School and Conference on Analytical and Computational Astrophysics November, 2011

Size: px
Start display at page:

Download "School and Conference on Analytical and Computational Astrophysics November, 2011"

Transcription

1 School and Conference on Analytical and Computational Astrophysics November, 2011 Multiscale and Multiphysics Challenge in Modeling of Space Weather - 2 Giovanni Lapenta Katholic University of Leuven, Centre for Plasma Astrophysics Belgium

2 Centrum voor Plasma-Astrofysica Funding from: BOF & GOA (KU Leuven), EC (Swiff, Soteria), NASA (MMS Mission), Intel Exascience Lab. Multiscale and Multiphysics Challenge in Modeling of Space Weather Giovanni Lapenta

3 Outline Meeting the multiscale challenge PIC Method Implicit PIC Moment method Application to space weather Local simulations Global simulations Meeting the multiphysics challenge Multi level simulation AMR Meeting the exascale challenge Need for exascale Intel Exascience Lab

4 CHALLENGES IN MODELING SPACE WEATHER: MULTIPLE PHYSICS ionosphere solar environment magnetotail interplanetary plasmas, dust... sun-to-earth sun-effect propagation polar cusps magnetosphere TRACE September 2005 LASCO September 2002 IMAGE July

5 FLUID to KINETIC Maxwell Fields E,B Lagrange Fluid (MHD) ρ,j Particles X p,v p Newton Plasma: Electrons, ions, fields

6 Kinetic model: Fundamental Equations Boltzmann-Maxwell model - Boltzmann equation - Maxwell equations J E B B E B E t t ) ( ) ( f St f q f t f v B v E x v coupling

7 Explicit and implicit T=0 T=t T=2t EXPLICIT Operations: 1. Solve Newton equations in previous electromagnetic fields 2. Solve Maxwell equations with previous particle positions T=0 T=t IMPLICIT Operations: Over each time step, iteratively solve the two coupled equations until convergence

8 Stability of a numerical scheme Example: A cantilever (springboard) A perturbation makes it vibrate, but vibration amplitude does not grow in time Stable system: when perturbed its vibration amplitude does not grow Unstable system: when perturbed its vibration do grow

9 Stability of the explicit scheme: analogy with pendulum Linear harmonic oscillator Analytical solution / 2 dx dt v m dv dt kx x Asin(t) Bcos(t) k / M N t real Numerical solution imaginary x v n1 n x t 1 v t n n v n x n t 2 Exact Numerical δ x Von Neumann Analysis i t i t Ae N Be N

10 Limits of the explicit kinetic models Summary of the Explicit stability constraints x t

11 Stability of the implicit scheme n n n n n n n n x x k t v v v v t x x 2 tan 2 t t N Analytical Implicit Numerical Physical Explicit 2 / N t real imaginary M k t B t A x / ) cos( ) sin( t i t i N N Be Ae x δ

12 Summary of the complete Stability Analysis Explicit stability constraints t x / fastest smallest 1 x t explicit

13 Numerical Stability Analysis Explicit stability constraints fastest t 2 x smallest millions km System scales FLUID hours ct x Implicit stability constraints ion scales L=10000 km ρ i =d i =1000 km 100 km ρ e =10 km 1 m 1 s 10 2 s 10 3 s t x / fastest smallest 1 electron scales x λ e =100 m KINETIC 10 5 s t

14 Implicit formulation of Vlasov-Maxwell Particle mover Maxwell equations: implicit second order formulation for the field E Newton equations: implicit form Field Solver n n 1 (1 ) Solvers: Coupled Non-linear n

15 Example: Electrostatic Implicit Solver Coupled Equations Lapenta, Markidis, PoP, 18, (2011); Markidis, Lapenta, JCP, 230, 7037 (2011) Implicit Computational Cycle

16

17 Exact Energy Conservation Lapenta, Markidis, PoP, 18, (2011) 2 stream instability Thermal plasma ECPIC= ECPIC=

18 Effects of error in energy conservation Lapenta, Markidis, PoP, 18, (2011) Implicit run: 498 s Explicit run: 3164 s

19 IMPLICIT MOMENT METHOD T=0 T=t J.U. Brackbill et al., JCP, 46, 271, 1982; G. Lapenta, et al, Phys. Plasmas, 13, , IMPLICIT IMPLICIT MOMENT E B 0 B E 0 t E B 00 t J 0 M 0 J M T=t 1 Moment equations from Taylor expansion to make solver feasible M n q p v n p W(x x p ) p dx dt v m dv dt q(e v B)

20 Operations needed Local Operations Hundreds of particles per cell Data locality Global Operations

21 Implicit moment method J E B B E B E t t ) ( ) ( f St f q f t f v B v E x v M n (x,t) f (x,v,t) v n dv Moment equations to make solver feasible

22 Outline Meeting the multiscale challenge PIC Method Implicit PIC Moment method Application to space weather Local simulations Global simulations Meeting the multiphysics challenge Multi level simulation AMR Meeting the exascale challenge Need for exascale Intel Exascience Lab

23 Wide Applicability Plasma Particles Moments

24 Beyond the State of the ART Brackbill, Forslund (LANL) Lapenta, Brackbill (LANL) Markidis, Lapenta (Leuven) New work of the SWIFF And Exascience Lab Venus Celeste Parsek/iPIC ipic AMR 80 s 90 s now 2005 now NEW Venere (Sandro Botticelli) Starry Night (Vincent Van Gogh) Several Circles (Vasily Kandinsky) The Voice of Space (René Magritte)

