Physics Circular Motion: Energy and Momentum Conservation. Science and Mathematics Education Research Group

Size: px
Start display at page:

Download "Physics Circular Motion: Energy and Momentum Conservation. Science and Mathematics Education Research Group"

Transcription

1 F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Departent of Curriculu and Pedagogy Physics Circular Motion: Energy and Moentu Conservation Science and Matheatics Education Research Group Supported by UBC Teaching and Learning Enhanceent Fund 0-03

2 Question Seicircles Title IV

3 Question Elastic Collisions Title This is a challenging set for the students who are interested in physics and like challenges. However, it is also a very beautiful set which will help students build their intuition. In order to be able to solve questions related to circular otion, the students have to know how to do collision probles. Therefore, we review elastic collisions in the first part of the set and then ove to discuss circular otion v v x

4 Question Perfectly Elastic Title Collisions I Two balls with asses of and are oving towards each other with speeds of v and v respectively. If the collision between the balls is a perfectly elastic collision, what will the speeds of the balls be after the collision? A u. C. u v v v v u v v v v u u B. D. v v v u v u v v v v u v v x

5 Coents Solution Answer: A Justification: We can find correct answer by applying the laws of energy and oentu conservation as shown below. However, since it is a ultiple-choice question, we can also attept to eliinate the wrong answers. Answers B-D all have incorrect units. You can see that one of the ters in the is squared thus aking the units in the nuerator or in the denoinator incorrect or not atching. v v u v v v u u u u v v v v

6 Question Perfectly Elastic Title Collisions II A ball with ass is oving towards another ball with ass. The second ball is initially at rest (v = 0). If the collision between the balls is a perfectly elastic collision, what will the speeds of the balls be after the collision? v u u v A. C. v u u v v v u u B. D. v v u u E. None of the above v v =0 x

7 Coents Solution Answer: B Justification: We can find correct answer by using the collision equation fro the previous question and assuing that v =0 (initial velocity of the second ball is zero): Since v 0 : u u v v v v v v Notice, the answers are not syetrical (which akes sense as we had asyetrical initial conditions. You can check that the correct answer also has correct units. In both cases, the denoinator represents the ass of the syste. The nuerator of the first equation represents the difference of asses, we will explore its eaning in the next question.

8 Question Perfectly Elastic Title Collisions III A ball with ass is oving towards another ball with ass. The second ball is initially at rest (v = 0). If the collision between the balls is a perfectly elastic collision and =, what will the speeds of the balls be after the collision? u 0 u v A. C. u v u v u v u v B. D. u v u 0 u 0 E. u v v v =0 x

9 This tells us that the ball that was oving initially will stop and the ball that was originally at rest will start oving with the initial speed of the first ball. This phenoenon is used in a faous deonstration called Newton s cradle: You can see that none of the other answers ake sense! Coents Solution Answer: B Justification: We can find correct answer by using the collision equation fro the previous question and assuing that not only v =0 (initial velocity of the second ball is zero) but also that Assuing that initial velocity of the second ball is zero: v 0 and u u v v 0 v v v v

10 Question Perfectly Elastic Title Collisions IV A ball with ass is oving towards another ball with ass. The second ball is initially at rest (v = 0). If the collision between the balls is a perfectly elastic collision and >>, what will the speeds of the balls be after the collision? u v u v A. C. u v u v u v u v B. D. u v u 0 u v E. u v v v =0 x

11 Coents Solution Answer: D Justification: We can find correct answer by using the collision equation fro the previous question and assuing that not only v =0 (initial velocity of the second ball is zero) but also that or Since v 0 and : v v v u v v v v v u 0 This is a very interesting conclusion. While the heavy ball will practically stop, the light ball will bounce off it with the speed equal to its initial speed. This akes sense considering our earlier discussion. You can see that none of the other answers ake sense!

12 Question Perfectly Elastic Title Collisions V A ball with ass is oving towards another ball with ass. The second ball is initially at rest (v = 0). If the collision between the balls is a perfectly elastic collision and >>, what will the speeds of the balls be after the collision? u v u v A. C. u v u v u v u v B. D. u v u v E. u u v v v v =0 x

13 Coents Solution Answer: E Justification: We can find correct answer by using the collision equation fro the previous question and assuing that not only v =0 (initial velocity of the second ball is zero) but also that Since v 0 and : v v v u v v v v v u v or While the heavy ball will continue oving alost unaffected, the light ball that was initially at rest will bounce off with the speed equal to twice the speed of the heavy ball v. How coe? This is easier to understand in the frae of reference of ball. In that frae of reference, ball will be oving towards with the speed v and as we discussed earlier it will bounce off with the speed v relatively to ball. However, since ball is oving relatively to the ground with the velocity v, the velocity of ball relatively to the ground will be v.

