QUASI-GEOSTROPHIC DYNAMICS OF DENSE WATER ON SLOPING TOPOGRAPHY How does topography impact deep ocean circulation?

Size: px
Start display at page:

Download "QUASI-GEOSTROPHIC DYNAMICS OF DENSE WATER ON SLOPING TOPOGRAPHY How does topography impact deep ocean circulation?"

Transcription

1 QUASI-GEOSTROPHIC DYNAMICS OF DENSE WATER ON SLOPING TOPOGRAPHY How does topography impact deep ocean circulation? Anna Wåhlin Department of Earth Sciences University of Gothenburg (Sweden)

2 Density Currents Formation

3 1.5-layer system: Well-mixed in all directions Dense layer active Upper layer at rest Upper layer infinitely deep (hence, no velocities even though pushed by lower layer

4 Outline: u u u + u + v fv = g' ( h+ D) F t x y x h X 4 Today: h uh vh + + = t x y 0 1. Geostrophic adjustment on sloping topography (2 & 3; constant slope) 2. Ekman dynamics (2 & 3 & 4; constant slope) 3. Tuesday: Topographic channeling (2 & 3 and 4; steady state; small-scale topography)

5 Geostrophic adjustment: Bottom currents tend to flow along steep bathymetry. (Dense and intermediate water masses in the Arctic ocean) Canadian Basin Deep Water Intermediate water masses From Björk et al, DSR 2010

6 Clarification (analogy topographic and planetary β): Planetary β: Sloping topography: f f y = 0 + β 0 D= D +α x fu = g ' ( h + D) y fv = g ' ( h + D) x g' g' g' h+ hh + h h hh + t y x xy y x f0 f0 f0 g' g' + h( βh hxy ) = 0 f 2 x 0 f0 h g' h βh = 0 t f x 2 0 h + ( uh) + ( vh) = 0 t x y ' ' ' ' ht + g hyhx + h g h g xy hy ( hx + α) h g hxy = 0 f f f f h g' α h = 0 t f y

7 Ekman dynamics: Frictional smoothing in interior Lower boundary creeps downward creating a thin layer Upper boundary becomes horizontal

8 Laminar regime (deep ambient water, small source salinity Shallow level part Dense source Straight slope Exchangeable section Deep level part

9 Wave regime (Cenedese et al) (shallow ambient water, large source salinity

10 Eddy regime (shallow ambient water, small source salinity

11 Constant slope: Only small downward transport Shallow Main flow Frictional transport Eddy-induced transport Deep From Cenedese et al, 2004

12 Field of small-scale corrugations on the Ross Sea slope From Muench et al, to be submitted

13 Amundsen Sea

14 Large part of the World s continental slopes are corrugated: # canyons per 100 km From Allen and de Madron, 2009

15 Downslope flow in numerical simulation [nek5000 model: Özgökmen et al., 2004; Özgökmen & Fischer, 2008] Downslope flow is enhanced by the corrugations, and increasingly so by the shorter wavelengths. Smooth bottom (no corrugations) H C =200 m λ C =2 km H C =200 m λ C =0.7 km From Muench et al, to be submitted Normalized density

16 Downslope flow as a function of height H C at a fixed (2 km) wavelength λ C (GOLD model) Smooth bottom (no corrugations) H C =20 m λ C =2 km H C =100 m λ C =2 km From Muench et al, to be submitted

17 Submarine ridge intersects the slope: Ridge Shallow Deep From Darelius (DSR 2008)

18 Submarine canyon intersects the slope Deep Shallow Canyon

19 Geostrophic flow along the depth contours, out of the canyon area:

20 Filchner Overflow (Weddel Sea, Antarctica): Darelius et al, Tellus, 2008

21 Instead of flowing out of the canyon area, dense water channeled downhill, trapped in corrugations: Something counteracts the geostrophic tendency

22 Inside the canyon/corrugation: Flow downhill inside the canyon induces Ekman transport to the left, i.e. opposing the geostrophic flow out of the canyon From Davies et al, 2006

23 Inside the canyon/corrugation: When downhill flow is sufficiently fast, the two crosscanyon flows (geostrophic and Ekman) cancel. h V + δ V =0 g Can be solved. V g & V E found assuming balance between pressure gradient, Coriolis force & friction in both directions E

24 View of the circulation: Up canyon From above From Darelius (DSR 2008)

25 Mathematical description 1.5-layer system: Well-mixed in all directions Dense layer active Upper layer at rest Upper layer infinitely deep Steady state Topography: D( x, y) = D + α x + d( y) 0 Constant slope in x- direction topographic feature in y- direction (canyon, ridge, corrugation)

26 Mathematical description K fv = g ' α u fu g'( hy Dy) h = + K v h hv g ' α K '( = h + y + y) u u f f f g h D K v = f h δ L vh K = f δ = = + h 2 1 (1 + ) δ ( ) 2 LuG + vh G ql h δ LuG vg ( ) ( ) h

27 Mathematical description hv hv = q ( h δ u + vh L ) L G G ( ) = 0 h= 0 or hv + δu = 0 G G h g ' α g' ( h D) ( h D) δ + = 0 hα = δ + f f y y α = slope of canyon axis δ = thickness of frictional boundary layer

