denoted by (ζ) whch can be wrtten a follow: ζ 2 6 (ζ) Iζ A 0 ζ 2. (32) 0 0 ζ ζ Hence, (ζ) (ζ ) 4. We fnd that all the root are ζ,,,. Generalzng the theorem propoed by Henrc [7] forolvngpecal econd-order ODE, therefore, the RKFD method zerotable nce all root are le than or equal to the value of.

5 Mathematcal Problem n Engneerng 5 4. Contructon of RKFD Method In th ecton, we proceed to contruct explct RKFD method baed on the order condton whch we have derved n Secton A Three-Stage RKFD Method of Order Four. Th ecton wll focu on the dervaton of a three-tage RKFD method of order four, where we ue the algebrac order condton (7), (9)-(20), (22) (24),and(26) (29),repectvely.Thereultng ytem of equaton cont of 0 nonlnear equaton wth 4 unknown varable to be olved; olvng the ytem multaneouly yeld a oluton wth four free parameter c 3, b, b,andb 3 a follow: c 2 3 4c 3 + 6c 3, 6c2 3 6c 3 + 6c 3 ( + 4c 3 ), b b + 5c 3 48b c 3 6c c , b 2 b b (33) Thu, thee free parameter can be choen by mnmzng the local truncaton error norm of the ffth-order condton accordng to Dormand et al. [8]. However, we have another three free parameter a 2, a 3,anda 32 that do not appear n fourth-ordercondtonbuttheyappearnthemnmzaton of error equaton for ffth-order condton of y. The error norm and global error of ffth-order condton are defned a follow: n p + τ(5) 2 (τ (5) n τ (5) p + (τ (5) c c c3 3 08c 3 50c , 72c c3 3 48c c, 3 6c2 3 6c 3 + 6c 3 ( + 4c 3 ), 2 20c 3 8c c c 3 50c , 72c3 3 n τ (5) p + (τ (5) 2 n τ (5) p + (τ (5) 2 τ(5) g 2 n p + (τ (5) ) 2 + np + (τ (5) ) 2 n + p + (τ (5) ) 2 + n p + (τ (5) (34) 3 +c 3 36c3 3 48c c, 3 b 2 b c b c c 3 2c (3 8c 3 + 6c 2 3 ), where τ (5), τ (5), τ (5),andτ (5) are the local truncaton error norm for y, y, y,andy,repectvely,andτ (5) g the global error. Conequently, we fnd the error norm of y, y,andy, repectvely, a follow: τ(5) (60b c3 b b c 3 360b + 960b 3 c 3 4c 3 ) 2 ( 2 + 3c 3 τ (5) (0c b c b c c 3 7) 2 ( 2 + 3c 3 (35) τ (5) 2 20 (3 2c c3 )2 ( 2 + 3c 3 ) 2.

6 6 Mathematcal Problem n Engneerng Ourgoaltochooethefreeparameterc 3, b, b,andb 3 uch that the error norm of ffth-order condton have mnmal value. By plottng the graph of τ (5) 2 veru c 3 and choong amallvalueofc 3 n the nterval [0.7, 3], wefndthatc 3 7/20 the optmal value whch yeld a mnmum value for τ (5) Subttutngthevalueofc 3 7/20 nto τ (5) 2 and τ (5) 2 we get τ(5) (3 60b + 24b 3 τ (5) ( + 544b )2. (36) Alo through plottng the graph of τ (5) 2 agant b and b 3 n the nterval [ 0., 0.5] and choong a mall value of b 3, we get that b 3 /20theoptmalvaluewhchgveb 7/200 and τ (5) Now, utlzng the ame technque where we draw the graph of τ (5) 2 veru b n the nterval [, ],wefndthat b /8thebetchoce,andwththvalueofb,weget τ (5) Therefore, the error equaton of the ffth-order condton of y a follow: τ (5) ( RKFD method are wrtten n Butcher tableau and denoted by method a follow: (39) 4.2. A Three-Stage RKFD Method of Order Fve. In th ecton, a three-tage RKFD method of order fve wll be derved. The algebrac order condton up to order fve ((7)- (8), (9) (2), (22) (25), and(26) (30)) need to be olved. The reultng ytem of equaton cont of ffteen nonlnear equaton, olvng the ytem multaneouly whch reult n a oluton wth three free parameter b, a 2,anda 3 a follow: a a 2a a 2 a a a a 3a a a a 32) /2. Conequently, the global error τ(5) g ( (37) c , c , 9, , , a a 2a a 2 a a a a 3a a a a 32 ) /2. (38) By mnmzng the error norm n (37) and global error n (38) wth repect to the free parameter a 2, a 3,anda 32,weget a 2 /5, a 3 9/25, and a 32 9/25, whch produce τ (5) and τ (5) g Fnally, all the coeffcent of three-tage fourth-order 9, , , b 8, b , b ,

7 Mathematcal Problem n Engneerng 7 b ( )b, τ (6) ( a a b ( )b, a 32 ( )a 2 a (40) Thu, thee free parameter can be choen by mnmzng the local truncaton error norm of the xth-order condton. The error norm and the global error of the xth-order condton are gven by n p + τ(6) 2 (τ (6) a 2 6a a a a a 2 a a a a2 2 )/2. Alo, the global error can be wrtten a τ(6) g (520a a a 2 6a a a a a 2 a a a a2 2 ). (43) (44) n τ (6) p + (τ (6) 2 n τ (6) p + (τ (6) 2 n τ (6) p + (τ (6) 2 τ(6) g 2 n p + (τ (6) ) 2 + np + (τ (6) ) 2 n + p + (τ (6) ) 2 + n p + (τ (6) (4) Now, mnmzng the error coeffcent n (43) and (44) wth repect to the free parameter a 2, a 3,weobtana /87793 and a 3 02/53225 whch gve a / Thu, the error equaton for y, y, y,andy arecomputedandgvenby τ(6) 2 0, and global error norm τ (6) , τ (6) , τ (6) , (45) where τ (6), τ (6), τ (6),andτ (6) are the local truncaton error norm for y, y, y,andy of the RKFD method, repectvely. τ (6) g the global error. The error equaton of xth-order condton for y wth repect to the free parameter b a follow: τ(6) ( + 080b ) 2. (42) The error equaton τ (6) 2 ha a mnmum value equal to zero at b 9/ whch lead to b 2 3/080 6/260 and b 3 3/ /260. The truncaton error norm of the xth-order condton of y, y, y,andy are calculated a follow: τ(6) 2 0, τ (6) 2 200, τ (6) ( a a a a ) /2, τ(6) g (46) Therefore, the parameter of the three-tage ffth-order RKFD method denoted by can be repreented n Butcher tableau a follow: Numercal Example (47) In th ecton, ome numercal example wll be olved to how the effcency of the new RKFD method of order four