14 Question Perfectly Elastic Title Collisions VI Balls and are oving towards each other with equal speeds v relatively to the ground. If the collision between the balls is a perfectly elastic collision and =, what will the speeds of the balls be after the collision? u v u v A. C. u v u v u v u v B. D. u v u v E. u u v v v = v v = -v v v x

15 Coents Solution Answer: A Justification: We can find correct answer by using the collision equation fro the previous questions and assuing that not the velocities of the balls are opposite and their asses are equal: v v v and u u v v v v v v v( ) v v v v v v It akes sense that the balls will bounce off each other and will ove in opposite directions with the sae speed as they had before the collision. You can see that none of the other answers ake sense!

16 Question Perfectly Elastic Title Collisions VII A ball with ass is oving towards a very big wall. If the collision between the ball and the wall is a perfectly elastic collision, what will be the result of the collision and what will happen to the wall? FIND THE WRONG STATEMENT: A. The ball will bounce back with the speed v B. The ball will bounce back with the speed v C. The wall will bounce back with the speed of v D. The ball and the wall is NOT a closed syste, so the oentu of the syste will not be conserved E. The wall will be copressed and it will exert a force on the ball that according to Newton s third law will be: F ball on wall F wall on ball v M x

17 Coents Solution Answer: B Justification: The only incorrect stateent is B. The wall is connected to the ground, so the ball and wall is NOT a closed syste. While the ball will not ove, it will exert a force on the ball that will ake the ball bounce back with the sae speed it cae with. Notice, the law of oentu conservation only works for two objects that interact with each other and are unaffected by other objects. In this case, the wall is affected by the ground. If the wall was on wheels, or was able to ove back, then the wall would have oved with the speed of v and the ball would have bounced back with the speed of v.

18 Question Part II: Circular Title Motion The questions in this sub-set cobine concepts of circular otion, energy and oentu conservation. v 0

19 Question Title Seicircles VIII A hollow and frictionless seicircle is placed vertically as shown below. A ball enters with an initial speed v 0 and exits out the other end. What is the final speed of the ball? A. v0 v0 B. r v C. 0 D. v0 3 E. No idea v 0

20 Coents Solution Answer: A Justification: Since the sei-circle is frictionless, the echanical energy of the ball has to be conserved. The entrance and exit points of the seicircle are at the sae height. This eans the gravitational potential energy of the ball is equal at these two points. Therefore, the kinetic energies ust also be the sae, and the speed of the ball is the sae upon entrance and exit of the sei circle.

21 Question Seicircles Title IX A hollow and frictionless seicircle is placed vertically as shown below. A ball enters with an initial speed and exits out the other end. If the seicircle has a radius r, what is the iniu value of v 0 that will allow the ball to coplete the path around the seicircle? A. gr B. gr C. 3gr D. gr E. g r v 0 r

22 Coents Solution Answer: C Justification: At the top of the seicircle, where the velocity is lowest, the centripetal force ust be greater than the force of gravity to prevent the ball fro falling. Applying Newton s second law and the law of energy conservation: Newton s second law v top gr (positive x is directed g N If N 0, vtop vtop gr r in upward) v v 0 gr top v gr gr v gr gr v 3gr Energy conservation law for the point at the top of the trajectory. Potential energy at the botto of the trajectory is zero.

23 Question Seicircles Title X A contraption built out of two seicircular tubes is shown below. A ball with a ass of enters with an initial speed v 0 and elastically collides with a ball of ass. The ball with ass then exits out the other end. What is the final speed of the ball with ass if >>? A. v 0 / B. v 0 C. v 0 D. 3v 0 v 0 E. No idea

24 Coents Solution Answer: C Justification: We know fro question VIII that the speed of ball when it coes out of a sei-circle ust be v 0. So when collides with it will be travelling at a speed of v 0. Fro the reference frae of, travels towards it at a speed of v 0. Since is uch heavier than, will be alost unaffected by the collision (it will continue oving with the speed v 0 ), while will bounce off with a speed of v 0, since its velocity has to be v0 relatively to ball - (See part I of this set, questions IV and V). Because returns to the sae height after it has rounded the larger seicircle, it will travel at the sae speed it had before traversing the seicircle, which is v 0. Of course you can solve it algebraically, by using the equations for elastic collisions of two balls of different asses as we did earlier

