Math 261 Solutions To Sample Exam 2 Problems

Size: px
Start display at page:

Download "Math 261 Solutions To Sample Exam 2 Problems"

Transcription

1 Solutions to Sample Eam Problems Math 6 Math 6 Solutions To Sample Eam Problems. Given to the right is the graph of a portion of four curves:,, and + 4. Note that these curves divide the plane into separate regions, which have been marked on the diagram. (a) Write R da as an iterated integral, both in the dd order and in the d d order. Then, evaluate one of the two integrals. (,) (,) (,) R R R (b) Set up R da as an iterated integral, both in the dd order and in the d d order. (c) Use polar coordinates to evaluate R ( + )da. (d) Use polar coordinates to evaluate R da, where R is the region formed b combining the regions R and R. (e) Set up, but do not evaluate, an iterated integral equivalent to da, where S is the region formed S b combining the regions R and R. Use whatever coordinate sstem ou think is easiest. (a) Integrating in the d d direction means that we will be integrating in the - direction first, meaning that we need to find the curves at the bottom and top of the region R. From the diagram, we see that the curve on the bottom is the line, and the curve on the top is the circle + 4. Solving for, we have + 4 4, so R da 4 d d. Integrating in the dd direction means that we will be integrating in the -direction first, meaning that we need to find the curves on the left and right of the region R. From the diagram above, we see that the curve on the left is the line, and the curve on the right is the circle + 4. Solving for, we have + 4 4, so Calculating, we see that R da 4 dd. (, ), 4, 4 d d 4 d (4 )d ) (4 5. (b) As above, integrating in the d d direction means that we need to locate the top and bottom curves and solve for. The top curve is the line, while for the bottom curve we have. Therefore, R da (/ ) d d.,,, To treat the dd direction, note that the curve on the left side of R is, while for the curve on the right side we have. Therefore, R da d d. (c) Since the point (, ) at the upper right-hand corner of R is given b (, /6) in polar coordinates, it follows that R {(r, θ) : r, / θ /6}. Therefore, we have ( + 6 )da r r dθ dr (since + r and da r dθ dr) R

2 Solutions to Sample Eam Problems Math 6 ( 6 + ) r dr 8. (d) We have R {(r, θ) : r, /6 θ /}, so R () da 6 6 r cosθ r dr dθ (4r ) cosθ dθ sinθ / /6 6. (since r cosθ and da r dr dθ) (e) Since the region S is bounded b onl one curve on the left ( ) and onl one curve on the right ( 4 ), the integration will be the simplest in the dd order. We therefore have S da 4 d d.,, 4 Other equivalent answers require two integrals. Here are two alternate answers that are correct, though the are more complicated: 6 4 d d + r cosθ r dr dθ d d, sin θ r cosθ r dr dθ. or. Pictured to the right is a thin metal plate in the shape of a quarter circle placed in the first quadrant. All distances are measured in inches. (a) Find the mass of the plate if its densit is a uniform grams per square inch. (b) Find the mass of the plate if its densit is given b σ(, ) + grams per square inch. Do NOT use our calculator to evaluate the integral. First, we recall that, if σ(, ) represents our densit function, then Mass σ(, )da, which makes sense because σ has units of grams/in and da has units of in, indicating that the above integral will have units of grams. E (a) We could calculate an integral to find the mass, but since the densit is constant for part (a), we simpl have Mass (Densit)(Area of Plate) ()(/4) 5 grams. (b) In this case, we need to integrate since the densit is not constant. Therefore, the mass is given b E + da E + da 5 grams. r r dr dθ

3 Solutions to Sample Eam Problems Math 6. Evaluate dv, where W is the first-octant portion of the solid sphere of radius centered at the origin. W Do this in was: using clindrical coordinates and using spherical coordinates. (a) In spherical coordinates, we have ρ cosφ, and the equation of our sphere becomes ρ. Therefore, we have dv (ρ cosφ)p sinφdθ dφ dρ ρ sinφcos φdφ dρ W (b) In clindrical coordinates, we have 4. ρ sin φ ρ dρ dρ r + 4 ± 4 r, and since for the portion of the sphere we are interested in, the equation for the surface of the sphere becomes 4 r. Therefore, we have W dv 4 r r dθ d dr 4 r r d dr 4. r 4 r r(4 r )dr dr 4. Consider the solid region in the st octant that lies below the plane + 4 and inside the clinder + 4 (see diagram to the right). Set up, but do not evaluate, iterated integrals that give the volume of this region in two was: in the d d d order and in the dd d order. First, we tackle the d d d order of integration. The surface on the left hand side of the region is the plane, and the surface on the right hand side of the region is the plane + 4, which is equivalent to (4 ). To the right, note that the -projection of this solid is shown, where the - and -intercepts have been found b setting and in the equation + 4 and observing that and are both positive. Therefore, we have 4 Volume 4 (4 ) d d d.