25 Performances of ipic3d KU Leuven Scaling Study ipic3d on Pleiades 20,000 15,000 Pleiades 10,000 5, Ideal ipic3d Simulations at fixed initial load per core, done increasing the system size at constant resolution

26 An example: kinetic simulation of a 3D current layer

27 3D micro-macro coupling: a typical space weather problem Large scale processes Small scale processes small/large scale coupling captured

28 The 3D Electron Flow

29 Timing considerations for 3D fully kinetic simulations - Implicit vs Explicit Explicit Implicit Gain Dx λ De =100 m d e =10 Km 100 Dy λ De =100 m d e =10 Km 100 Dz λ De =100 m d e =10 Km 100 Dt ω pe Δt=0.1 or 10 5 s ω pe Δt=100 or 10 3 s 1000 Tot 10 9 millions km System scales ion scales L=10000 km ρ i =d i =1000 km 100 km FLUID hours 1 m 1 s 10 2 s An implicit run that takes 1 day would take: 2,800,000 years with an explicit code electron scales x ρ e =10 km λ e =100 m KINETIC 10 3 s 10 5 s t

30 Outline Meeting the multiscale challenge PIC Method Implicit PIC Moment method Application to space weather Local simulations Global simulations Meeting the multiphysics challenge Multi level simulation AMR Meeting the exascale challenge Need for exascale Intel Exascience Lab

31 Mercury Magnetosphere ipic3d

32 Reference case: Earth Environment State of the art now - CCMC Typical needs Box: 100 R E x 100 R E x 100 R E Max load per processor: 16x16x16 cells particles per cell(electron populations) particles per cell (ion populations) Coupled with heliospheric models and observations

33 Scales to be Resolved millions km System scales MACRO hours L=10000 km 1 m ion scales electron scales x ρ i =d i =1000 km 100 km ρ e =10 km λ e =100 m MICRO 1 s 10 2 s 10 3 s 10 5 s t

34 State of the Art Explicit Formulation Resolution needed: electrostatic processes at electron scales: 100m (Debye length) Cells per dimension: 6,353,000 Total processors needed: e million billions Moment Implicit Formulation Resolution needed: electromagnetic processes at electron scales: 10Km (inertial length) Cells per dimension: 63,530 Total processors needed: e billions

35 Adaptive Multiphysics approach

36 Multilevel and Multidomain Each domain operates at its physics and its needed level of resolution FLUID millions km System scales L=10000 km FLUID 1 m hours ion scales ρ i =d i =1000 km 100 km ρ e =10 km 1 s 10 2 s 10 3 s KINETIC electron scales λ e =100 m KINETIC 10 5 s x t

37 Overlapping Multidomain Interdomain exchanges Each domain is an exact replica of the others, but scaled. The operations are identical for the same physics module Algorithm designed to minimize exchange of information No global operation, all solvers operate on each domain 1D and 2D versions implemented on massively parallel computers Local Operations Global Domain Operations

38 Resolution needed only in small areas

39 Multidomain approach Coarse Level Resolution needed: electromagnetic processes at ion scales: 1000Km Cells per dimension: 635 Total processors needed: e thousand petascale Finer levels Resolution needed: electromagnetic processes at electron scales: 10Km Needed only on a thin crust on small surfaces. Estimated processors: e+06 Total processors needed: 2 millions - exascale needed but sufficient

40 Outline Meeting the multiscale challenge PIC Method Implicit PIC Moment method Application to space weather Local simulations Global simulations Meeting the multiphysics challenge Multi level simulation AMR Meeting the exascale challenge Need for exascale Intel Exascience Lab

41 Support at KU Leuven First ever EC funded project on space weather Involving 16 centers in 13 countries Focus on space weather and Earth impact Observation (some simulation) Soteria Multiphysics modelling of space science applied to space weather Focus on simulation and theory To run till 2014 Involving 7 centers in 5 countries Swiff Being negotiated. Scheduled to start in march 2012 Continuation of Soteria with emphasis on space exploration instead of Earth impact. Possibility of interaction with Boulder Lunar Science. eheroes Intel based hybrid architectures Co Design of space simulation on exascale

42 SWIFF: Space Weather Integrated Modelling Framework Space Weather Integrated Forecasting Framework Coordinator: Giovanni Lapenta Katholieke Universiteit Leuven Science Lead Coordinator: G. Lapenta Participant organisation name Katholieke Universiteit Leuven Country Belgium Collaborative Project FP7 Space Create a mathematical physical framework to integrate multiple physics (fluid with kinetic) Focus on method and software development, rather than reuse of existing codes Physics based forecasting Focus on coupling small large scales Based on implicit methods and AMR V. Pierrard Belgian Institute for Space Aeronomy Belgium F. Califano Università di Pisa Italy A. Nordlund Københavns Universitet Denmark A. Bemporad Astronomical Observatory Turin - Istituto Nazionale di Astrofisica Italy Astronomical P. Travnicek Institute, Academy of Czech Sciences of the Czech Republic Republic C. Parnell University of St Andrews UK

43 Space Weather and High Performance Computing ExaScience Lab to Develop Space Weather Prediction as Driver for Intel s Future Exascale Supercomputers Intel Imec Five Flemish Universities

44 Space Weather and High Performance Computing Dynamical Exascale Entry Platform Coordinator: Thomas Lippert, Forschungszentrum Juelich GmbH Large scale integrating project (IP) Towards Exascale with application to: Detailed brain simulation Space Weather Climate simulation Computational fluid engineering High temperature superconductivity Seismic imaging Job: postdoc to develop and test implicit PIC on GPUs