25 Question Seicircles Title XI A. gr B. gr This is the sae situation as question X, where >>. What is the iniu value of v 0 required for to exit? C. 3gr D. gr E. 3gr 3r r v 0

26 Coents Solution Answer: C Justification: This question is soewhat trickier than the previous one. In the previous questions we found that the speed required for a ball to coplete a sei-circle is 3gR. Therefore, for the sall and big sei-circles, it is: v 3gr sall _ in v 3g3r 3v.7v v v l arg e_ in sall _ in sall _ in sall _ in 0 Since travels with v 0 and the iniu speed required to coplete a large sei-circle is less than twice the speed needed to coplete a sall sei-circle, the iniu speed required for to exit is not the speed required for to travel around the seicircle, but rather the speed required for to coplete the sei-circle and hit, as can already traverse the seicircle at that speed. Thus, the answer to this question has the sae answer as question X.

27 Question Seicircles Title XII A C. E. n. 3 n. 3 (5 ) n 3 g(5 r) n n. 3 (5 ) n 3 g(5 r) n gr B g r D g r n A contraption built out of seicircles is shown below. A ball with a ass of enters with an initial speed v 0. After passing the first seicircle, elastically collides with a ball with ass, which then rounds the second seicircle and elastically collides with a ball of ass 3 and so on in the fashion shown in question 4. If >> >> >> n and the n th seicircle has radius 5 n- r, what is the iniu value of v 0 for the n th ball to round its seicircle?

28 Coents Solution Answer: E Justification: We know fro questions III-V that travels at v 0 when hits it with speed v 0. As >> >> >> n, 3 travels at v if hits it with v. Therefore, n travels with a speed of n- v 0. At the n th seicircle, the radius is 5 n- r. Fro the identity we saw in question X, the iniu speed for the ball not to fall off a seicircle is v= (3gr). In our case, it translates into: v 3 g(5 r) v n n 0 3 g(5 r) n n n n gr

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

Physics Dynamics: Forces. Science and Mathematics Education Research Group

Physics Dynamics: Forces. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Departent of Curriculu and Pedagogy Physics Dynaics: Forces Science and Matheatics Education Research Group Supported by UBC Teaching and Learning

More information

Physics Momentum: Collisions

Physics Momentum: Collisions F A C U L T Y O F E D U C A T I O N Departent o Curriculu and Pedagogy Physics Moentu: Collisions Science and Matheatics Education Research Group Supported by UBC Teaching and Learning Enhanceent Fund

More information

UNIT HOMEWORK MOMENTUM ANSWER KEY

UNIT HOMEWORK MOMENTUM ANSWER KEY UNIT HOMEWORK MOMENTUM ANSWER KEY MOMENTUM FORMULA & STUFF FROM THE PAST: p = v, TKE = ½v 2, d = v t 1. An ostrich with a ass of 146 kg is running to the right with a velocity of 17 /s. a. Calculate the

More information

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b)

5.1 m is therefore the maximum height of the ball above the window. This is 25.1 m above the ground. (b) .6. Model: This is a case of free fall, so the su of the kinetic and gravitational potential energy does not change as the ball rises and falls. The figure shows a ball s before-and-after pictorial representation

More information

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation Today s s topics are: Collisions and P (&E) Conservation Ipulsive Force Energy Conservation How can we treat such an ipulsive force? Energy Conservation Ipulsive Force and Ipulse [Exaple] an ipulsive force

More information

Page 1. Physics 131: Lecture 16. Today s Agenda. Collisions. Elastic Collision

Page 1. Physics 131: Lecture 16. Today s Agenda. Collisions. Elastic Collision Physics 131: Lecture 16 Today s Agenda Elastic Collisions Definition Exaples Work and Energy Definition of work Exaples Physics 01: Lecture 10, Pg 1 Collisions Moentu is alost always consered during as

More information

Year 12 Physics Holiday Work

Year 12 Physics Holiday Work Year 1 Physics Holiday Work 1. Coplete questions 1-8 in the Fields assessent booklet and questions 1-3 In the Further Mechanics assessent booklet (repeated below in case you have lost the booklet).. Revise

More information

CHAPTER 7 TEST REVIEW -- MARKSCHEME

CHAPTER 7 TEST REVIEW -- MARKSCHEME AP PHYSICS Nae: Period: Date: Points: 53 Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response

More information

Energy Problems. Science and Mathematics Education Research Group

Energy Problems. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Energy Problems Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement

More information

Physics 201, Lecture 15

Physics 201, Lecture 15 Physics 0, Lecture 5 Today s Topics q More on Linear Moentu And Collisions Elastic and Perfect Inelastic Collision (D) Two Diensional Elastic Collisions Exercise: Billiards Board Explosion q Multi-Particle