8 8 Mathematcal Problem n Engneerng Log 0 (max error) Log 0 (max error) Log 0 (functon evaluaton) Log 0 (functon evaluaton) RK5B6 RK5N6 RK44 RK5B6 RK5N6 RK44 Fgure : The effcency curve for Example wth h0./2, 0, 2, 3, 4. Fgure 3: The effcency curve for Example 3 wth h0./2, 0, 2, 3, 4. Log 0 (max error) Log 0 (functon evaluaton) RK5B6 RK5N6 RK44 Fgure 2: The effcency curve for Example 2 wth h0./2, 0, 2, 3, 4. Log 0 (max error) Log 0 (functon evaluaton) RK5B6 RK5N6 RK44 Fgure 4: The effcency curve for Example 4 wth h0./2, 0, 2, 3, 4. and order fve, whch are denoted by and, repectvely. The comparon made wth the well known method n the centfc lterature. We ue n the numercal comparon the crtera baed on computng the maxmum error n the oluton (max error max( y(t n ) y n )) whch equal to the maxmum between abolute error of the trueolutonandthecomputedoluton. Fgure 7 how the effcency curve of Log 0 (max error) agant the computatonal effort meaured by Log 0 (functon evaluaton) requred by each method. The followng method are ued for comparon: () : the three-tage ffth-order RKFD method derved n th paper. () : the three-tage fourth-order RKFD method derved n th paper. () RK5B6: the x-tage ffth-order Runge-Kutta method gven n Butcher [4]. (v) RK5N6: the x-tage ffth-order Runge-Kutta method gven n Harer [5]. (v) RK44: the four-tage fourth-order Runge-Kutta method gven n Dormand [4].

9 Mathematcal Problem n Engneerng Log 0 (max error) Log 0 (max error) Log 0 (functon evaluaton) Log 0 (functon evaluaton) RK5B6 RK5N6 RK44 RK5B6 RK5N6 RK44 Fgure 5: The effcency curve for Example 5 wth h0./2, 0, 2, 3, 4. Fgure 7: The effcency curve for Example 7 wth h0.025/2, 0,, 2, 3. Example 2. The nonhomogeneou nonlnear problem a follow: Log 0 (max error) y (V) y 2 + co 2 (x) + n (x), y (0) 0, y (0), y (0) 0, y (0). (49) 0 The exact oluton gven by y(x) n(x). Theproblem ntegrated n the nterval [0, 0] Log 0 (functon evaluaton) Example 3. The homogeneou lnear problem wth noncontantcoeffcentafollow RK5B6 RK5N6 RK44 Fgure 6: The effcency curve for Example 6 wth h0./2, 0, 2, 3, 4. (v) : the four-tage fourth-order 3/8 rule Runge- Kutta method gven n Butcher [4]. y (V) (6x 4 48x 2 + 2)y, y (0), y (0) 0, y (0) 2, y (0) 0. (50) The exact oluton gven by y(x) e x2.theproblem ntegrated n the nterval [0, 3]. Example 4. The nonlnear problem a follow: Example. The homogeneou lnear problem a follow: y (V) y, (48) y (0) 0, y (0), y (0) 2, y (0) 2. y (V) 3n(y) (3 + 2n2 (y)), co 7 (y) y (0) 0, y (0), y (0) 0, y (0). (5) The exact oluton gven by y(x) e x n(x).theproblem ntegrated n the nterval [0, 0]. The exact oluton gven by y(x) arcn(x).theproblem ntegrated n the nterval [0,π/4].

10 0 Mathematcal Problem n Engneerng Example 5. The lnear ytem a follow: y (V) e 3x u, y (0), y (0), y (0), y (0). z (V) 6e x y, z (0), z (0) 2, z (0) 4, z (0). w (V) 8e x z, w (0), w (0), w (0) 9, w (0) 27. u (V) 256e x w. u (0), u (0), u (0) 6, u (0) 4. The exact oluton gven by ye x, ze 2x, we x, ue x. The problem ntegrated n the nterval [0, 2]. Example 6. The nonlnear ytem a follow: y (V) y+ y 2 +z 2 w 2 +u, 2 y (0), y (0) 0, y (0), y (0) 0. z (V) z + y 2 +z 2 w 2 +u, 2 z (0) 0, z (0), z (0) 0, z (0). w (V) 6w+ y 2 +z 2 w 2 +u, 2 w (0), w (0) 0, w (0), w (0) 0. u (V) 6u + y 2 +z 2 w 2 +u. 2 u (0) 0, u (0) 2, u (0) 0, u (0). The exact oluton gven by yco (x), zn (x), wco (2x), un (2x). The problem ntegrated n the nterval [0, 2]. (52) (53) (54) (55) Example 7. The nonlnear ytem a follow: y (V) z2 w, y (0), y (0), y (0), y (0). z (V) 6 w2 u, w (V) 8 u2 y 5, z (0), z (0) 2, z (0) 4, z (0) 8. w (0), w (0) 3, w (0) 9, w (0) 27. u (V) 256y 4. u (0), u (0) 4, u (0) 6, u (0) 64. The exact oluton gven by ye x, ze 2x, we 3x, ue 4x. Theproblemntegratednthenterval[0, 2]. 6. Concluon (56) (57) Th paper deal wth Runge-Kutta type method denoted by RKFD method for drectly olvng pecal fourth-order ODE of the form y (V) (x) f(x, y). Frt,wedervedthe order condton for RKFD method, whch were then ued to contruct three-tage fourth- and ffth-order RKFD method. The method are denoted by and, repectvely. We alo proved that the RKFD method zero-table. From the numercal reult, we oberved that the new RKFD method are more competent a compared wth the extng Runge-Kutta method n the centfc lterature. From the numercal reult, we conclude that the new RKFD method are computatonally more effcent n olvng pecal fourthorder ODE and outperformed the extng method n term of error precon and number of functon evaluaton. Conflct of Interet The author declare that there no conflct of nteret regardng the publcaton of th paper. Reference [] P. Onumany, U. W. Srena, and S. N. Jator, Contnuou fnte dfference approxmaton for olvng dfferental equaton, Internatonal Computer Mathematc, vol.72,no., pp.5 27,999.