28 Mathematical description ( h D) hα = δ + y ( hd, ) = D( hd ˆ, ˆ ) y = Wyˆ C h hs D hˆ ˆ ˆ D = = βh y δ y yˆ yˆ β = αw δ α = slope of canyon/channel axis W = canyon width D C = canyon/channel depth δ = thickness of frictional boundary layer

29 Cosine-shaped channel: h = h + h h h P H P H DC y y = cos( ) + β sin( ) 2 2(1 + β ) W W = Ce β y W Dependence on β β = 0.1 β = αw δ DC y Dy ( ) = (1 cos( )) 2 W β =1 β =10

30 Darelius&W, 2007 Different shapes ridges, 3 different β:

31 β = αw δ α = slope of canyon/channel axis δ= frictional boundary layer thickness W = canyon/channel width Muench et al, JGR 2009

32 Dimensional solution (change β by changing width) Small transport β = αw δ u = 0 at edges (slippery boundary layers) Large transport From Davies et al, 2006

33 Cross-section looking uphill inside the canyon: Generally good agreement in laboratory experiments From Darelius (DSR 2008) From Davies et al, JPO 2006

34 Cosine-shaped channel: Dependence on BC h= h + h h h P H P H DC y y = cos( ) + β sin( ) 2 2(1 + β ) W W = C y W e β C = 0 C > 0 β =1 C < 0

35 Many different solutions that have zero cross-canyon transports. All with different along-canyon transport. Can be used as boundary condition: More than Qmax => spills over edge, continues along the slope (or into next canyon) Q MAX Transport capacity Q MAX : the channel is completely filled

36 Transport capacity: ˆ Q ˆ ˆ MAX = hu dy = dy = h dy = h D dy yˆ R R R 2 Rˆ ' ' ' C G g D g D gd h h + f y f y f L L L Lˆ QMAX 2 gd ' C = r( β) = QBCr( β) f β = αw δ Only a function of β

37 QMAX Largest Qmax for β~1 (depending on friction parameterization) 2 gd ' C = r( β) = QBCr( β) f r( β ) β = αw δ 2Q Q BC β

38 r(β) for ridges and canyons Q Q BC Darelius & W, 2007 β

39 Deep canyon Shallow canyon

40 Q > Qmax => spills over edge, continues along the slope (or into next canyon) From Darelius, DSR 2008

41 Experiments with sloping channels: Generally good agreement in laboratory experiments From Darelius (DSR 2008) From Davies et al, JPO 2006

42 Experiments with sloping channels: U H α

43 Non-rotating channel flow (Linden, others ): Fr gh ' = = 2 U Fr C Adapt non-rotating to rotating (Koman, 1969): H H ' FrC = U = g H 4 3 Q = UHW g ' dh fu dy = W => U and H are constants and equal to U gh ' WFr = 3 = C H Q WU

44 Compare to Ekman dynamics model: H h g ' α g ' ( h + D) δ = f f y 0 H h hs D h hα = = y δ y y δ W h( y) = Ce α y δ W W g' h g' ( 2 2 G R L ) f y f 0 0 Q = hu dy = h dy = h h H = h h R L

45 From Cossu et al, submitted

46 Comparing velocities B gh ' = 1 f W Koman 2 B >1 2 B <1 From Cossu et al, submitted

47 H B gh ' = 1 f W B > 1 2 B <1 From Cossu et al, submitted

48 How does the presence of a canyon/ridge affect the receiving basin water properties? Mixing? Shallow level part Dense source Straight slope Exchangeable section Deep level part

49 Dense source

50 Time development of basin stratification: How does the topography-induced mixing affect the basin stratification? Salinity probes moving up and down

51 No ridge or canyon (laminar regime) C4 Distance above bottom Time Basin salinity C5

52 Canyon Larger volume of mixtures between basin and source water Less dense bottom water

53 Ridge

54 Inside canyon: different velocity, different Ri (i.e. Fr) and Re

55 δ W << α More level interface Slower flow Thicker layer Decreased entrainment δ W >> α Steeper interface Faster flow Thinner layer Increased entrainment

56 Summary role of topography: 1. Sloping topography induces a forward motion in the dense water mass (u N ) 2. Bottom friction acts as a diffusive process in the interior, upper edge becomes horizontal and arrested, lower edge moves downward creating a thin (δ) sheet of dense water 3. Small-scale topography channels water downward (β~1 gives maximum transport) and (probably) changes the mixing properties. (β > 1 = increase, β < 1 => decrease)

57 Time development of water masses: Laminar regime Highly diluted Moderately diluted Pure source water 30-70% 70-90% >90% % of total volume Canyon/ridge Straight Time Larger volumes of diluted water masses are produced with canyon/ridge than without With canyon/ridge all water is diluted, no production of pure source water

58 Wave regime % of total volume Highly diluted Moderately diluted Pure source water 30-70% 70-90% >90% Canyon/ridge Straight No production of pure source water with any topography (more overall mixing compared to laminar regime) Larger volumes of highly diluted water masses are produced with canyon/ridge than without Smaller volumes of moderately diluted (less mixed) with canyon/ridge

59 Eddy regime Highly diluted Moderately diluted Pure source water 30-70% 70-90% >90% % of total volume Canyon/ridge Straight No production of pure source water with ridge/canyon topography In eddy regime the plume water is more homogeneous compared to wave regime (fewer density classes). Stirring instead of mixing??