More information

26 Impulse and Momentum

26 Impulse and Momentum 6 Ipulse and Moentu First, a Few More Words on Work and Energy, for Coparison Purposes Iagine a gigantic air hockey table with a whole bunch of pucks of various asses, none of which experiences any friction

More information

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass

BALLISTIC PENDULUM. EXPERIMENT: Measuring the Projectile Speed Consider a steel ball of mass BALLISTIC PENDULUM INTRODUCTION: In this experient you will use the principles of conservation of oentu and energy to deterine the speed of a horizontally projected ball and use this speed to predict the

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant Force varies with tie 7. The Ipulse-Moentu Theore DEFINITION

More information

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.co https://prootephysics.wordpress.co [MOTION] CHAPTER NO. 3 In this chapter we are going to discuss otion in one diension in which we

More information

Problem T1. Main sequence stars (11 points)

Problem T1. Main sequence stars (11 points) Proble T1. Main sequence stars 11 points Part. Lifetie of Sun points i..7 pts Since the Sun behaves as a perfectly black body it s total radiation power can be expressed fro the Stefan- Boltzann law as

More information

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ).

For a situation involving gravity near earth s surface, a = g = jg. Show. that for that case v 2 = v 0 2 g(y y 0 ). Reading: Energy 1, 2. Key concepts: Scalar products, work, kinetic energy, work-energy theore; potential energy, total energy, conservation of echanical energy, equilibriu and turning points. 1.! In 1-D

More information

PHYS 107 Practice Final Test Fall 2018

PHYS 107 Practice Final Test Fall 2018 The actual test contains 10 ultiple choice questions and 2 probles. However, for extra exercise, this practice test includes 20 questions and 5 probles. Questions: N.B. Make sure that you justify your

More information

CHAPTER 1 MOTION & MOMENTUM

CHAPTER 1 MOTION & MOMENTUM CHAPTER 1 MOTION & MOMENTUM SECTION 1 WHAT IS MOTION? All atter is constantly in MOTION Motion involves a CHANGE in position. An object changes position relative to a REFERENCE POINT. DISTANCE is the total

More information

CHAPTER 7: Linear Momentum

CHAPTER 7: Linear Momentum CHAPTER 7: Linear Moentu Solution Guide to WebAssign Probles 7.1 [1] p v ( 0.08 kg) ( 8.4 s) 0.4 kg s 7. [] Fro Newton s second law, p Ft. For a constant ass object, p v. Equate the two expression for

More information

One Dimensional Collisions

One Dimensional Collisions One Diensional Collisions These notes will discuss a few different cases of collisions in one diension, arying the relatie ass of the objects and considering particular cases of who s oing. Along the way,

More information

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity.

Momentum. February 15, Table of Contents. Momentum Defined. Momentum Defined. p =mv. SI Unit for Momentum. Momentum is a Vector Quantity. Table of Contents Click on the topic to go to that section Moentu Ipulse-Moentu Equation The Moentu of a Syste of Objects Conservation of Moentu Types of Collisions Collisions in Two Diensions Moentu Return

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

Chapter 8. Momentum, Impulse and Collisions. 10/22/14 Physics 218

Chapter 8. Momentum, Impulse and Collisions. 10/22/14 Physics 218 Chapter 8 Moentu, Ipulse and Collisions 0//4 Physics 8 Learning Goals n n n n n n The eaning of the oentu of a particle(syste) and how the ipulse of the net force acting on a particle causes the oentu

More information

PHYS 154 Practice Final Test Spring 2018

PHYS 154 Practice Final Test Spring 2018 The actual test contains 10 ultiple choice questions and 2 probles. However, for extra exercise and enjoyent, this practice test includes18 questions and 4 probles. Questions: N.. ake sure that you justify

More information

9. h = R. 10. h = 3 R

9. h = R. 10. h = 3 R Version PREVIEW Torque Chap. 8 sizeore (13756) 1 This print-out should have 3 questions. ultiple-choice questions ay continue on the next colun or page find all choices before answering. Note in the dropped

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.it.edu 8.012 Physics I: Classical Mechanics Fall 2008 For inforation about citing these aterials or our Ters of Use, isit: http://ocw.it.edu/ters. MASSACHUSETTS INSTITUTE

More information

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant

Chapter 7 Impulse and Momentum. So far we considered only constant force/s BUT There are many situations when the force on an object is not constant Chapter 7 Ipulse and Moentu So far we considered only constant force/s BUT There are any situations when the force on an object is not constant JUST IN TIME TEACHING E-ail or bring e your questions prior