45 Goals of SWIFF and Exascale Lab Petascale 10 6 km hours Exascale SYSTEM scales MACRO 10 5 km 1 m 10 3 km 1 s ION scales 10 2 km 10-3 s 10 0 km ELECTRON scales 10-1 km MICRO 10-4 s 10-5 s EXASCALE allows to bridge the micro-macro gap by increasing size and resolution by the needed 3 orders of magnitude

46 Codes and support material ec/

eheroes eheroes.eu Giovanni Lapenta for the eheroes Consortium Centrum voor Plasma-Astrofysica Katholieke Universiteit Leuven BELGIUM

eheroes eheroes.eu Giovanni Lapenta for the eheroes Consortium Centrum voor Plasma-Astrofysica Katholieke Universiteit Leuven BELGIUM eheroes eheroes.eu Giovanni Lapenta for the eheroes Consortium Centrum voor Plasma-Astrofysica Katholieke Universiteit Leuven BELGIUM This research has received funding from the European Commission's Seventh

More information

Space Weather Prediction with Exascale Computing

Space Weather Prediction with Exascale Computing Space Weather Prediction with Exascale Computing Giovanni Lapenta (giovanni.lapenta@wis.kuleuven.be) Centrum voor Plasma-Astrofysica, Departement Wiskunde, Katholieke Universiteit Leuven, Belgium (EU).

More information

Parsek2D: An Implicit Parallel Particle-in-Cell Code

Parsek2D: An Implicit Parallel Particle-in-Cell Code NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2008 ASP Conference Series, Vol. 406, c 2009 Nikolai V. Pogorelov, Edouard Audit, Phillip Colella, and Gary P. Zank, eds. Parsek2D: An Implicit Parallel

More information

EXASCALE COMPUTING. Implementation of a 2D Electrostatic Particle in Cell algorithm in UniÞed Parallel C with dynamic load-balancing

EXASCALE COMPUTING. Implementation of a 2D Electrostatic Particle in Cell algorithm in UniÞed Parallel C with dynamic load-balancing ExaScience Lab Intel Labs Europe EXASCALE COMPUTING Implementation of a 2D Electrostatic Particle in Cell algorithm in UniÞed Parallel C with dynamic load-balancing B. Verleye P. Henry R. Wuyts G. Lapenta

More information

Department of MATHEMATICS. Research Unit: Centre for mathematical Plasma Astrophysics. CHARM IAP 1st annual meeting, ROB april 2013

Department of MATHEMATICS. Research Unit: Centre for mathematical Plasma Astrophysics. CHARM IAP 1st annual meeting, ROB april 2013 Department of MATHEMATICS Research Unit: Centre for mathematical Plasma Astrophysics CHARM IAP 1st annual meeting, ROB 18-19 april 2013 Research areas Mathematical modeling in plasma physics l l Fluid

More information

Bipolar electric field signatures of reconnection separatrices for a hydrogen plasma at realistic guide fields

Bipolar electric field signatures of reconnection separatrices for a hydrogen plasma at realistic guide fields GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl048572, 2011 Bipolar electric field signatures of reconnection separatrices for a hydrogen plasma at realistic guide fields G. Lapenta, 1 S. Markidis,

More information

Hybrid Simulations: Numerical Details and Current Applications

Hybrid Simulations: Numerical Details and Current Applications Hybrid Simulations: Numerical Details and Current Applications Dietmar Krauss-Varban and numerous collaborators Space Sciences Laboratory, UC Berkeley, USA Boulder, 07/25/2008 Content 1. Heliospheric/Space

More information

SOTERIA. Giovanni Lapenta for the Soteria Consortium. Centrum voor Plasma-Astrofysica Katholieke Universiteit Leuven BELGIUM

SOTERIA. Giovanni Lapenta for the Soteria Consortium. Centrum voor Plasma-Astrofysica Katholieke Universiteit Leuven BELGIUM SOTERIA Giovanni Lapenta for the Soteria Consortium Centrum voor Plasma-Astrofysica Katholieke Universiteit Leuven BELGIUM This research has received funding from the European Commission's Seventh Framework

More information

Polywell Fusion J A E YO UNG PA R K E NN F USION SYMPOSIUM, A P R I L

Polywell Fusion J A E YO UNG PA R K E NN F USION SYMPOSIUM, A P R I L Polywell Fusion J A E YO UNG PA R K E NERGY MAT T E R CONVERSION CORPORATION E NN F USION SYMPOSIUM, A P R I L 20 20 1 8 History of EMC2 1985 Energy Matter Conversion Corporation is a US-incorporated,

More information

Space Science Training Week data driven modeling and forecasting

Space Science Training Week data driven modeling and forecasting Joint eheroes/charm 2013 summer school : Space Science Training Week data driven modeling and forecasting KU Leuven, Belgium 16 to 19 September 2013 eheroes: EC-FP7 funded project, will be introduced by

More information

ARTICLE IN PRESS. Available online at Mathematics and Computers in Simulation xxx (2009) xxx xxx

ARTICLE IN PRESS. Available online at   Mathematics and Computers in Simulation xxx (2009) xxx xxx MATCOM-394; No. of Pages 11 Available online at www.sciencedirect.com Mathematics and Computers in Simulation xxx (009) xxx xxx Multi-scale simulations of plasma with ipic3d Stefano Markidis a,b, Giovanni