Understanding and modeling dense overflows. Sonya Legg Princeton University AOMIP/FAMOS school for young scientists 2012

Understanding and modeling dense overflows. Sonya Legg Princeton University AOMIP/FAMOS school for young scientists 2012 Understanding and modeling dense overflows Sonya Legg Princeton University AOMIP/FAMOS school for young scientists 2012 What is an overflow? Dense water formation on shelf or marginal sea Dense water accelerates

More information

The impact of shelf-break currents on marginal sea overflows

The impact of shelf-break currents on marginal sea overflows The impact of shelf-break currents on marginal sea overflows Shin Kida ( 木田新一郎 ) JAMSTEC Thanks to Keiko Takahashi (JAMSTEC) Kiyoshi Tanaka (ORI) Past studies on Overflows Open Ocean Marginal Seas Entrainment

More information

Oceanography at the Antarctic Margins. A. Wåhlin, University of Gothenburg, Sweden

Oceanography at the Antarctic Margins. A. Wåhlin, University of Gothenburg, Sweden Oceanography at the Antarctic Margins A. Wåhlin, University of Gothenburg, Sweden 1) Shelf seas water mass modification. Some examples in TS diagrams 2) Mechanisms for cross-shelf flow: Eddies and buoyancy

More information

Dense Outflows and Deep Convection in the Antarctic Zone of the Southern Ocean

Dense Outflows and Deep Convection in the Antarctic Zone of the Southern Ocean Dense Outflows and Deep Convection in the Antarctic Zone of the Southern Ocean Robin D. Muench Earth & Space Research 2101 Fourth Avenue, Suite 1310 Seattle, WA 98121 USA phone: (206) 363-7528 fax: (206)

More information

A simple model of topographic Rossby waves in the ocean

A simple model of topographic Rossby waves in the ocean A simple model of topographic Rossby waves in the ocean V.Teeluck, S.D.Griffiths, C.A.Jones University of Leeds April 18, 2013 V.Teeluck (University of Leeds) Topographic Rossby waves (TRW) in the ocean

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 9 by Andrew Wells We have so far considered boundary layers adjacent to physical boundaries. However, it is also possible to find boundary layers

More information

General AW Circulation Schemes

General AW Circulation Schemes General AW Circulation Schemes Aagaard, 1989 - topographically steered boundary current along slopes and ridges - interior flow weak, dominated by eddies (based on current meters) Rudels et al, 1994 -

More information

PAPER 333 FLUID DYNAMICS OF CLIMATE

PAPER 333 FLUID DYNAMICS OF CLIMATE MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 1:30 pm to 4:30 pm Draft 21 June, 2016 PAPER 333 FLUID DYNAMICS OF CLIMATE Attempt no more than THREE questions. There are FOUR questions in total.

More information

How entraining density currents influence the ocean stratification

How entraining density currents influence the ocean stratification 11/3/25 1 How entraining density currents influence the ocean stratification A. K. Wåhlin 1 and C. Cenedese 2 Abstract 1 Oslo University Dept. of Geosciences, Oceanography PB 122 Blindern N- 315 Oslo Norway

More information

fu = _g,a(h _g,8(h + h B ) -

fu = _g,a(h _g,8(h + h B ) - MODELLING THE DYNAMICS OF ABYSSAL EQUATOR-CROSSING CURRENTS P.F. CHOBOTER AND G.E. SWATERS 1. Introduction Abyssal flows, as part of the global thermohaline circulation, make a sig nificant contribution

More information

Lecture 9: Tidal Rectification, Stratification and Mixing

Lecture 9: Tidal Rectification, Stratification and Mixing Lecture 9: Tidal Rectification, Stratification and Mixing Chris Garrett 1 Additional Notes on Tidal Rectification This lecture continues the discussion of long-wavelength tidal flow over comparatively

More information

) 2 ψ +β ψ. x = 0. (71) ν = uk βk/k 2, (74) c x u = β/k 2. (75)

) 2 ψ +β ψ. x = 0. (71) ν = uk βk/k 2, (74) c x u = β/k 2. (75) 3 Rossby Waves 3.1 Free Barotropic Rossby Waves The dispersion relation for free barotropic Rossby waves can be derived by linearizing the barotropic vortiticy equation in the form (21). This equation

More information

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise)

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise) Ocean 423 Rossby waves 1 Rossby waves: Restoring force is the north-south gradient of background potential vorticity (f/h). That gradient can be due to either the variation in f with latitude, or to a

More information

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction

OCN/ATM/ESS 587. The wind-driven ocean circulation. Friction and stress. The Ekman layer, top and bottom. Ekman pumping, Ekman suction OCN/ATM/ESS 587 The wind-driven ocean circulation. Friction and stress The Ekman layer, top and bottom Ekman pumping, Ekman suction Westward intensification The wind-driven ocean. The major ocean gyres

More information

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations

Chapter 3. Shallow Water Equations and the Ocean. 3.1 Derivation of shallow water equations Chapter 3 Shallow Water Equations and the Ocean Over most of the globe the ocean has a rather distinctive vertical structure, with an upper layer ranging from 20 m to 200 m in thickness, consisting of

More information

The impact of a downslope water-transport parameterization in a global ocean general circulation model

The impact of a downslope water-transport parameterization in a global ocean general circulation model The impact of a downslope water-transport parameterization in a global ocean general circulation model Stephanie Legutke and Ernst Maier-Reimer Max-Planck-Institut für Meteorologie Bundesstraße 55, D-20146

More information

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P.