More information

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta 1 USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS By: Ian Bloland, Augustana Capus, University of Alberta For: Physics Olypiad Weeend, April 6, 008, UofA Introduction: Physicists often attept to solve

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2008 Tie: 90 inutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016

NB1140: Physics 1A - Classical mechanics and Thermodynamics Problem set 2 - Forces and energy Week 2: November 2016 NB1140: Physics 1A - Classical echanics and Therodynaics Proble set 2 - Forces and energy Week 2: 21-25 Noveber 2016 Proble 1. Why force is transitted uniforly through a assless string, a assless spring,

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

Name Class Date. two objects depends on the masses of the objects.

Name Class Date. two objects depends on the masses of the objects. CHAPTER 12 2 Gravity SECTION Forces KEY IDEAS As you read this section keep these questions in ind: What is free fall? How are weight and ass related? How does gravity affect the otion of objects? What

More information

Note-A-Rific: Mechanical

Note-A-Rific: Mechanical Note-A-Rific: Mechanical Kinetic You ve probably heard of inetic energy in previous courses using the following definition and forula Any object that is oving has inetic energy. E ½ v 2 E inetic energy

More information

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations

m A 1 m mgd k m v ( C) AP Physics Multiple Choice Practice Oscillations P Physics Multiple Choice Practice Oscillations. ass, attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is.

More information

Chapter 5, Conceptual Questions

Chapter 5, Conceptual Questions Chapter 5, Conceptual Questions 5.1. Two forces are present, tension T in the cable and gravitational force 5.. F G as seen in the figure. Four forces act on the block: the push of the spring F, sp gravitational

More information

Physics Chapter 6. Momentum and Its Conservation

Physics Chapter 6. Momentum and Its Conservation Physics Chapter 6 Moentu and Its Conservation Linear Moentu The velocity and ass of an object deterine what is needed to change its otion. Linear Moentu (ρ) is the product of ass and velocity ρ =v Unit

More information

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES

SRI LANKAN PHYSICS OLYMPIAD MULTIPLE CHOICE TEST 30 QUESTIONS ONE HOUR AND 15 MINUTES SRI LANKAN PHYSICS OLYMPIAD - 5 MULTIPLE CHOICE TEST QUESTIONS ONE HOUR AND 5 MINUTES INSTRUCTIONS This test contains ultiple choice questions. Your answer to each question ust be arked on the answer sheet

More information

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions

Flipping Physics Lecture Notes: Free Response Question #1 - AP Physics Exam Solutions 2015 FRQ #1 Free Response Question #1 - AP Physics 1-2015 Exa Solutions (a) First off, we know both blocks have a force of gravity acting downward on the. et s label the F & F. We also know there is a

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Physics Electrostatics Problems. Science and Mathematics Education Research Group

Physics Electrostatics Problems. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Electrostatics Problems Science and Mathematics Education Research Group Supported by UBC Teaching

More information

Physics 218 Exam 3 Fall 2010, Sections

Physics 218 Exam 3 Fall 2010, Sections Physics 28 Exa 3 Fall 200, Sections 52-524 Do not fill out the inforation below until instructed to do so! Nae Signature Student ID E-ail Section # : SOUTIONS ules of the exa:. You have the full class

More information

y scalar component x scalar component A. 770 m 250 m file://c:\users\joe\desktop\physics 2A\PLC Assignments - F10\2a_PLC7\index.

y scalar component x scalar component A. 770 m 250 m file://c:\users\joe\desktop\physics 2A\PLC Assignments - F10\2a_PLC7\index. Page 1 of 6 1. A certain string just breaks when it is under 400 N of tension. A boy uses this string to whirl a 10-kg stone in a horizontal circle of radius 10. The boy continuously increases the speed

More information

PY /005 Practice Test 1, 2004 Feb. 10

PY /005 Practice Test 1, 2004 Feb. 10 PY 205-004/005 Practice Test 1, 2004 Feb. 10 Print nae Lab section I have neither given nor received unauthorized aid on this test. Sign ature: When you turn in the test (including forula page) you ust

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE The ipulse of a force is

More information

Experiment 2: Hooke s Law

Experiment 2: Hooke s Law COMSATS Institute of Inforation Technology, Islaabad Capus PHYS-108 Experient 2: Hooke s Law Hooke s Law is a physical principle that states that a spring stretched (extended) or copressed by soe distance

More information

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS.