More information

Hybrid Simulation Method ISSS-10 Banff 2011

Hybrid Simulation Method ISSS-10 Banff 2011 Hybrid Simulation Method ISSS-10 Banff 2011 David Burgess Astronomy Unit Queen Mary University of London With thanks to Dietmar Krauss-Varban Space Plasmas: From Sun to Earth Space Plasma Plasma is (mostly)

More information

Array-of-Struct particles for ipic3d on MIC. Alec Johnson and Giovanni Lapenta. EASC2014 Stockholm, Sweden April 3, 2014

Array-of-Struct particles for ipic3d on MIC. Alec Johnson and Giovanni Lapenta. EASC2014 Stockholm, Sweden April 3, 2014 Array-of-Struct particles for ipic3d on MIC Alec Johnson and Giovanni Lapenta Centre for mathematical Plasma Astrophysics Mathematics Department KU Leuven, Belgium EASC2014 Stockholm, Sweden April 3, 2014

More information

Lecture 4: The particle equations (1)

Lecture 4: The particle equations (1) Lecture 4: The particle equations (1) Presenter: Mark Eric Dieckmann Department of Science and Technology (ITN), Linköping University, Sweden July 17, 2014 Overview We have previously discussed the leapfrog

More information

Report from Finland. Kirsti Kauristie Finnish Meteorological Institute

Report from Finland. Kirsti Kauristie Finnish Meteorological Institute Report from Finland Kirsti Kauristie Finnish Meteorological Institute IPT-SWeISS-2, Tokyo, Japan, 21-23 May 2018 Current SWE activities Contributors: Universities Aalto Helsinki (UH) Oulu (UO) Turku (UTU)

More information

A fully implicit, exactly conserving algorithm for multidimensional particle-in-cell kinetic simulations

A fully implicit, exactly conserving algorithm for multidimensional particle-in-cell kinetic simulations A fully implicit, exactly conserving algorithm for multidimensional particle-in-cell kinetic simulations L. Chacón Applied Mathematics and Plasma Physics Group Theoretical Division Los Alamos National

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Gyrokinetic simulations of magnetic fusion plasmas

Gyrokinetic simulations of magnetic fusion plasmas Gyrokinetic simulations of magnetic fusion plasmas Tutorial 2 Virginie Grandgirard CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. email: virginie.grandgirard@cea.fr

More information

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

More information

Curriculum Vitae CONTACTS. Address: P.O. Box GB Amsterdam Netherlands website:

Curriculum Vitae CONTACTS. Address: P.O. Box GB Amsterdam Netherlands   website: ENRICO CAMPOREALE Multiscale Plasma Dynamics Centrum Wiskunde & Informatica (CWI) Amsterdam, The Netherlands Phone: +31 20 592 4240 e-mail: e.camporeale@cwi.nl Curriculum Vitae CONTACTS Address: P.O. Box

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

ILWS activity in Romania

ILWS activity in Romania Institute of Space Science romanian space agency ILWS activity in Romania Dumitru HASEGAN 1,2. Octav MARGHITU 1 1-ISS, 2-ROSA Outline A. Introduction Historical synopsis B. Research themes 1. Solar-Terrestrial

More information

Guangye Chen, Luis Chacón,

Guangye Chen, Luis Chacón, JIFT workshop! Oct. 31, 2014 New Orleans, LA.! Guangye Chen, Luis Chacón, CoCoMANs team Los Alamos National Laboratory, Los Alamos, NM 87545, USA gchen@lanl.gov 1 Los Alamos National Laboratory Motivation

More information

Equation Free Projective Integration and its Applicability for Simulating Plasma Results: 1D Ion Acoustic Wave. Michael Shay University of Maryland

Equation Free Projective Integration and its Applicability for Simulating Plasma Results: 1D Ion Acoustic Wave. Michael Shay University of Maryland Equation Free Projective Integration and its Applicability for Simulating Plasma Results: 1D Ion Acoustic Wave Michael Shay University of Maryland Collaborators Center for Multiscale Plasma Dynamics Jim

More information

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations 1856-30 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 The particle-in-cell M. E. Dieckmann Institut fuer Theoretische Physik IV, Ruhr-Universitaet, Bochum, Germany The particle-in-cell

More information

Three-dimensional nature of magnetic reconnection X-line in asymmetric current sheets

Three-dimensional nature of magnetic reconnection X-line in asymmetric current sheets Blue Waters symposium 2017 Three-dimensional nature of magnetic reconnection X-line in asymmetric current sheets Yi-Hsin Liu @ NASA- Goddard Space Flight Center William Daughton @ Los Alamos National Lab

More information

Introduction. Chapter Plasma: definitions

Introduction. Chapter Plasma: definitions Chapter 1 Introduction 1.1 Plasma: definitions A plasma is a quasi-neutral gas of charged and neutral particles which exhibits collective behaviour. An equivalent, alternative definition: A plasma is a

More information

Ericson Lopez Quito Astronomical Observatory ( Ecuador) and STScI. MARLAM, September 27th, 2013

Ericson Lopez Quito Astronomical Observatory ( Ecuador) and STScI. MARLAM, September 27th, 2013 Ericson Lopez Quito Astronomical Observatory ( Ecuador) and STScI MARLAM, September 27th, 2013 1. Introduction OUTLINE 2. Waves in dusty plasmas: Effect of dust on collective processes Methods of analysis

More information

PIC Simulation of Magnetic Reconnection with Adaptive Mesh Refinement

PIC Simulation of Magnetic Reconnection with Adaptive Mesh Refinement PIC Simulation of Magnetic Reconnection with Adaptive Mesh Refinement Keizo Fujimoto National Astronomical Observatory of Japan Overview Introduction Particle-in-Cell (PIC) model with adaptive mesh refinement