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P. Ocean 423 Vertical circulation 1 When we are thinking about how the density, temperature and salinity structure is set in the ocean, there are different processes at work depending on where in the water

More information

Stability of meridionally-flowing grounded abyssal currents in the ocean

Stability of meridionally-flowing grounded abyssal currents in the ocean Advances in Fluid Mechanics VII 93 Stability of meridionally-flowing grounded abyssal currents in the ocean G. E. Swaters Applied Mathematics Institute, Department of Mathematical & Statistical Sciences

More information

5. Two-layer Flows in Rotating Channels.

5. Two-layer Flows in Rotating Channels. 5. Two-layer Flows in Rotating Channels. The exchange flow between a marginal sea or estuary and the open ocean is often approximated using two-layer stratification. Two-layer models are most valid when

More information

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations?

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations? Patterns and observations? Patterns and observations? Observations? Patterns? Observations? Patterns? Geometry of the ocean Actual bathymetry (with vertical exaggeration) Continental Continental Basin

More information

Physical and chemical processes affecting release of CO 2 at the seafloor. Peter M. Haugan

Physical and chemical processes affecting release of CO 2 at the seafloor. Peter M. Haugan Physical and chemical processes affecting release of CO 2 at the seafloor Peter M. Haugan Geophysical Institute, University of Bergen, Norway With contributions from Dr. Guttorm Alendal, Bergen Centre

More information

( ) = 1005 J kg 1 K 1 ;

( ) = 1005 J kg 1 K 1 ; Problem Set 3 1. A parcel of water is added to the ocean surface that is denser (heavier) than any of the waters in the ocean. Suppose the parcel sinks to the ocean bottom; estimate the change in temperature

More information

Munk and Mixing Story of recipe

Munk and Mixing Story of recipe Munk and Mixing Story of recipe Raffaele Ferrari Department of Earth, Atmospheric and Planetary Sciences, MIT Munk Centennial Symposium, Scripps May 15-17 munk & mixing Raffaele Ferrari Department of Earth,

More information

Donald Slinn, Murray D. Levine

Donald Slinn, Murray D. Levine 2 Donald Slinn, Murray D. Levine 2 Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis,

More information

Buoyancy-forced circulations in shallow marginal seas

Buoyancy-forced circulations in shallow marginal seas Journal of Marine Research, 63, 729 752, 2005 Buoyancy-forced circulations in shallow marginal seas by Michael A. Spall 1 ABSTRACT The properties of water mass transformation and the thermohaline circulation

More information

How entraining density currents influence the stratification in a one-dimensional ocean basin

How entraining density currents influence the stratification in a one-dimensional ocean basin Deep-Sea Research II 53 (2006) 172 193 www.elsevier.com/locate/dsr2 How entraining density currents influence the stratification in a one-dimensional ocean basin A.K. Wåhlin a,, C. Cenedese b a Department

More information

Evolution of the Deep Water in the Canadian Basin in the Arctic Ocean

Evolution of the Deep Water in the Canadian Basin in the Arctic Ocean 866 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 36 Evolution of the Deep Water in the Canadian Basin in the Arctic Ocean M.-L. TIMMERMANS* AND CHRIS GARRETT Department of Physics and

More information

Surface Circulation. Key Ideas

Surface Circulation. Key Ideas Surface Circulation The westerlies and the trade winds are two of the winds that drive the ocean s surface currents. 1 Key Ideas Ocean water circulates in currents. Surface currents are caused mainly by

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

Topographic Enhancement of Eddy Efficiency in Baroclinic Equilibration

Topographic Enhancement of Eddy Efficiency in Baroclinic Equilibration Topographic Enhancement of Eddy Efficiency in Baroclinic Equilibration JPO, 44 (8), 2107-2126, 2014 by Ryan Abernathey Paola Cessi as told by Navid CASPO theory seminar, 28 May 2016 section 2 what s the

More information

Распространение плотных придонных

Распространение плотных придонных Распространение плотных придонных вод на шельфе Арктических морей Dense bottom water transport over the shelf of Arctic seas Платов Г. А. (Platov G. A.) ИВМиМГ СОРАН, Новосибирск ICMMG, Novosibirsk Problems

More information

Winds and Currents in the Oceans

Winds and Currents in the Oceans Winds and Currents in the Oceans Atmospheric Processes Density of air is controlled by temperature, pressure, and moisture content. 1. Warm air is less dense than cold air and moist air is less dense than

More information

Structure and variability of the Filchner overflow plume

Structure and variability of the Filchner overflow plume SERIES A DYNAMIC METEOROLOGY AND OCEANOGRAPHY PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM Tellus (2009), 61A, 446 464 Printed in Singapore. All rights reserved C 2009 The Authors