PHYSICS - CLUTCH CH 05: FRICTION, INCLINES, SYSTEMS. !! www.clutchprep.co INTRO TO FRICTION Friction happens when two surfaces are in contact f = μ =. KINETIC FRICTION (v 0 *): STATIC FRICTION (v 0 *): - Happens when ANY object slides/skids/slips. * = Point

More information

Mathematics Arithmetic Sequences

Mathematics Arithmetic Sequences a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagogy Mathematics Arithmetic Sequences Science and Mathematics Education Research Group Supported by UBC Teaching and

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics 017 Saskatchewan High School Physics Scholarship Copetition Wednesday May 10, 017 Tie allowed: 90 inutes This copetition is based

More information

2. Which of the following best describes the relationship between force and potential energy?

2. Which of the following best describes the relationship between force and potential energy? Work/Energy with Calculus 1. An object oves according to the function x = t 5/ where x is the distance traveled and t is the tie. Its kinetic energy is proportional to (A) t (B) t 5/ (C) t 3 (D) t 3/ (E)

More information

Test, Lesson 4 Energy-Work-Power- Answer Key Page 1

Test, Lesson 4 Energy-Work-Power- Answer Key Page 1 Test, Lesson 4 Energy-Work-Power- Answer Key Page 1 1. What is the axial height for the ond hup on a roller coaster if the roller coaster is traveling at 108 k just before hr clibing the ond hup? The ond

More information

HW 6 - Solutions Due November 20, 2017

HW 6 - Solutions Due November 20, 2017 Conteporary Physics I HW 6 HW 6 - Solutions Due Noveber 20, 2017 1. A 4 kg block is attached to a spring with a spring constant k 200N/, and is stretched an aount 0.2 [5 pts each]. (a) Sketch the potential

More information

Question 1. [14 Marks]

Question 1. [14 Marks] 6 Question 1. [14 Marks] R r T! A string is attached to the dru (radius r) of a spool (radius R) as shown in side and end views here. (A spool is device for storing string, thread etc.) A tension T is

More information

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4.

F = 0. x o F = -k x o v = 0 F = 0. F = k x o v = 0 F = 0. x = 0 F = 0. F = -k x 1. PHYSICS 151 Notes for Online Lecture 2.4. PHYSICS 151 Notes for Online Lecture.4 Springs, Strings, Pulleys, and Connected Objects Hook s Law F = 0 F = -k x 1 x = 0 x = x 1 Let s start with a horizontal spring, resting on a frictionless table.

More information

Lesson 24: Newton's Second Law (Motion)

Lesson 24: Newton's Second Law (Motion) Lesson 24: Newton's Second Law (Motion) To really appreciate Newton s Laws, it soeties helps to see how they build on each other. The First Law describes what will happen if there is no net force. The

More information

Physics Circular Motion Problems. Science and Mathematics Education Research Group

Physics Circular Motion Problems. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Circular Motion Problems Science and Mathematics Education Research Group Supported by UBC Teaching

More information

FACULTY OF EDUCATION. Department of Curriculum and Pedagogy. Physics Momentum. Science and Mathematics Education Research Group

FACULTY OF EDUCATION. Department of Curriculum and Pedagogy. Physics Momentum. Science and Mathematics Education Research Group FACULTY OF EDUCATION Department of Curriculum and Pedagogy Physics Momentum Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund 2012-2015 Question MomentumTitle

More information

Particle dynamics Physics 1A, UNSW

Particle dynamics Physics 1A, UNSW 1 Particle dynaics Physics 1A, UNSW Newton's laws: S & J: Ch 5.1 5.9, 6.1 force, ass, acceleration also weight Physclips Chapter 5 Friction - coefficients of friction Physclips Chapter 6 Hooke's Law Dynaics

More information

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140.

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140. Slide 1 / 140 Slide 2 / 140 Moentu www.njctl.org Slide 3 / 140 Slide 4 / 140 Table of Contents Click on the topic to go to that section Conservation of Linear Moentu Ipulse - Moentu Equation Collisions

More information

2.003 Engineering Dynamics Problem Set 2 Solutions

2.003 Engineering Dynamics Problem Set 2 Solutions .003 Engineering Dynaics Proble Set Solutions This proble set is priarily eant to give the student practice in describing otion. This is the subject of kineatics. It is strongly recoended that you study

More information

Understanding the coefficient of restitution (COR) using mass/spring systems

Understanding the coefficient of restitution (COR) using mass/spring systems Understanding the coefficient of restitution (COR) using ass/spring systes Dr. David Kagan Departent of Physics California State University, Chico Chico, CA 9599-00 dkagan@csuchico.edu The coefficient