More information

MHD modeling of the kink double-gradient branch of the ballooning instability in the magnetotail

MHD modeling of the kink double-gradient branch of the ballooning instability in the magnetotail MHD modeling of the kink double-gradient branch of the ballooning instability in the magnetotail Korovinskiy 1 D., Divin A., Ivanova 3 V., Erkaev 4,5 N., Semenov 6 V., Ivanov 7 I., Biernat 1,8 H., Lapenta

More information

Dissipation Mechanism in 3D Magnetic Reconnection

Dissipation Mechanism in 3D Magnetic Reconnection Dissipation Mechanism in 3D Magnetic Reconnection Keizo Fujimoto Computational Astrophysics Laboratory, RIKEN Reconnection (in the Earth Magnetosphere) Coroniti [1985] 10 km 10 5 km 10 3 km Can induce

More information

Computational Plasma Physics in the Solar System and Beyond. Ofer Cohen HPC Day 2017 at UMass Dartmouth

Computational Plasma Physics in the Solar System and Beyond. Ofer Cohen HPC Day 2017 at UMass Dartmouth Computational Plasma Physics in the Solar System and Beyond Ofer Cohen HPC Day 2017 at UMass Dartmouth Plasma physics (not medical!!!) - studying the interaction between charged particles and electromagnetic

More information

Time-Independent Fully kinetic Particle-in-Cell for plasma magnetic field interactions

Time-Independent Fully kinetic Particle-in-Cell for plasma magnetic field interactions Time-Independent Fully kinetic Particle-in-Cell for plasma magnetic field interactions IEPC-2015-478p /ISTS-2015-b-91353 Presented at Joint Conference of 30th International Symposium on Space Technology

More information

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas Frank Jenko Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas Max-Planck-Institut für Plasmaphysik, Garching Workshop on Vlasov-Maxwell Kinetics WPI, Vienna,

More information

Vlasov simulations of electron holes driven by particle distributions from PIC reconnection simulations with a guide field

Vlasov simulations of electron holes driven by particle distributions from PIC reconnection simulations with a guide field GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L22109, doi:10.1029/2008gl035608, 2008 Vlasov simulations of electron holes driven by particle distributions from PIC reconnection simulations with a guide field

More information

Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas

Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas Michael Barnes Plasma Science & Fusion Center Massachusetts Institute of Technology Collaborators:

More information

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas Vladimir Kolobov, a,b,1 Robert Arslanbekov a and Dmitry Levko a a CFD Research Corporation, Huntsville, AL 35806, USA b The

More information

PIC Algorithm with Multiple Poisson Equation Solves During One Time Step

PIC Algorithm with Multiple Poisson Equation Solves During One Time Step Journal of Physics: Conference Series PAPER OPEN ACCESS PIC Algorithm with Multiple Poisson Equation Solves During One Time Step To cite this article: Junxue Ren et al 2015 J. Phys.: Conf. Ser. 640 012033

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. The 8th International Conference on Computational

More information

Benchmarks in Computational Plasma Physics

Benchmarks in Computational Plasma Physics Benchmarks in Computational Plasma Physics P. Londrillo INAF, Bologna, Italie S. Landi Università di Firenze, Italie What you compute when you do computations of the Vlasov equation? Overview A short review

More information

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma:

20. Alfven waves. ([3], p ; [1], p ; Chen, Sec.4.18, p ) We have considered two types of waves in plasma: Phys780: Plasma Physics Lecture 20. Alfven Waves. 1 20. Alfven waves ([3], p.233-239; [1], p.202-237; Chen, Sec.4.18, p.136-144) We have considered two types of waves in plasma: 1. electrostatic Langmuir

More information

Simulation of Relativistic Jet-Plasma Interactions

Simulation of Relativistic Jet-Plasma Interactions Simulation of Relativistic Jet-Plasma Interactions Robert Noble and Johnny Ng Stanford Linear Accelerator Center SABER Workshop, Laboratory Astrophysics WG SLAC, March 15-16, 2006 Motivations High energy

More information

arxiv: v1 [physics.comp-ph] 9 Aug 2011

arxiv: v1 [physics.comp-ph] 9 Aug 2011 The Energy Conserving Particle-in-Cell Method arxiv:1108.1959v1 [physics.comp-ph] 9 Aug 2011 Stefano Markidis and Giovanni Lapenta Centre for Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan

More information

A Harmonic Balance Approach for Large-Scale Problems in Nonlinear Structural Dynamics

A Harmonic Balance Approach for Large-Scale Problems in Nonlinear Structural Dynamics A Harmonic Balance Approach for Large-Scale Problems in Nonlinear Structural Dynamics Allen R, PhD Candidate Peter J Attar, Assistant Professor University of Oklahoma Aerospace and Mechanical Engineering

More information

Global numerical simulations of the interaction between Ganymede and Jovian plasma: hybrid simulation status

Global numerical simulations of the interaction between Ganymede and Jovian plasma: hybrid simulation status Global numerical simulations of the interaction between and Jovian plasma: hybrid simulation status Pavel M. Trávníček 1,2, Petr Hellinger 2, Štěpán Štverák 2, David Herčík 2, and Ondřej Šebek 2 1 Space