11 Mathematcal Problem n Engneerng [2] D. Sarafyan, New algorthm for the contnuou approxmate oluton of ordnary dfferental equaton and the upgradng of the order of the procee, Computer & Mathematc wth Applcaton,vol.20,no.,pp.77 00,990. [3] G. Dahlqut, On accuracy and uncondtonal tablty of lnear multtep method for econd order dfferental equaton, BIT Numercal Mathematc,vol.8,no.2,pp.33 36,978. [4] J. C. Butcher, Numercal Method for Ordnary Dfferental Equaton, John Wley & Son, New York, NY, USA, 2nd edton, [5] E. Harer, S. P. Nørett, and G. Wanner, Solvng Ordnary Dfferental Equaton I: Nontff Problem,vol.8ofSprnger Sere n Computatonal Mathematc, Sprnger, Berln, Germany, 2nd edton, 993. [6]S.N.JatorandJ.L, Aelf-tartnglnearmulttepmethod for a drect oluton of the general econd-order ntal value problem, Internatonal Computer Mathematc, vol. 86, no. 5, pp , [7] D. O. Awoyem, A new xth-order algorthm for general econd order ordnary dfferental equaton, Internatonal Journal of Computer Mathematc,vol.77,no.,pp.7 24,200. [8] S. J. Kayode, An effcent zero-table numercal method for fourth-order dfferental equaton, Internatonal Mathematc and Mathematcal Scence, vol.2008,artcleid 36402,0page,2008. [9] Z. A. Majd and M. B. Suleman, Drect ntegraton mplct varable tep method for olvng hgher order ytem of ordnary dfferental equaton drectly, San Malayana, vol. 35,no.2,pp.63 68,2006. [0] M.-K.Jan,S.R.K.Iyengar,andJ.S.V.Saldanha, Numercal oluton of a fourth-order ordnary dfferental equaton, Journal of Engneerng Mathematc,vol.,no.4,pp ,977. [] N. Waeleh, Z. A. Majd, and F. Imal, A new algorthm for olvng hgher order IVP of ODE, Appled Mathematcal Scence,vol.5,no.53 56,pp ,20. [2] D. O. Awoyem and O. M. Idowu, A cla of hybrd collocaton method for thrd-order ordnary dfferental equaton, Internatonal Computer Mathematc, vol.82,no.0,pp , [3] S. N. Jator, Solvng econd order ntal value problem by a hybrd multtep method wthout predctor, Appled Mathematc and Computaton,vol.27,no.8,pp ,200. [4] J. R. Dormand, Numercal Method for Dfferental Equaton. A Computatonal Approach, Lbrary of Engneerng Mathematc, CRCPre,BocaRaton,Fla,USA,996. [5] W. Gander and D. Gruntz, Dervaton of numercal method ung computer algebra, SIAM Revew, vol. 4, no. 3, pp , 999. [6] J. D. Lambert, Numercal Method for Ordnary Dfferental Sytem, The Intal Value Problem,JohnWley&Son,London, UK, 99. [7] P. Henrc, Element of Numercal Analy,JohnWley&Son, New York, NY, USA, 964. [8] J. R. Dormand, M. E. A. EL-Mkkawy, and P. J. Prnce, Famle of Runge-Kutta Nytrom formulae, IMA Numercal Analy,vol.7,pp ,987.

12 Advance n Operaton Reearch Hndaw Publhng Corporaton Volume 204 Advance n Decon Scence Hndaw Publhng Corporaton Volume 204 Appled Mathematc Algebra Hndaw Publhng Corporaton Hndaw Publhng Corporaton Volume 204 Probablty and Stattc Volume 204 The Scentfc World Journal Hndaw Publhng Corporaton Hndaw Publhng Corporaton Volume 204 Internatonal Dfferental Equaton Hndaw Publhng Corporaton Volume 204 Volume 204 Submt your manucrpt at Internatonal Advance n Combnatorc Hndaw Publhng Corporaton Mathematcal Phyc Hndaw Publhng Corporaton Volume 204 Complex Analy Hndaw Publhng Corporaton Volume 204 Internatonal Mathematc and Mathematcal Scence Mathematcal Problem n Engneerng Mathematc Hndaw Publhng Corporaton Volume 204 Hndaw Publhng Corporaton Volume 204 Volume 204 Hndaw Publhng Corporaton Volume 204 Dcrete Mathematc Volume 204 Hndaw Publhng Corporaton Dcrete Dynamc n Nature and Socety Functon Space Hndaw Publhng Corporaton Abtract and Appled Analy Volume 204 Hndaw Publhng Corporaton Volume 204 Hndaw Publhng Corporaton Volume 204 Internatonal Stochatc Analy Optmzaton Hndaw Publhng Corporaton Hndaw Publhng Corporaton Volume 204 Volume 204