More information

Getting around in the Arctic

Getting around in the Arctic Getting around in the Arctic what we do (and don t) know about boundary currents Arctic Bathymetry 605ft 184m 70N ~1000ft ~ 330m Rebecca Woodgate University of Washington 150ft 50m BBC Photo by Sullivan

More information

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be a bonus) is well written (take your time to edit) shows

More information

bottom: the role of friction

bottom: the role of friction Published in J. Phys. Oceanogr.2003, 33, No2., 390-406. The alternative density structures of cold/salt water pools on a sloping bottom: the role of friction G.I. Shapiro 1,3 and A.E. Hill 2 1 Institute

More information

Features of dense water cascades off the Arctic shelves

Features of dense water cascades off the Arctic shelves V.V.Ivanov,3, G.I.Shapiro, Features of dense water cascades off the Arctic shelves. School of Earth Ocean and Environmental Science, University of Plymouth, UK. P.P. Shirshov Institute of Oceanology RAS,

More information

Ocean Mixing and Climate Change

Ocean Mixing and Climate Change Ocean Mixing and Climate Change Factors inducing seawater mixing Different densities Wind stirring Internal waves breaking Tidal Bottom topography Biogenic Mixing (??) In general, any motion favoring turbulent

More information

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow The types of atmospheric flows describe here have the following characteristics: 1) Steady state (meaning that the flows do not change

More information

On the Circulation of Atlantic Water in the Arctic Ocean

On the Circulation of Atlantic Water in the Arctic Ocean 2352 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 43 On the Circulation of Atlantic Water in the Arctic Ocean MICHAEL A. SPALL Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

More information

Internal Wave Generation and Scattering from Rough Topography

Internal Wave Generation and Scattering from Rough Topography Internal Wave Generation and Scattering from Rough Topography Kurt L. Polzin Corresponding author address: Kurt L. Polzin, MS#21 WHOI Woods Hole MA, 02543. E-mail: kpolzin@whoi.edu Abstract Several claims

More information

2 A: The Shallow Water Equations

2 A: The Shallow Water Equations 2 A: The Shallow Water Equations 2.1 Surface motions on shallow water Consider two-dimensional (x-z) motions on a nonrotating, shallow body of water, of uniform density, as shown in Fig. 1 below. The ow

More information

Double-diffusive lock-exchange gravity currents

Double-diffusive lock-exchange gravity currents Abstract Double-diffusive lock-exchange gravity currents Nathan Konopliv, Presenting Author and Eckart Meiburg Department of Mechanical Engineering, University of California Santa Barbara meiburg@engineering.ucsb.edu

More information

SMS 303: Integrative Marine

SMS 303: Integrative Marine SMS 303: Integrative Marine Sciences III Instructor: E. Boss, TA: A. Palacz emmanuel.boss@maine.edu, 581-4378 5 weeks & topics: diffusion, mixing, tides, Coriolis, and waves. Pre-class quiz. Mixing: What

More information

How to form halocline water?

How to form halocline water? How to form halocline water? Atlantic water - cannot form Halocline water simply by mixing (Aagaard, 1981) Surface Water Adapted from Steele and Boyd, 1998 ADVECTIVE HC Temp Fresh Salty Aagaard et al,

More information

Coastal Antarctic polynyas: A coupled process requiring high model resolution in the ocean and atmosphere

Coastal Antarctic polynyas: A coupled process requiring high model resolution in the ocean and atmosphere Coastal Antarctic polynyas: A coupled process requiring high model resolution in the ocean and atmosphere Mike Dinniman and John Klinck Center for Coastal Physical Oceanography Old Dominion University

More information

Deep-Water Flow over the Lomonosov Ridge in the Arctic Ocean

Deep-Water Flow over the Lomonosov Ridge in the Arctic Ocean AUGUST 2005 N O T E S A N D C O R R E S P O N D E N C E 1489 Deep-Water Flow over the Lomonosov Ridge in the Arctic Ocean M.-L. TIMMERMANS, P. WINSOR, AND J. A. WHITEHEAD Woods Hole Oceanographic Institution,

More information

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations

Chapter 5. Shallow Water Equations. 5.1 Derivation of shallow water equations Chapter 5 Shallow Water Equations So far we have concentrated on the dynamics of small-scale disturbances in the atmosphere and ocean with relatively simple background flows. In these analyses we have

More information

Two-Layer Rotating Exchange Flow between Two Deep Basins: Theory and Application to the Strait of Gibraltar

Two-Layer Rotating Exchange Flow between Two Deep Basins: Theory and Application to the Strait of Gibraltar 1568 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 35 Two-Layer Rotating Exchange Flow between Two Deep Basins: Theory Application to the Strait of Gibraltar M.-L. E. TIMMERMANS AND

More information

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9 The atmosphere in motion: forces and wind AT350 Ahrens Chapter 9 Recall that Pressure is force per unit area Air pressure is determined by the weight of air above A change in pressure over some distance

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models

Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models Dimitris Menemenlis California Institute of Technology, Jet Propulsion Laboratory Frontiers

More information

The dynamics of high and low pressure systems

The dynamics of high and low pressure systems The dynamics of high and low pressure systems Newton s second law for a parcel of air in an inertial coordinate system (a coordinate system in which the coordinate axes do not change direction and are

More information

A Dense Current Flowing down a Sloping Bottom in a Rotating Fluid

A Dense Current Flowing down a Sloping Bottom in a Rotating Fluid 188 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 34 A Dense Current Flowing down a Sloping Bottom in a Rotating Fluid C. CENEDESE AND J. A. WHITEHEAD Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

More information

Seas. A sea is a part of an ocean that is nearly surrounded by water. The Mediterranean, Arctic and Black Sea are really part of the Atlantic Ocean.