More information

Flare-related radio emission: a kinetic point of view

Flare-related radio emission: a kinetic point of view Flare-related radio emission: a kinetic point of view Carine Briand Paris Observatory, LESIA & Co-workers Pierre HENRI, LPC2E, France Francesco Califano, Pisa Univ., Italy IAU GA Hawaii - Division E session

More information

The Formation of a Magnetosphere with Implicit Particle-in-Cell Simulations

The Formation of a Magnetosphere with Implicit Particle-in-Cell Simulations Procedia Computer Science Volume 51, 2015, Pages 1178 1187 ICCS 2015 International Conference On Computational Science The Formation of a Magnetosphere with Implicit Particle-in-Cell Simulations Ivy Bo

More information

Lecture 2. Introduction to plasma physics. Dr. Ashutosh Sharma

Lecture 2. Introduction to plasma physics. Dr. Ashutosh Sharma Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 2. Introduction to plasma physics Dr. Ashutosh Sharma Zoltán

More information

Vlasov simulations of wave-particle interactions and turbulence in magnetized plasma

Vlasov simulations of wave-particle interactions and turbulence in magnetized plasma Vlasov simulations of wave-particle interactions and turbulence in magnetized plasma IRF-U, Uppsala, 16 November 2016 Bengt Eliasson ABP Group, Physics Department, SUPA Strathclyde University, UK Collaborators:

More information

Energy-Conserving Numerical Simulations of Electron Holes in Two-Species Plasmas

Energy-Conserving Numerical Simulations of Electron Holes in Two-Species Plasmas Energy-Conserving Numerical Simulations of Electron Holes in Two-Species Plasmas Yingda Cheng Andrew J. Christlieb Xinghui Zhong March 18, 2014 Abstract In this paper, we apply our recently developed energy-conserving

More information

Jan DECA, PhD. Space plasma physicist. 1/5 May 24, 2018.

Jan DECA, PhD. Space plasma physicist. 1/5 May 24, 2018. Jan DECA, PhD. Space plasma physicist. To enjoy pursuing cutting-edge scientific research at a quality-oriented institute, where teamwork and efficiency go hand in hand. To expand my proficiency, knowledge

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability ECE 4/5 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability Spring 014 Instructor: Kai Sun 1 Transient Stability The ability of the power system to maintain synchronism

More information

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality Pierre Degond 1, Fabrice Deluzet 2, Laurent Navoret 3, An-Bang Sun 4, Marie-Hélène Vignal 5 1 Université

More information

Solar eruptive filament studies at USO for the COMESEP project

Solar eruptive filament studies at USO for the COMESEP project International Symposium on Solar Terrestrial Physics ASI Conference Series, 2013, Vol. 10, pp 67 71 Edited by N. Gopalswamy, S. S. Hasan, P. B. Rao and Prasad Subramanian Solar eruptive filament studies

More information

Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities

Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities Anisotropic electron distribution functions and the transition between the Weibel and the whistler instabilities F. Pegoraro, L. Palodhi, F. Califano 5 th INTERNATIONAL CONFERENCE ON THE FRONTIERS OF PLASMA

More information

Performance Evaluation of Scientific Applications on POWER8

Performance Evaluation of Scientific Applications on POWER8 Performance Evaluation of Scientific Applications on POWER8 2014 Nov 16 Andrew V. Adinetz 1, Paul F. Baumeister 1, Hans Böttiger 3, Thorsten Hater 1, Thilo Maurer 3, Dirk Pleiter 1, Wolfram Schenck 4,

More information

Computational Methods in Plasma Physics

Computational Methods in Plasma Physics Computational Methods in Plasma Physics Richard Fitzpatrick Institute for Fusion Studies University of Texas at Austin Purpose of Talk Describe use of numerical methods to solve simple problem in plasma

More information

Kinetic Alfvén waves in space plasmas

Kinetic Alfvén waves in space plasmas Kinetic Alfvén waves in space plasmas Yuriy Voitenko Belgian Institute for Space Aeronomy, Brussels, Belgium Solar-Terrestrial Center of Excellence, Space Pole, Belgium Recent results obtained in collaboration

More information

Lecture Notes for PHY 405 Classical Mechanics

Lecture Notes for PHY 405 Classical Mechanics Lecture Notes for PHY 405 Classical Mechanics From Thorton & Marion s Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary s University Department of Astronomy & Physics September 1, 2005 Chapter

More information

the EL equation for the x coordinate is easily seen to be (exercise)

the EL equation for the x coordinate is easily seen to be (exercise) Physics 6010, Fall 2016 Relevant Sections in Text: 1.3 1.6 Examples After all this formalism it is a good idea to spend some time developing a number of illustrative examples. These examples represent

More information

Research supported by the NSF Aeronomy & CEDAR Grants

Research supported by the NSF Aeronomy & CEDAR Grants Large-Scale Simulations of Farley- Buneman Turbulence in 2D and 3D and Hybrid Gradient Drift Simulations by Meers Oppenheim, Yakov Dimant, Yann Tambouret Center for Space Physics, Boston University, Boston,

More information

Sun Earth Connection Missions

Sun Earth Connection Missions Sun Earth Connection Missions ACE Advanced Composition Explorer The Earth is constantly bombarded with a stream of accelerated particles arriving not only from the Sun, but also from interstellar and galactic

More information

Substorms at Mercury: Old Questions and New Insights. Daniel N. Baker Laboratory for Atmospheric and Space Physics (LASP)

Substorms at Mercury: Old Questions and New Insights. Daniel N. Baker Laboratory for Atmospheric and Space Physics (LASP) Substorms at Mercury: Old Questions and New Insights Daniel N. Baker Laboratory for Atmospheric and Space Physics (LASP) Outline of Presentation Introduction Substorms in the Earth s Magnetosphere Prior