M. Mechee, 1,2 N. Senu, 3 F. Ismail, 3 B. Nikouravan, 4 and Z. Siri Introduction

M. Mechee, 1,2 N. Senu, 3 F. Ismail, 3 B. Nikouravan, 4 and Z. Siri Introduction Hndaw Publhng Corporaton Mathematcal Problem n Engneerng Volume 23, Artcle ID 795397, 7 page http://dx.do.org/.55/23/795397 Reearch Artcle A Three-Stage Ffth-Order Runge-Kutta Method for Drectly Solvng

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Research Article Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations

Research Article Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations Appled Mathematcs Volume 22, Artcle ID 4587, 8 pages do:.55/22/4587 Research Artcle Cubc B-Splne Collocaton Method for One-Dmensonal Heat and Advecton-Dffuson Equatons Joan Goh, Ahmad Abd. Majd, and Ahmad

More information

Additional File 1 - Detailed explanation of the expression level CPD

Additional File 1 - Detailed explanation of the expression level CPD Addtonal Fle - Detaled explanaton of the expreon level CPD A mentoned n the man text, the man CPD for the uterng model cont of two ndvdual factor: P( level gen P( level gen P ( level gen 2 (.).. CPD factor

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Strong-Stability-Preserving, K-Step, 5- to 10-Stage, Hermite-Birkhoff Time-Discretizations of Order 12

Strong-Stability-Preserving, K-Step, 5- to 10-Stage, Hermite-Birkhoff Time-Discretizations of Order 12 Amercan Journal of Computatonal Mathematc 20 72-82 do:04236/acm202008 Publhed Onlne June 20 (http://wwwcrporg/ournal/acm) Strong-Stablty-Preervng K-Step 5- to 0-Stage Hermte-Brkhoff Tme-Dcretzaton of Order

More information

A Computational Method for Solving Two Point Boundary Value Problems of Order Four

A Computational Method for Solving Two Point Boundary Value Problems of Order Four Yoge Gupta et al, Int. J. Comp. Tec. Appl., Vol (5), - ISSN:9-09 A Computatonal Metod for Solvng Two Pont Boundary Value Problem of Order Four Yoge Gupta Department of Matematc Unted College of Engg and

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Improvement on Warng Problem L An-Png Bejng, PR Chna apl@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th paper, we wll gve ome mprovement for Warng problem Keyword: Warng Problem,

More information

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems Mathematca Aeterna, Vol. 1, 011, no. 06, 405 415 Applcaton of B-Splne to Numercal Soluton of a System of Sngularly Perturbed Problems Yogesh Gupta Department of Mathematcs Unted College of Engneerng &

More information

Harmonic oscillator approximation

Harmonic oscillator approximation armonc ocllator approxmaton armonc ocllator approxmaton Euaton to be olved We are fndng a mnmum of the functon under the retrcton where W P, P,..., P, Q, Q,..., Q P, P,..., P, Q, Q,..., Q lnwgner functon

More information

Research Article An Optimized Runge-Kutta Method for the Numerical Solution of the Radial Schrödinger Equation

Research Article An Optimized Runge-Kutta Method for the Numerical Solution of the Radial Schrödinger Equation Mathematcal Problems n Engneerng Volume 212, Artcle ID 867948, 12 pages do:1.1155/212/867948 Research Artcle An Optmzed Runge-Kutta Method for the Numercal Soluton of the Radal Schrödnger Equaton Qnghe

More information

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters Chapter 6 The Effect of the GPS Sytematc Error on Deformaton Parameter 6.. General Beutler et al., (988) dd the frt comprehenve tudy on the GPS ytematc error. Baed on a geometrc approach and aumng a unform

More information

Small signal analysis

Small signal analysis Small gnal analy. ntroducton Let u conder the crcut hown n Fg., where the nonlnear retor decrbed by the equaton g v havng graphcal repreentaton hown n Fg.. ( G (t G v(t v Fg. Fg. a D current ource wherea

More information

6.3.4 Modified Euler s method of integration

6.3.4 Modified Euler s method of integration 6.3.4 Modfed Euler s method of ntegraton Before dscussng the applcaton of Euler s method for solvng the swng equatons, let us frst revew the basc Euler s method of numercal ntegraton. Let the general from

More information

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method Appled Mathematcs, 6, 7, 5-4 Publshed Onlne Jul 6 n ScRes. http://www.scrp.org/journal/am http://.do.org/.436/am.6.77 umercal Solutons of a Generalzed th Order Boundar Value Problems Usng Power Seres Approxmaton

More information

Solving Linear Ordinary Differential Equations using Singly Diagonally Implicit Runge-Kutta fifth order five-stage method

Solving Linear Ordinary Differential Equations using Singly Diagonally Implicit Runge-Kutta fifth order five-stage method Fudzah Ismal, Nur Izzat Che Jawas, Mohamed Suleman, Azm Jaafar Solvng Lnear Ordnar Dfferental Equatons usng Sngl Dagonall Implct Runge-Kutta ffth order fve-stage method FUDZIAH ISMAIL, NUR IZZATI CHE JAWIAS,

More information

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions ISSN 746-7659 England UK Journal of Informaton and Computng Scence Vol. 9 No. 3 4 pp. 69-8 Solvng Fractonal Nonlnear Fredholm Integro-dfferental Equatons va Hybrd of Ratonalzed Haar Functons Yadollah Ordokhan

More information

Method Of Fundamental Solutions For Modeling Electromagnetic Wave Scattering Problems