Seas. A sea is a part of an ocean that is nearly surrounded by water. The Mediterranean, Arctic and Black Sea are really part of the Atlantic Ocean. Exploring the Ocean Since ancient times people have studied the ocean such as waters and ocean floor It provides food and services, and serves as a route for trade and travel The World s Oceans 71% of

More information

Chapter 7. Three Dimensional Modelling of Buoyancy-Driven Displacement Ventilation: Point Source

Chapter 7. Three Dimensional Modelling of Buoyancy-Driven Displacement Ventilation: Point Source Chapter 7 Three Dimensional Modelling of Buoyancy-Driven Displacement Ventilation: Point Source 135 7. Three Dimensional Modelling of Buoyancy- Driven Displacement Ventilation: Point Source 7.1 Preamble

More information

Influence of the Coriolis force on the velocity structure of gravity currents in straight submarine channel systems

Influence of the Coriolis force on the velocity structure of gravity currents in straight submarine channel systems JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010jc006208, 2010 Influence of the Coriolis force on the velocity structure of gravity currents in straight submarine channel systems R. Cossu,

More information

Modeling internal tides and mixing over ocean ridges

Modeling internal tides and mixing over ocean ridges Modeling internal tides and mixing over ocean ridges Donald N. Slinn 1 and Murray D. Levine 2 1 Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida 32611-6590, 352-392-9537

More information

Dynamic Meteorology 1

Dynamic Meteorology 1 Dynamic Meteorology 1 Lecture 14 Sahraei Department of Physics, Razi University http://www.razi.ac.ir/sahraei Buys-Ballot rule (Northern Hemisphere) If the wind blows into your back, the Low will be to

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Problem

More information

OCEAN MODELING II. Parameterizations

OCEAN MODELING II. Parameterizations OCEAN MODELING II Parameterizations Gokhan Danabasoglu Oceanography Section Climate and Global Dynamics Division National Center for Atmospheric Research NCAR is sponsored by the National Science Foundation

More information

Goals of this Chapter

Goals of this Chapter Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature in the presence of positive static stability internal gravity waves Conservation of potential vorticity in the presence

More information

EPSS 15. Spring Introduction to Oceanography. Laboratory #1 Maps, Cross-sections, Vertical Exaggeration, Graphs, and Contour Skills 4/7/17

EPSS 15. Spring Introduction to Oceanography. Laboratory #1 Maps, Cross-sections, Vertical Exaggeration, Graphs, and Contour Skills 4/7/17 EPSS 15 Spring 2017 Introduction to Oceanography Laboratory #1 Maps, Cross-sections, Vertical Exaggeration, Graphs, and Contour Skills MAPS Provide valuable interface to explore the geography of the world

More information

( ) where the phase! is given by! = kx + mz!"t. We also know

( ) where the phase! is given by! = kx + mz!t. We also know GFD I, Final Exam Solutions 3/7/1 Parker MacCready 1.(a) The expression for the pressure perturbation is found from the vertical momentum equation: Z-MOM w t! 1! p' z b which may be rearranged to give:

More information

Abyssal Ocean Circulation. Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Les Houches, August 2017

Abyssal Ocean Circulation. Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Les Houches, August 2017 Abyssal Ocean Circulation Raffaele Ferrari Earth, Atmospheric and Planetary Sciences, MIT Les Houches, August 2017 Outline The deep ocean The deep circulation The sinking branch: deep convection The upwelling

More information

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk Lecture 8 Lecture 1 Wind-driven gyres Ekman transport and Ekman pumping in a typical ocean basin. VEk wek > 0 VEk wek < 0 VEk 1 8.1 Vorticity and circulation The vorticity of a parcel is a measure of its

More information

Turbulent Mixing and Exchange With Interior Waters on Sloping Boundaries

Turbulent Mixing and Exchange With Interior Waters on Sloping Boundaries Turbulent Mixing and Exchange With Interior Waters on Sloping Boundaries Eric Kunze,, APL-U U of Washington, Erika McPhee-Shaw, Katie Morrice,, Moss Landing; James Girton, Samantha Brody,, APL-U U Washington.

More information

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport is which can also be written as (14.1) i.e., #Q x,y

More information

Ocean Dynamics. The Great Wave off Kanagawa Hokusai

Ocean Dynamics. The Great Wave off Kanagawa Hokusai Ocean Dynamics The Great Wave off Kanagawa Hokusai LO: integrate relevant oceanographic processes with factors influencing survival and growth of fish larvae Physics Determining Ocean Dynamics 1. Conservation

More information

The Two-layer Skirted Island. Joseph Pedlosky 1.2. Roberto Iacono 3. Ernesto Napolitano 3. and. Michael A. Spall 1.