More information

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas Bei Wang 1 Greg Miller 2 Phil Colella 3 1 Princeton Institute of Computational Science and Engineering Princeton University

More information

Lecture Note 1. 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter)

Lecture Note 1. 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Lecture Note 1 1.1 Plasma 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Recall: Concept of Temperature A gas in thermal equilibrium

More information

Brenda Rubenstein (Physics PhD)

Brenda Rubenstein (Physics PhD) PHYSICIST PROFILE Brenda Rubenstein (Physics PhD) Postdoctoral Researcher Lawrence Livermore Nat l Lab Livermore, CA In college, Brenda looked for a career path that would allow her to make a positive

More information

Electromagneic Waves in a non- Maxwellian Dusty Plasma

Electromagneic Waves in a non- Maxwellian Dusty Plasma Electromagneic Waves in a non- Maxwellian Dusty Plasma Nazish Rubab PhD student, KF University Graz IWF-OEAW Graz 26 January, 2011 Layout Dusty Plasma Non-Maxwellian Plasma Kinetic Alfven Waves Instability

More information

Magnetic Reconnection in Space Plasmas

Magnetic Reconnection in Space Plasmas Magnetic Reconnection in Space Plasmas Lin-Ni Hau et al. Institute of Space Science Department of Physics National Central University, Taiwan R.O.C. EANAM, 2012.10.31 Contents Introduction Some highlights

More information

The evolution of solar wind turbulence at kinetic scales

The evolution of solar wind turbulence at kinetic scales International Association of Geomagnetism and Aeronomy (IAGA) 2 nd Symposium: Solar Wind Space Environment Interaction c 2010 Cairo University Press December 4 th 8 th, 2009, Cairo, Egypt L.Damé & A.Hady

More information

Simple Harmonic Motion Concept Questions

Simple Harmonic Motion Concept Questions Simple Harmonic Motion Concept Questions Question 1 Which of the following functions x(t) has a second derivative which is proportional to the negative of the function d x! " x? dt 1 1. x( t ) = at. x(

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Magnetic reconnection at the terrestrial magnetopause:

Magnetic reconnection at the terrestrial magnetopause: Magnetic reconnection at the terrestrial magnetopause: a simulation approach Maria Elena Innocenti, Alex Anthony Arokiaraj, Emanuele Cazzola, Giovanni Lapenta Center for mathematical Plasma Astrophysics,

More information

Gyrokinetic Transport Driven by Energetic Particle Modes

Gyrokinetic Transport Driven by Energetic Particle Modes Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)

More information

Introduction to MagnetoHydroDynamics (MHD) Antoine Cerfon, Courant Institute, New York University

Introduction to MagnetoHydroDynamics (MHD) Antoine Cerfon, Courant Institute, New York University Introduction to MagnetoHydroDynamics (MHD) Antoine Cerfon, Courant Institute, New York University Email: cerfon@cims.nyu.edu SULI Introductory Course in Plasma Physics, June 6, 2016 PART I: DESCRIBING

More information

Figure 1.1: Ionization and Recombination

Figure 1.1: Ionization and Recombination Chapter 1 Introduction 1.1 What is a Plasma? 1.1.1 An ionized gas A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons and ions are separately free. When does

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas Single particle motion

More information

Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies

Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies Full-wave Electromagnetic Field Simulations in the Lower Hybrid Range of Frequencies P.T. Bonoli, J.C. Wright, M. Porkolab, PSFC, MIT M. Brambilla, IPP, Garching, Germany E. D Azevedo, ORNL, Oak Ridge,

More information

P321(b), Assignement 1

P321(b), Assignement 1 P31(b), Assignement 1 1 Exercise 3.1 (Fetter and Walecka) a) The problem is that of a point mass rotating along a circle of radius a, rotating with a constant angular velocity Ω. Generally, 3 coordinates

More information

Particle-in-Cell Codes for plasma-based particle acceleration

Particle-in-Cell Codes for plasma-based particle acceleration A. Pukhov Institute for Theoretical Physics I University of Dusseldorf, Germany Particle-in-Cell Codes for plasma-based particle acceleration Outline Relativistic plasmas, acceleration and the simulation

More information

Single Particle Motion in a Magnetized Plasma

Single Particle Motion in a Magnetized Plasma Single Particle Motion in a Magnetized Plasma Aurora observed from the Space Shuttle Bounce Motion At Earth, pitch angles are defined by the velocity direction of particles at the magnetic equator, therefore:

More information

High Order Semi-Lagrangian WENO scheme for Vlasov Equations

High Order Semi-Lagrangian WENO scheme for Vlasov Equations High Order WENO scheme for Equations Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Andrew Christlieb Supported by AFOSR. Computational Mathematics Seminar, UC Boulder

More information

Vibrations of Structures

Vibrations of Structures Vibrations of Structures Module III: Vibrations of Beams Lesson 26: Special Topics in Beam Vibrations - II Contents: 1. Introduction 2. Influence of Axial Force on Dynamic Stability Keywords: Stability,

More information

Expansion of a plasma cloud into the solar. wind

Expansion of a plasma cloud into the solar. wind Expansion of a plasma cloud into the solar 1 wind L. Gargaté, R. A. Fonseca, R. Bingham, L. O. Silva Abstract Three-dimensional (3D) hybrid particle-in-cell (PIC) simulations, with kinetic ions and fluid