Method Of Fundamental Solutions For Modeling Electromagnetic Wave Scattering Problems Internatonal Workhop on MehFree Method 003 1 Method Of Fundamental Soluton For Modelng lectromagnetc Wave Scatterng Problem Der-Lang Young (1) and Jhh-We Ruan (1) Abtract: In th paper we attempt to contruct

More information

Haar wavelet collocation method to solve problems arising in induction motor

Haar wavelet collocation method to solve problems arising in induction motor ISSN 746-7659, England, UK Journal of Informaton and Computng Scence Vol., No., 07, pp.096-06 Haar wavelet collocaton method to solve problems arsng n nducton motor A. Padmanabha Reddy *, C. Sateesha,

More information

Estimation of Finite Population Total under PPS Sampling in Presence of Extra Auxiliary Information

Estimation of Finite Population Total under PPS Sampling in Presence of Extra Auxiliary Information Internatonal Journal of Stattc and Analy. ISSN 2248-9959 Volume 6, Number 1 (2016), pp. 9-16 Reearch Inda Publcaton http://www.rpublcaton.com Etmaton of Fnte Populaton Total under PPS Samplng n Preence

More information

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction ECONOMICS 35* -- NOTE ECON 35* -- NOTE Specfcaton -- Aumpton of the Smple Clacal Lnear Regreon Model (CLRM). Introducton CLRM tand for the Clacal Lnear Regreon Model. The CLRM alo known a the tandard lnear

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method Journal of Electromagnetc Analyss and Applcatons, 04, 6, 0-08 Publshed Onlne September 04 n ScRes. http://www.scrp.org/journal/jemaa http://dx.do.org/0.46/jemaa.04.6000 The Exact Formulaton of the Inverse

More information

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods

A Solution of the Harry-Dym Equation Using Lattice-Boltzmannn and a Solitary Wave Methods Appled Mathematcal Scences, Vol. 11, 2017, no. 52, 2579-2586 HIKARI Ltd, www.m-hkar.com https://do.org/10.12988/ams.2017.79280 A Soluton of the Harry-Dym Equaton Usng Lattce-Boltzmannn and a Soltary Wave

More information

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM Ganj, Z. Z., et al.: Determnaton of Temperature Dstrbuton for S111 DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM by Davood Domr GANJI

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 umercal Solutons of oundary-value Problems n Os ovember 7, 7 umercal Solutons of oundary- Value Problems n Os Larry aretto Mechancal ngneerng 5 Semnar n ngneerng nalyss ovember 7, 7 Outlne Revew stff equaton

More information

ENTROPY BOUNDS USING ARITHMETIC- GEOMETRIC-HARMONIC MEAN INEQUALITY. Guru Nanak Dev University Amritsar, , INDIA

ENTROPY BOUNDS USING ARITHMETIC- GEOMETRIC-HARMONIC MEAN INEQUALITY. Guru Nanak Dev University Amritsar, , INDIA Internatonal Journal of Pure and Appled Mathematc Volume 89 No. 5 2013, 719-730 ISSN: 1311-8080 prnted veron; ISSN: 1314-3395 on-lne veron url: http://.jpam.eu do: http://dx.do.org/10.12732/jpam.v895.8

More information

Handout # 6 (MEEN 617) Numerical Integration to Find Time Response of SDOF mechanical system. and write EOM (1) as two first-order Eqs.

Handout # 6 (MEEN 617) Numerical Integration to Find Time Response of SDOF mechanical system. and write EOM (1) as two first-order Eqs. Handout # 6 (MEEN 67) Numercal Integraton to Fnd Tme Response of SDOF mechancal system State Space Method The EOM for a lnear system s M X + DX + K X = F() t () t = X = X X = X = V wth ntal condtons, at

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator)

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator) Numercal Algorthms for Vsual Computng 008/09 Example Solutons for Assgnment 4 Problem (Shft nvarance of the Laplace operator The Laplace equaton s shft nvarant,.e., nvarant under translatons x x + a, y

More information

Trees and Order Conditions

Trees and Order Conditions Trees and Order Condtons Constructon of Runge-Kutta order condtons usng Butcher trees and seres. Paul Tranqull 1 1 Computatonal Scence Laboratory CSL) Department of Computer Scence Vrgna Tech. Trees and

More information

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted Appendx Proof of heorem he multvarate Gauan probablty denty functon for random vector X (X,,X ) px exp / / x x mean and varance equal to the th dagonal term of, denoted he margnal dtrbuton of X Gauan wth

More information

Consistency & Convergence

Consistency & Convergence /9/007 CHE 374 Computatonal Methods n Engneerng Ordnary Dfferental Equatons Consstency, Convergence, Stablty, Stffness and Adaptve and Implct Methods ODE s n MATLAB, etc Consstency & Convergence Consstency

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

Root Locus Techniques

Root Locus Techniques Root Locu Technque ELEC 32 Cloed-Loop Control The control nput u t ynthezed baed on the a pror knowledge of the ytem plant, the reference nput r t, and the error gnal, e t The control ytem meaure the output,

More information

A Solution of Porous Media Equation

A Solution of Porous Media Equation Internatonal Mathematcal Forum, Vol. 11, 016, no. 15, 71-733 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.1988/mf.016.6669 A Soluton of Porous Meda Equaton F. Fonseca Unversdad Naconal de Colomba Grupo

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Imrovement on Warng Problem L An-Png Bejng 85, PR Chna al@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th aer, we wll gve ome mrovement for Warng roblem Keyword: Warng Problem, Hardy-Lttlewood

More information

Lecture 2: Numerical Methods for Differentiations and Integrations

Lecture 2: Numerical Methods for Differentiations and Integrations Numercal Smulaton of Space Plasmas (I [AP-4036] Lecture 2 by Lng-Hsao Lyu March, 2018 Lecture 2: Numercal Methods for Dfferentatons and Integratons As we have dscussed n Lecture 1 that numercal smulaton

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

Sharp integral inequalities involving high-order partial derivatives. Journal Of Inequalities And Applications, 2008, v. 2008, article no.