The Two-layer Skirted Island. Joseph Pedlosky 1.2. Roberto Iacono 3. Ernesto Napolitano 3. and. Michael A. Spall 1. The Two-layer Skirted Island by Joseph Pedlosky 1. Roberto Iacono 3 Ernesto Napolitano 3 and Michael A. Spall 1 February 8, 011 1. Woods Hole Oceanographic Institution Woods Hole, MA 0543, USA. Corresponding

More information

Modeling of Coastal Ocean Flow Fields

Modeling of Coastal Ocean Flow Fields Modeling of Coastal Ocean Flow Fields John S. Allen College of Oceanic and Atmospheric Sciences Oregon State University 104 Ocean Admin Building Corvallis, OR 97331-5503 phone: (541) 737-2928 fax: (541)

More information

Calculating Storm Surge and Other Coastal Hazards Using Geoclaw

Calculating Storm Surge and Other Coastal Hazards Using Geoclaw Calculating Storm Surge and Other Coastal Hazards Using Geoclaw Kyle T. Mandli Department of Applied Mathematics University of Washington Seattle, WA, USA Modeling and Computations of Shallow-Water Coastal

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information

The Relationship between Flux Coefficient and Entrainment Ratio in Density Currents

The Relationship between Flux Coefficient and Entrainment Ratio in Density Currents DECEMBER 2010 W E L L S E T A L. 2713 The Relationship between Flux Coefficient and Entrainment Ratio in Density Currents MATHEW WELLS University of Toronto, Toronto, Ontario, Canada CLAUDIA CENEDESE Woods

More information

ARTICLE IN PRESS. Deep-Sea Research II

ARTICLE IN PRESS. Deep-Sea Research II Deep-Sea Research II 56 (2009) 884 894 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Tidal effect on the dense water discharge, Part 2: A

More information

ROSSBY WAVE PROPAGATION

ROSSBY WAVE PROPAGATION ROSSBY WAVE PROPAGATION (PHH lecture 4) The presence of a gradient of PV (or q.-g. p.v.) allows slow wave motions generally called Rossby waves These waves arise through the Rossby restoration mechanism,

More information

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli Lecture. Equations of Motion Scaling, Non-dimensional Numbers, Stability and Mixing We have learned how to express the forces per unit mass that cause acceleration in the ocean, except for the tidal forces

More information

Physical Oceanographic Context of Seamounts. Pierre Dutrieux Department of Oceanography, University of Hawai'i at Manoa, Honolulu, Hawai'i

Physical Oceanographic Context of Seamounts. Pierre Dutrieux Department of Oceanography, University of Hawai'i at Manoa, Honolulu, Hawai'i Physical Oceanographic Context of Seamounts Pierre Dutrieux Department of Oceanography, University of Hawai'i at Manoa, Honolulu, Hawai'i PEW Workshop, October 2007 Seamounts: definitions submarine topographic

More information

SCICEX Phase 2 Accommodation Cruises. Provided by T. Boyd

SCICEX Phase 2 Accommodation Cruises. Provided by T. Boyd SCICEX Phase 2 Accommodation Cruises Provided by T. Boyd OBJECTIVES Re-invigorate the SCICEX Science Advisory Committee Maximize the contribution of SCICEX in understanding di the Arctic Ocean processes

More information

Evidence of dense water overflow on the Ross Sea shelf-break

Evidence of dense water overflow on the Ross Sea shelf-break Antarctic Science 14 (3): 271 277 (2002) Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102002000068 Evidence of dense water overflow on the Ross Sea shelf-break A. BERGAMASCO 1, V. DEFENDI

More information

Submarine-Based Acoustic Doppler Current Profiler (ADCP) Measurements of the Upper Arctic Ocean

Submarine-Based Acoustic Doppler Current Profiler (ADCP) Measurements of the Upper Arctic Ocean Submarine-Based Acoustic Doppler Current Profiler (ADCP) Measurements of the Upper Arctic Ocean Robin D. Muench Earth & Space Research 1910 Fairview Ave. E. Suite 102 Seattle, WA 98102-3620 Phone: (206)726-0501;

More information

196 7 atmospheric oscillations:

196 7 atmospheric oscillations: 196 7 atmospheric oscillations: 7.4 INTERNAL GRAVITY (BUOYANCY) WAVES We now consider the nature of gravity wave propagation in the atmosphere. Atmospheric gravity waves can only exist when the atmosphere

More information

Lecture 9+10: Buoyancy-driven flow, estuarine circulation, river plume, Tidal mixing, internal waves, coastal fronts and biological significance

Lecture 9+10: Buoyancy-driven flow, estuarine circulation, river plume, Tidal mixing, internal waves, coastal fronts and biological significance Lecture 9+10: Buoyancy-driven flow, estuarine circulation, river plume, Tidal mixing, internal waves, coastal fronts and biological significance Thermohaline circulation: the movement of water that takes

More information

On the structure and dynamics of the water in the Słupsk Furrow*

On the structure and dynamics of the water in the Słupsk Furrow* On the structure and dynamics of the water in the Słupsk Furrow* OCEANOLOGIA, 39(1), 1997. pp.35 54. 1997, by Institute of Oceanology PAS. KEYWORDS Water transport Mesoscale dynamics Mixing Jan Piechura,