More information

What place for mathematicians in plasma physics

What place for mathematicians in plasma physics What place for mathematicians in plasma physics Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 15-19 September 2008 Eric Sonnendrücker (U. Strasbourg) Math

More information

Small scale solar wind turbulence: Recent observations and theoretical modeling

Small scale solar wind turbulence: Recent observations and theoretical modeling Small scale solar wind turbulence: Recent observations and theoretical modeling F. Sahraoui 1,2 & M. Goldstein 1 1 NASA/GSFC, Greenbelt, USA 2 LPP, CNRS-Ecole Polytechnique, Vélizy, France Outline Motivations

More information

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass CIV 8/77 Chapter - /75 Introduction To discuss the dynamics of a single-degree-of freedom springmass system. To derive the finite element equations for the time-dependent stress analysis of the one-dimensional

More information

Normal Mode Analysis of Chain Structures in Complex Plasma

Normal Mode Analysis of Chain Structures in Complex Plasma Normal Mode Analysis of Chain Structures in Complex Plasma Austin Hoover, Ke Qiao, and Truell W. Hyde Center for Astrophysics, Space Physics and Engineering Research Baylor University, Waco, TX 779-73,

More information

Accurate representation of velocity space using truncated Hermite expansions.

Accurate representation of velocity space using truncated Hermite expansions. Accurate representation of velocity space using truncated Hermite expansions. Joseph Parker Oxford Centre for Collaborative Applied Mathematics Mathematical Institute, University of Oxford Wolfgang Pauli

More information

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence 2013 US-Japan JIFT workshop on New Aspects of Plasmas Kinetic Simulation NIFS, November 22-23, 2013 Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence cf. Revisit for Landau

More information

Multimedia broadcasting and storage Periodic report with statistical results

Multimedia broadcasting and storage Periodic report with statistical results GLORIA is funded by the European Union 7th Framework Programme (FP7/2007-2013) under grant agreement n 283783 Multimedia broadcasting and storage CODE: DEL-043 VERSION: 01 DATE: October 2nd, 2012 Authors:

More information

2-1-4 Preceding Monitoring of Solar Wind Toward the Earth Using STEREO

2-1-4 Preceding Monitoring of Solar Wind Toward the Earth Using STEREO 2-1-4 Preceding Monitoring of Solar Wind Toward the Earth Using STEREO NAGATSUMA Tsutomu, AKIOKA Maki, MIYAKE Wataru, and OHTAKA Kazuhiro Acquisition of solar wind information before it reaches the earth

More information

Tentamen för kursen Rymdfysik (1FA255)

Tentamen för kursen Rymdfysik (1FA255) Tentamen för kursen Rymdfysik (1FA255) 2017-10-24 Uppsala universitet Institutionen för fysik och astronomi Avdelningen för astronomi och rymdfysik Anders Eriksson Answers should be provided in Swedish

More information

Introduction to numerical computations on the GPU

Introduction to numerical computations on the GPU Introduction to numerical computations on the GPU Lucian Covaci http://lucian.covaci.org/cuda.pdf Tuesday 1 November 11 1 2 Outline: NVIDIA Tesla and Geforce video cards: architecture CUDA - C: programming

More information

3D hybrid-kinetic turbulence and phase-space cascades

3D hybrid-kinetic turbulence and phase-space cascades 3D hybrid-kinetic turbulence and phase-space cascades ( in a β = 1 plasma ) Silvio Sergio Cerri Department of Astrophysical Sciences, Princeton University, USA 11th Plasma Kinetics Working Meeting WPI

More information

Module 24: Outline. Expt. 8: Part 2:Undriven RLC Circuits

Module 24: Outline. Expt. 8: Part 2:Undriven RLC Circuits Module 24: Undriven RLC Circuits 1 Module 24: Outline Undriven RLC Circuits Expt. 8: Part 2:Undriven RLC Circuits 2 Circuits that Oscillate (LRC) 3 Mass on a Spring: Simple Harmonic Motion (Demonstration)

More information

Study of current intensification by compression in the Earth magnetotail

Study of current intensification by compression in the Earth magnetotail JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2007ja012527, 2007 Study of current intensification by compression in the Earth magnetotail Giovanni Lapenta 1,2 and Joshua King 3 Received 6 May

More information

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc. Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

More information

Inverse and normal coronal mass ejections: evolution up to 1 AU. E. Chané, B. Van der Holst, C. Jacobs, S. Poedts, and D.

Inverse and normal coronal mass ejections: evolution up to 1 AU. E. Chané, B. Van der Holst, C. Jacobs, S. Poedts, and D. A&A 447, 727 733 (2006) DOI: 10.1051/0004-6361:20053802 c ESO 2006 Astronomy & Astrophysics Inverse and normal coronal mass ejections: evolution up to 1 AU E. Chané, B. Van der Holst, C. Jacobs, S. Poedts,

More information

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1

Graduate Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 1 Graduate Accelerator Physics G. A. Krafft Jefferson Lab Old Dominion University Lecture 1 Course Outline Course Content Introduction to Accelerators and Short Historical Overview Basic Units and Definitions

More information

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN

INTRODUCTION TO FINITE ELEMENT METHODS ON ELLIPTIC EQUATIONS LONG CHEN INTROUCTION TO FINITE ELEMENT METHOS ON ELLIPTIC EQUATIONS LONG CHEN CONTENTS 1. Poisson Equation 1 2. Outline of Topics 3 2.1. Finite ifference Method 3 2.2. Finite Element Method 3 2.3. Finite Volume

More information