Sharp integral inequalities involving high-order partial derivatives. Journal Of Inequalities And Applications, 2008, v. 2008, article no. Ttle Sharp ntegral nequaltes nvolvng hgh-order partal dervatves Authors Zhao, CJ; Cheung, WS Ctaton Journal Of Inequaltes And Applcatons, 008, v. 008, artcle no. 5747 Issued Date 008 URL http://hdl.handle.net/07/569

More information

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k) ISSN 1749-3889 (prnt), 1749-3897 (onlne) Internatonal Journal of Nonlnear Scence Vol.17(2014) No.2,pp.188-192 Modfed Block Jacob-Davdson Method for Solvng Large Sparse Egenproblems Hongy Mao, College of

More information

Key Words: Hamiltonian systems, canonical integrators, symplectic integrators, Runge-Kutta-Nyström methods.

Key Words: Hamiltonian systems, canonical integrators, symplectic integrators, Runge-Kutta-Nyström methods. CANONICAL RUNGE-KUTTA-NYSTRÖM METHODS OF ORDERS 5 AND 6 DANIEL I. OKUNBOR AND ROBERT D. SKEEL DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 304 W. SPRINGFIELD AVE. URBANA, ILLINOIS

More information

Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference

Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference Team Stattc and Art: Samplng, Repone Error, Mxed Model, Mng Data, and nference Ed Stanek Unverty of Maachuett- Amhert, USA 9/5/8 9/5/8 Outlne. Example: Doe-repone Model n Toxcology. ow to Predct Realzed

More information

arxiv: v1 [math.ho] 18 May 2008

arxiv: v1 [math.ho] 18 May 2008 Recurrence Formulas for Fbonacc Sums Adlson J. V. Brandão, João L. Martns 2 arxv:0805.2707v [math.ho] 8 May 2008 Abstract. In ths artcle we present a new recurrence formula for a fnte sum nvolvng the Fbonacc

More information

On the SO 2 Problem in Thermal Power Plants. 2.Two-steps chemical absorption modeling

On the SO 2 Problem in Thermal Power Plants. 2.Two-steps chemical absorption modeling Internatonal Journal of Engneerng Reearch ISSN:39-689)(onlne),347-53(prnt) Volume No4, Iue No, pp : 557-56 Oct 5 On the SO Problem n Thermal Power Plant Two-tep chemcal aborpton modelng hr Boyadjev, P

More information

One-sided finite-difference approximations suitable for use with Richardson extrapolation

One-sided finite-difference approximations suitable for use with Richardson extrapolation Journal of Computatonal Physcs 219 (2006) 13 20 Short note One-sded fnte-dfference approxmatons sutable for use wth Rchardson extrapolaton Kumar Rahul, S.N. Bhattacharyya * Department of Mechancal Engneerng,

More information

A Hybrid Variational Iteration Method for Blasius Equation

A Hybrid Variational Iteration Method for Blasius Equation Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 1 (June 2015), pp. 223-229 Applcatons and Appled Mathematcs: An Internatonal Journal (AAM) A Hybrd Varatonal Iteraton Method

More information

Numerical Simulation of One-Dimensional Wave Equation by Non-Polynomial Quintic Spline

Numerical Simulation of One-Dimensional Wave Equation by Non-Polynomial Quintic Spline IOSR Journal of Matematcs (IOSR-JM) e-issn: 78-578, p-issn: 319-765X. Volume 14, Issue 6 Ver. I (Nov - Dec 018), PP 6-30 www.osrournals.org Numercal Smulaton of One-Dmensonal Wave Equaton by Non-Polynomal

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Fixed point method and its improvement for the system of Volterra-Fredholm integral equations of the second kind

Fixed point method and its improvement for the system of Volterra-Fredholm integral equations of the second kind MATEMATIKA, 217, Volume 33, Number 2, 191 26 c Penerbt UTM Press. All rghts reserved Fxed pont method and ts mprovement for the system of Volterra-Fredholm ntegral equatons of the second knd 1 Talaat I.

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

The Order Relation and Trace Inequalities for. Hermitian Operators

The Order Relation and Trace Inequalities for. Hermitian Operators Internatonal Mathematcal Forum, Vol 3, 08, no, 507-57 HIKARI Ltd, wwwm-hkarcom https://doorg/0988/mf088055 The Order Relaton and Trace Inequaltes for Hermtan Operators Y Huang School of Informaton Scence

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluton to the Heat Equaton ME 448/548 Notes Gerald Recktenwald Portland State Unversty Department of Mechancal Engneerng gerry@pdx.edu ME 448/548: FTCS Soluton to the Heat Equaton Overvew 1. Use

More information

The Analytical Solution of a System of Nonlinear Differential Equations

The Analytical Solution of a System of Nonlinear Differential Equations Int. Journal of Math. Analyss, Vol. 1, 007, no. 10, 451-46 The Analytcal Soluton of a System of Nonlnear Dfferental Equatons Yunhu L a, Fazhan Geng b and Mnggen Cu b1 a Dept. of Math., Harbn Unversty Harbn,

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

New Method for Solving Poisson Equation. on Irregular Domains

New Method for Solving Poisson Equation. on Irregular Domains Appled Mathematcal Scences Vol. 6 01 no. 8 369 380 New Method for Solvng Posson Equaton on Irregular Domans J. Izadan and N. Karamooz Department of Mathematcs Facult of Scences Mashhad BranchIslamc Azad

More information

SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Kim Gaik Universiti Tun Hussein Onn Malaysia

SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Kim Gaik Universiti Tun Hussein Onn Malaysia SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Km Gak Unverst Tun Hussen Onn Malaysa Kek Se Long Unverst Tun Hussen Onn Malaysa Rosmla Abdul-Kahar