More information

The Ocean Floor Earth Science, 13e Chapter 13

The Ocean Floor Earth Science, 13e Chapter 13 The Ocean Floor Earth Science, 13e Chapter 13 Stanley C. Hatfield Southwestern Illinois College The vast world ocean Earth is often referred to as the blue planet Seventy-one percent of Earth s surface

More information

Internal wave radiation from gravity current down a slope in a stratified fluid

Internal wave radiation from gravity current down a slope in a stratified fluid Internal wave radiation from gravity current down a slope in a stratified fluid J. Hazewinkel Abstract Experiments with gravity currents in stratified domains thus far ignored the possible radiation of

More information

Coastal Oceanography. Coastal Oceanography. Coastal Waters

Coastal Oceanography. Coastal Oceanography. Coastal Waters Coastal Oceanography Coastal Oceanography 95% of ocean life is in coastal waters (320 km from shore) Estuaries and wetlands are among most productive ecosystems on Earth Major shipping routes, oil and

More information

GFD 2013 Lecture 10: Gravity currents on slopes and in turbulent environments

GFD 2013 Lecture 10: Gravity currents on slopes and in turbulent environments GFD 2013 Lecture 10: Gravity currents on slopes and in turbulent environments Paul Linden; notes by Gregory Wagner and Barbara Zemskova June 28, 2013 1 Introduction Natural gravity currents are often found

More information

Cross-equatorial flow of grounded abyssal ocean currents

Cross-equatorial flow of grounded abyssal ocean currents Geophysical and Astrophysical Fluid Dynamics, 2014 http://dx.doi.org/10.1080/03091929.2014.891023 Cross-equatorial flow of grounded abyssal ocean currents ALEXANDER KIM, GORDON E. SWATERS and BRUCE R.

More information

L. Pratt and J. Whitehead 6/25/ Parabolic Bottom

L. Pratt and J. Whitehead 6/25/ Parabolic Bottom 2.8 Parabolic Bottom Up to this point we have dealt strictly with channels with rectangular crosssections. The only allowable variation of bottom elevation has been in the longitudinal (y) direction. Although

More information

Baltic Sea Research Institute

Baltic Sea Research Institute Baltic Sea Research Institute Warnemuende (IOW) Cruise Report No. 44/96/ 04 R/V "A.v.Humboldt" MESODYN Cruise 01 to 12 March 1996 Stolpe Furrow / Baltic Sea This report is based on preliminary data and

More information

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015)

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) Variation of Coriolis with latitude: β Vorticity Potential vorticity

More information

Barotropic geophysical flows and two-dimensional fluid flows: Conserved Quantities

Barotropic geophysical flows and two-dimensional fluid flows: Conserved Quantities Barotropic geophysical flows and two-dimensional fluid flows: Conserved Quantities Di Qi, and Andrew J. Majda Courant Institute of Mathematical Sciences Fall 2016 Advanced Topics in Applied Math Di Qi,

More information

Chapter 6. Antarctic oceanography

Chapter 6. Antarctic oceanography Chapter 6 Antarctic oceanography The region of the world ocean bordering on Antarctica is unique in many respects. First of all, it is the only region where the flow of water can continue all around the

More information

Antarctica & Greenland, Theory & Observations

Antarctica & Greenland, Theory & Observations Ocean-Ice Interactions: Antarctica & Greenland, Theory & Observations Keck Institute for Space Studies September 9, 2013 David HOLLAND New York University + Abu Dhabi 0 Overview: Ocean-Ice Interface Delivery

More information

Large-Scale Circulations Forced by Localized Mixing over a Sloping Bottom*

Large-Scale Circulations Forced by Localized Mixing over a Sloping Bottom* AUGUST 001 SPALL 369 Large-Scale Circulations Forced by Localized Miing over a Sloping Bottom* MICHAEL A. SPALL Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

More information

The Intrusion Depth of Density Currents Flowing into Stratified Water Bodies

The Intrusion Depth of Density Currents Flowing into Stratified Water Bodies AUGUST 2009 W E L L S A N D N ADARAJAH 1935 The Intrusion Depth of Density Currents Flowing into Stratified Water Bodies MATHEW WELLS AND PARTHIBAN NADARAJAH University of Toronto, Toronto, Ontario, Canada

More information

Arctic oceanography; the path of North Atlantic Deep Water

Arctic oceanography; the path of North Atlantic Deep Water Chapter 7 Arctic oceanography; the path of North Atlantic Deep Water The importance of the Southern Ocean for the formation of the water masses of the world ocean poses the question whether similar conditions

More information

Modeling of deep currents in the Japan/East Sea

Modeling of deep currents in the Japan/East Sea Modeling of deep currents in the Japan/East Sea Olga Trusenkova V.I.Il ichev Pacific Oceanological Institute, FEB RAS Vladivostok, Russia PICES 2014 Annual Meeting, 16-26 October 2014, Korea, Yeosu Deep

More information

Lecture 17 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Learning objectives: understand the concepts & physics of

Lecture 17 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Learning objectives: understand the concepts & physics of ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 17 Learning objectives: understand the concepts & physics of 1. Ekman layer 2. Ekman transport 3. Ekman pumping 1. The Ekman Layer Scale analyses

More information