More information

Physics 231 Lecture 13

Physics 231 Lecture 13 Physics 3 Lecture 3 Mi Main points it o td today s lecture: Elastic collisions in one diension: ( ) v = v0 + v0 + + ( ) v = v0 + v0 + + Multiple ipulses and rocket propulsion. F Δ t = Δ v Δ v propellant

More information

4.7. Springs and Conservation of Energy. Conservation of Mechanical Energy

4.7. Springs and Conservation of Energy. Conservation of Mechanical Energy Springs and Conservation of Energy Most drivers try to avoid collisions, but not at a deolition derby like the one shown in Figure 1. The point of a deolition derby is to crash your car into as any other

More information

1 k. 1 m. m A. AP Physics Multiple Choice Practice Work-Energy

1 k. 1 m. m A. AP Physics Multiple Choice Practice Work-Energy AP Physics Multiple Choice Practice Wor-Energy 1. A ass attached to a horizontal assless spring with spring constant, is set into siple haronic otion. Its axiu displaceent fro its equilibriu position is

More information

,... m n. , m 2. , m 3. 2, r. is called the moment of mass of the particle w.r.t O. and m 2

,... m n. , m 2. , m 3. 2, r. is called the moment of mass of the particle w.r.t O. and m 2 CENTRE OF MASS CENTRE OF MASS Every physical syste has associated with it a certain point whose otion characterises the otion of the whole syste. When the syste oves under soe external forces, then this

More information

Introductory Physics Questions

Introductory Physics Questions Introductory Physics Questions (19th June 2015) These questions are taken fro end-of-ter and ake-up exas in 2013 and 2014. After today s class, you should e ale to answer Q1, Q2, Q3 and Q7. Q4, Q5, and

More information

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions

Momentum, p = m v. Collisions and Work(L8) Crash! Momentum and Collisions. Conservation of Momentum. elastic collisions Collisions and Work(L8) Crash! collisions can be ery coplicated two objects bang into each other and exert strong forces oer short tie interals fortunately, een though we usually do not know the details

More information

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140.

Momentum. Conservation of Linear Momentum. Slide 1 / 140 Slide 2 / 140. Slide 3 / 140. Slide 4 / 140. Slide 6 / 140. Slide 5 / 140. Slide 1 / 140 Slide 2 / 140 Moentu www.njctl.org Slide 3 / 140 Slide 4 / 140 Table of Contents Click on the topic to go to that section Conservation of Linear Moentu Ipulse - Moentu Equation Collisions

More information

m potential kinetic forms of energy.

m potential kinetic forms of energy. Spring, Chapter : A. near the surface of the earth. The forces of gravity and an ideal spring are conservative forces. With only the forces of an ideal spring and gravity acting on a ass, energy F F will

More information

Description: Conceptual: A bullet embeds in a stationary, frictionless block: type of collision? what is conserved? v_final?

Description: Conceptual: A bullet embeds in a stationary, frictionless block: type of collision? what is conserved? v_final? Chapter 8 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 8 Due: 11:59p on Sunday, October 23, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

Physics Momentum Problems. Science and Mathematics Education Research Group

Physics Momentum Problems. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Physics Momentum Problems Science and Mathematics Education Research Group Supported by UBC Teaching and Learning

More information

Energy and Momentum: The Ballistic Pendulum

Energy and Momentum: The Ballistic Pendulum Physics Departent Handout -10 Energy and Moentu: The Ballistic Pendulu The ballistic pendulu, first described in the id-eighteenth century, applies principles of echanics to the proble of easuring the

More information

Take-Home Midterm Exam #2, Part A

Take-Home Midterm Exam #2, Part A Physics 151 Due: Friday, March 20, 2009 Take-Hoe Midter Exa #2, Part A Roster No.: Score: NO exa tie liit. Calculator required. All books and notes are allowed, and you ay obtain help fro others. Coplete

More information

Momentum. Momentum. Momentum. January 25, momentum presentation Table of Contents. Momentum Defined. Grade:«grade»

Momentum. Momentum. Momentum. January 25, momentum presentation Table of Contents. Momentum Defined. Grade:«grade» oentu presentation 2016 New Jersey Center for Teaching and Learning Progressive Science Initiative This aterial is ade freely available at wwwnjctlorg and is intended for the non coercial use of students

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

8.1 Force Laws Hooke s Law

8.1 Force Laws Hooke s Law 8.1 Force Laws There are forces that don't change appreciably fro one instant to another, which we refer to as constant in tie, and forces that don't change appreciably fro one point to another, which

More information

Systems of Masses. 1. Ignoring friction, calculate the acceleration of the system below and the tension in the rope. and (4.0)(9.80) 39.