More information

DEPARTMENT MATHEMATIK SCHWERPUNKT MATHEMATISCHE STATISTIK UND STOCHASTISCHE PROZESSE

DEPARTMENT MATHEMATIK SCHWERPUNKT MATHEMATISCHE STATISTIK UND STOCHASTISCHE PROZESSE U N I V E R S I T Ä T H A M B U R G Strong and Weak Approxmaton Method for Stochatc Dfferental Equaton Some Recent Development Andrea Rößler Preprnt No. - Februar DEPARTMENT MATHEMATIK SCHWERPUNKT MATHEMATISCHE

More information

Maejo International Journal of Science and Technology

Maejo International Journal of Science and Technology Maejo Int. J. Sc. Technol. () - Full Paper Maejo Internatonal Journal of Scence and Technology ISSN - Avalable onlne at www.mjst.mju.ac.th Fourth-order method for sngularly perturbed sngular boundary value

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

On a direct solver for linear least squares problems

On a direct solver for linear least squares problems ISSN 2066-6594 Ann. Acad. Rom. Sc. Ser. Math. Appl. Vol. 8, No. 2/2016 On a drect solver for lnear least squares problems Constantn Popa Abstract The Null Space (NS) algorthm s a drect solver for lnear

More information

FUZZY GOAL PROGRAMMING VS ORDINARY FUZZY PROGRAMMING APPROACH FOR MULTI OBJECTIVE PROGRAMMING PROBLEM

FUZZY GOAL PROGRAMMING VS ORDINARY FUZZY PROGRAMMING APPROACH FOR MULTI OBJECTIVE PROGRAMMING PROBLEM Internatonal Conference on Ceramcs, Bkaner, Inda Internatonal Journal of Modern Physcs: Conference Seres Vol. 22 (2013) 757 761 World Scentfc Publshng Company DOI: 10.1142/S2010194513010982 FUZZY GOAL

More information

The Algorithms of Broyden-CG for. Unconstrained Optimization Problems

The Algorithms of Broyden-CG for. Unconstrained Optimization Problems Internatonal Journal of Mathematcal Analyss Vol. 8, 014, no. 5, 591-600 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.1988/jma.014.497 he Algorthms of Broyden-CG for Unconstraned Optmzaton Problems Mohd

More information

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder S-. The Method of Steepet cent Chapter. Supplemental Text Materal The method of teepet acent can be derved a follow. Suppoe that we have ft a frtorder model y = β + β x and we wh to ue th model to determne

More information

Inexact Newton Methods for Inverse Eigenvalue Problems

Inexact Newton Methods for Inverse Eigenvalue Problems Inexact Newton Methods for Inverse Egenvalue Problems Zheng-jan Ba Abstract In ths paper, we survey some of the latest development n usng nexact Newton-lke methods for solvng nverse egenvalue problems.

More information

Module 5. Cables and Arches. Version 2 CE IIT, Kharagpur

Module 5. Cables and Arches. Version 2 CE IIT, Kharagpur odule 5 Cable and Arche Veron CE IIT, Kharagpur Leon 33 Two-nged Arch Veron CE IIT, Kharagpur Intructonal Objectve: After readng th chapter the tudent wll be able to 1. Compute horzontal reacton n two-hnged

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

4DVAR, according to the name, is a four-dimensional variational method.

4DVAR, according to the name, is a four-dimensional variational method. 4D-Varatonal Data Assmlaton (4D-Var) 4DVAR, accordng to the name, s a four-dmensonal varatonal method. 4D-Var s actually a drect generalzaton of 3D-Var to handle observatons that are dstrbuted n tme. The

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

Numerical Methods for Solving Turbulent Flows by Using Parallel Technologies

Numerical Methods for Solving Turbulent Flows by Using Parallel Technologies Journal of Computer and Communcaton, 0,, -5 do:0.46/cc.0.00 Publhed Onlne February 0 (http://www.crp.org/ournal/cc) Numercal Method for Solvng urbulent Flow by Ung Parallel echnologe Albek Iakhov Department

More information

Computer Control Systems

Computer Control Systems Computer Control ytem In th chapter we preent the element and the bac concept of computercontrolled ytem. The dcretaton and choce of amplng frequency wll be frt examned, followed by a tudy of dcrete-tme

More information

Start Point and Trajectory Analysis for the Minimal Time System Design Algorithm

Start Point and Trajectory Analysis for the Minimal Time System Design Algorithm Start Pont and Trajectory Analy for the Mnmal Tme Sytem Degn Algorthm ALEXANDER ZEMLIAK, PEDRO MIRANDA Department of Phyc and Mathematc Puebla Autonomou Unverty Av San Claudo /n, Puebla, 757 MEXICO Abtract:

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

A NUMERICAL MODELING OF MAGNETIC FIELD PERTURBATED BY THE PRESENCE OF SCHIP S HULL

A NUMERICAL MODELING OF MAGNETIC FIELD PERTURBATED BY THE PRESENCE OF SCHIP S HULL A NUMERCAL MODELNG OF MAGNETC FELD PERTURBATED BY THE PRESENCE OF SCHP S HULL M. Dennah* Z. Abd** * Laboratory Electromagnetc Sytem EMP BP b Ben-Aknoun 606 Alger Algera ** Electronc nttute USTHB Alger

More information

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

More information

Confidence intervals for the difference and the ratio of Lognormal means with bounded parameters

Confidence intervals for the difference and the ratio of Lognormal means with bounded parameters Songklanakarn J. Sc. Technol. 37 () 3-40 Mar.-Apr. 05 http://www.jt.pu.ac.th Orgnal Artcle Confdence nterval for the dfference and the rato of Lognormal mean wth bounded parameter Sa-aat Nwtpong* Department

More information

Scattering of two identical particles in the center-of. of-mass frame. (b)

Scattering of two identical particles in the center-of. of-mass frame. (b) Lecture # November 5 Scatterng of two dentcal partcle Relatvtc Quantum Mechanc: The Klen-Gordon equaton Interpretaton of the Klen-Gordon equaton The Drac equaton Drac repreentaton for the matrce α and

More information

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence

Remarks on the Properties of a Quasi-Fibonacci-like Polynomial Sequence Remarks on the Propertes of a Quas-Fbonacc-lke Polynomal Sequence Brce Merwne LIU Brooklyn Ilan Wenschelbaum Wesleyan Unversty Abstract Consder the Quas-Fbonacc-lke Polynomal Sequence gven by F 0 = 1,

More information

Solution for singularly perturbed problems via cubic spline in tension

Solution for singularly perturbed problems via cubic spline in tension ISSN 76-769 England UK Journal of Informaton and Computng Scence Vol. No. 06 pp.6-69 Soluton for sngularly perturbed problems va cubc splne n tenson K. Aruna A. S. V. Rav Kant Flud Dynamcs Dvson Scool

More information

728. Mechanical and electrical elements in reduction of vibrations

728. Mechanical and electrical elements in reduction of vibrations 78. Mechancal and electrcal element n reducton of vbraton Katarzyna BIAŁAS The Slean Unverty of Technology, Faculty of Mechancal Engneerng Inttute of Engneerng Procee Automaton and Integrated Manufacturng

More information

MODELLING OF TRANSIENT HEAT TRANSPORT IN TWO-LAYERED CRYSTALLINE SOLID FILMS USING THE INTERVAL LATTICE BOLTZMANN METHOD

MODELLING OF TRANSIENT HEAT TRANSPORT IN TWO-LAYERED CRYSTALLINE SOLID FILMS USING THE INTERVAL LATTICE BOLTZMANN METHOD Journal o Appled Mathematc and Computatonal Mechanc 7, 6(4), 57-65 www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.4.6 e-issn 353-588 MODELLING OF TRANSIENT HEAT TRANSPORT IN TWO-LAYERED CRYSTALLINE SOLID

More information

Two Approaches to Proving. Goldbach s Conjecture

Two Approaches to Proving. Goldbach s Conjecture Two Approache to Provng Goldbach Conecture By Bernard Farley Adved By Charle Parry May 3 rd 5 A Bref Introducton to Goldbach Conecture In 74 Goldbach made h mot famou contrbuton n mathematc wth the conecture

More information

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials

MA 323 Geometric Modelling Course Notes: Day 13 Bezier Curves & Bernstein Polynomials MA 323 Geometrc Modellng Course Notes: Day 13 Bezer Curves & Bernsten Polynomals Davd L. Fnn Over the past few days, we have looked at de Casteljau s algorthm for generatng a polynomal curve, and we have

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Numerical Solution of One-Dimensional Heat and Wave Equation by Non-Polynomial Quintic Spline

Numerical Solution of One-Dimensional Heat and Wave Equation by Non-Polynomial Quintic Spline Internatonal Journal of Mathematcal Modellng & Computatons Vol. 05, No. 04, Fall 2015, 291-305 Numercal Soluton of One-Dmensonal Heat and Wave Equaton by Non-Polynomal Quntc Splne J. Rashdna a, and M.

More information

The Synchronous 8th-Order Differential Attack on 12 Rounds of the Block Cipher HyRAL

The Synchronous 8th-Order Differential Attack on 12 Rounds of the Block Cipher HyRAL The Synchronous 8th-Order Dfferental Attack on 12 Rounds of the Block Cpher HyRAL Yasutaka Igarash, Sej Fukushma, and Tomohro Hachno Kagoshma Unversty, Kagoshma, Japan Emal: {garash, fukushma, hachno}@eee.kagoshma-u.ac.jp

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Global Sensitivity. Tuesday 20 th February, 2018

Global Sensitivity. Tuesday 20 th February, 2018 Global Senstvty Tuesday 2 th February, 28 ) Local Senstvty Most senstvty analyses [] are based on local estmates of senstvty, typcally by expandng the response n a Taylor seres about some specfc values

More information

A METHOD TO REPRESENT THE SEMANTIC DESCRIPTION OF A WEB SERVICE BASED ON COMPLEXITY FUNCTIONS

A METHOD TO REPRESENT THE SEMANTIC DESCRIPTION OF A WEB SERVICE BASED ON COMPLEXITY FUNCTIONS UPB Sc Bull, Sere A, Vol 77, I, 5 ISSN 3-77 A METHOD TO REPRESENT THE SEMANTIC DESCRIPTION OF A WEB SERVICE BASED ON COMPLEXITY FUNCTIONS Andre-Hora MOGOS, Adna Magda FLOREA Semantc web ervce repreent

More information

Extended Prigogine Theorem: Method for Universal Characterization of Complex System Evolution

Extended Prigogine Theorem: Method for Universal Characterization of Complex System Evolution Extended Prgogne Theorem: Method for Unveral Characterzaton of Complex Sytem Evoluton Sergey amenhchkov* Mocow State Unverty of M.V. Lomonoov, Phycal department, Rua, Mocow, Lennke Gory, 1/, 119991 Publhed

More information

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS Journal of Mathematcs and Statstcs 9 (1): 4-8, 1 ISSN 1549-644 1 Scence Publcatons do:1.844/jmssp.1.4.8 Publshed Onlne 9 (1) 1 (http://www.thescpub.com/jmss.toc) A MODIFIED METHOD FOR SOLVING SYSTEM OF

More information

Group Analysis of Ordinary Differential Equations of the Order n>2

Group Analysis of Ordinary Differential Equations of the Order n>2 Symmetry n Nonlnear Mathematcal Physcs 997, V., 64 7. Group Analyss of Ordnary Dfferental Equatons of the Order n> L.M. BERKOVICH and S.Y. POPOV Samara State Unversty, 4430, Samara, Russa E-mal: berk@nfo.ssu.samara.ru

More information