Systems of Masses. 1. Ignoring friction, calculate the acceleration of the system below and the tension in the rope. and (4.0)(9.80) 39. Systes of Masses. Ignoring friction, calculate the acceleration of the syste below and the tension in the rope. Drawing individual free body diagras we get 4.0kg 7.0kg g 9.80 / s a?? g and g (4.0)(9.80)

More information

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit

Relativity and Astrophysics Lecture 25 Terry Herter. Momenergy Momentum-energy 4-vector Magnitude & components Invariance Low velocity limit Mo Mo Relativity and Astrophysics Lecture 5 Terry Herter Outline Mo Moentu- 4-vector Magnitude & coponents Invariance Low velocity liit Concept Suary Reading Spacetie Physics: Chapter 7 Hoework: (due Wed.

More information

Chapter 1. Momentum. Fun and physics on screen

Chapter 1. Momentum. Fun and physics on screen Chapter 1 Moentu Objectives e-learning Fun and physics on screen If you play coputer gaes (Figure 1.1) you will be failiar with the way in which characters ove about the screen. Cars accelerate and decelerate

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March EN4: Dynaics and Vibrations Midter Exaination Tuesday March 8 16 School of Engineering Brown University NAME: General Instructions No collaboration of any kind is peritted on this exaination. You ay bring

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

Physics 120 Final Examination

Physics 120 Final Examination Physics 120 Final Exaination 12 August, 1998 Nae Tie: 3 hours Signature Calculator and one forula sheet allowed Student nuber Show coplete solutions to questions 3 to 8. This exaination has 8 questions.

More information

Physics 204A FINAL EXAM Chapters 1-14 Spring 2006

Physics 204A FINAL EXAM Chapters 1-14 Spring 2006 Nae: Solve the following probles in the space provided Use the back of the page if needed Each proble is worth 0 points You ust show your work in a logical fashion starting with the correctly applied physical

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . A raindrop falls vertically under gravity through a cloud. In a odel of the otion the raindrop is assued to be spherical at all ties and the cloud is assued to consist of stationary water particles.

More information

Student Book pages

Student Book pages Chapter 7 Review Student Boo pages 390 39 Knowledge. Oscillatory otion is otion that repeats itself at regular intervals. For exaple, a ass oscillating on a spring and a pendulu swinging bac and forth..

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Student Book page 583 Concept Check (botto) The north-seeking needle of a copass is attracted to what is called

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of

A body of unknown mass is attached to an ideal spring with force constant 123 N/m. It is found to vibrate with a frequency of Chapter 14 [ Edit ] Overview Suary View Diagnostics View Print View with Answers Chapter 14 Due: 11:59p on Sunday, Noveber 27, 2016 To understand how points are awarded, read the Grading Policy for this

More information

Physics 11 HW #6 Solutions

Physics 11 HW #6 Solutions Physics HW #6 Solutions Chapter 6: Focus On Concepts:,,, Probles: 8, 4, 4, 43, 5, 54, 66, 8, 85 Focus On Concepts 6- (b) Work is positive when the orce has a coponent in the direction o the displaceent.

More information

Conservation of Momentum

Conservation of Momentum Conseration of Moentu We left off last with the idea that when one object () exerts an ipulse onto another (), exerts an equal and opposite ipulse onto. This happens in the case of a classic collision,

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful

Lecture 6. Announcements. Conservation Laws: The Most Powerful Laws of Physics. Conservation Laws Why they are so powerful Conseration Laws: The Most Powerful Laws of Physics Potential Energy gh Moentu p = + +. Energy E = PE + KE +. Kinetic Energy / Announceents Mon., Sept. : Second Law of Therodynaics Gie out Hoework 4 Wed.,

More information

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Chapter 7 Solutions

Pearson Physics Level 20 Unit IV Oscillatory Motion and Mechanical Waves: Chapter 7 Solutions Pearson Physics Level 0 Unit IV Oscillatory Motion and Mechanical Waves: Chapter 7 Solutions Student Boo page 345 Exaple 7. Practice Probles. 60 s T 5.00 in in 300 s f T 300 s 3 3.33 0 Hz The frequency

More information

6-1. Conservation law of mechanical energy

6-1. Conservation law of mechanical energy 6-1. Conservation law of mechanical energy 1. Purpose Investigate the mechanical energy conservation law and energy loss, by studying the kinetic and rotational energy of a marble wheel that is moving

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics 05 Saskatchewan High School Physics Scholarship Copetition May, 05 Tie allowed: 90 inutes This copetition is based on the Saskatchewan

More information