4 Solutions to Sample Eam Problems Math 6 4 Net, we tackle the dd d order of integration. In this case, the surface on the back side of the region is the plane, and the surface on the front side of the region is the clinder + 4, which is equivalent to 4 since we are in the first octant. To the right, note that the -projection of this solid is shown, where the various - and -intercepts have been found b equating appropriate surfaces. Because there are two different top curves in the projection picture, we will need two separate integrals to describe the integral over the projected region shown above. Therefore, we obtain 4 Volume 4 dd d dd d. 5. Find parameteriations for the following curves. (a) The circle of radius 4, parallel to the -plane and centered at (,, ). (b) The line segment starting at (,, 4) and ending at (, 5, ). (a) 4 cost,, 4 sint, for t. (b) First, we note that the vector v ( ) i + (5 ) j + ( 4) k i + 4 j 5 k is parallel to the line segment. Therefore, a parameteriation for this segment is given b 6. The National Park Service has conducted a cactus census in Ariona. In order to collect data, the service divided the desert into a grid whose lines are miles apart in each direction. The entries in the table to the right represent thousands of cacti per square mile at grid points in Saguaro East National Park, where the visitor center is located at (, ). + t, + 4t, 4 5t, where t. Distance, (miles east) Distance, (miles south) (a) Let f(, ) be the number of cacti (in thousands) per square mile miles east and miles south of the visitor center. Eplain what f(, )d d represents in the contet of this problem. (b) Give the best estimate ou can based on the data of the number of cacti in the b test area. (a) First, we eamine the units of the various pieces of our integral. The function f(, ) is measured in thousands of cacti per square mile, and d and d are both measured in miles. Therefore, the units of the integral are given b thousands of cacti mi mi mi thousands of cacti. Therefore, this integral represents the population of cacti (in thousands) in the b region of the desert described b the provided table. (b) To estimate the number of cacti, we need to estimate the population densit in each subsquare represented b the table and multipl b the area. For eample, in the subsquare described b and (the upper left square described b the table), there are four different population densities we could use: 8.5, 8., 9.5, or.6. These are just the numbers that are given at the four corners of the subsquare. Therefore, a reasonable estimate of the population densit for this subsquare would be thousand cacti per square mile

5 Solutions to Sample Eam Problems Math 6 5 Doing this for each of the 9 subsquares described from the table, we obtain the population densities described b the diagram above. To get a population, we need to take each of these population densities and multipl b the area of the corresponding subsquare, which is square miles for each of them. Therefore, our best estimate of the cactus population is given b ( ) 867 thousand cacti, or about 8.67 million cacti. 7. Given below are three vector fields, F, F, and F. Let C and C denote circles of radius and, respectivel, both centered at (, ) and oriented counterclockwise. Also, let C denote the line segment starting at (, ) and ending at (, ), and let C 4 denote the line segment starting at (, ) and ending at (, ). F (, ) F (, ) F (, ) (a) For each of the four curves C, C, C, and C 4, and for each of the vector fields F, F, and F, decide whether C F d r appears to be positive, negative, or ero. Note that there are different integrals to be eamined. (b) Which is larger, C F d r or C F d r? Eplain. (a) Vector Field F : F d r >, F d r >, F d r, F d r <. C C C C 4 Vector Field F : F d r <, F d r <, F d r >, F d r >. C C C C 4 Vector Field F : F d r, F d r, F d r <, F d r. C C C C 4 (b) All the vectors in the vector field appear to have the same length. Therefore, since both curves go directl with the flow of the vector field but C is a longer path than C, we conclude that C F d r < C F d r. 8. Let F i + ( + ) j, and let G ( + ) i + ( ) j, where C is the curve consisting of the circle of radius, centered at the origin and oriented counterclockwise, and where C is the curve consisting of the line segment from (, ) to (, ) followed b the line segment from (, ) to (, ). (a) Calculate the line integral of F over C. (b) Calculate the line integral of G over C. (c) Calculate the line integral of F over C. (d) Calculate the line integral of G over C. Before we begin, let us check to determine whether F or G are conservative vector fields. Since ( ) 4 ( + ), we see that F is a conservative vector field. To find a potential function f

6 Solutions to Sample Eam Problems Math 6 6 for F, we integrate as follows: f(, ) d f(, ) ( + )d + P() + + Q() Therefore, f(, ) + is a potential function for F. On the other hand, since ( + ) is not equal to ( ), we see that G is not a conservative vector field. (a) Since C is a closed curve and F is a conservative vector field, we know that C F d r without doing an calculations. So our final answer is. (b) Since G is not a conservative vector field, we must do this integral b parameteriing C. We can represent C b the parametric curve r(t) cost i + sint j, where t. Therefore, we have C G d r so our final answer is 8. G( cost, sin t) ( sint i + cost j)dt ( sin t + cost) i + ( sin t cost) j) ( sint i + cost j)dt [ 4(sin t + cos t) 4 sintcost + 4 sintcost] dt ( 4) dt, (c) Since F is conservative, we can use the potential function f(, ) + that we calculated above, and the Fundamental Theorem of Calculus for Line Integrals as follows: C F d r f(, ) f(, ) Therefore, our final answer is. (d) Since G is not conservative, we must parameterie the two line segments comprising C and calculate this line integral using brute force. The line segment from (, ) to (, ) can be parameteried as r (t) t i + t j, where t, and the line segment from (, ) to (, ) can be parameteried as r (t) ( + t) i + j, where t. Therefore, we have so our final answer is 7. C G d r G( r (t)) r (t)dt + G( r (t)) r (t)dt (t i + j) ( i + j)dt + (t + ( + t))dt (6t + 4)dt 7, (( + t) i + t j) idt 9. Let F i+ sin() j+ sin() k. Calculate C F d r, where C is the path from A (,, ) to B (,, ) shown in the figure to the right. B A

7 Solutions to Sample Eam Problems Math 6 7 Calculating, we observe that curlf, so the vector field F is conservative and we can use the Fundamental Theorem of Calculus for Line Integrals, provided that we can find a potential function, which we do below: f(,, ) d + p(, ) f(,, ) sin()d cos() + q(, ) f(,, ) sin()d cos() + r(, ) Therefore, f(,, ) cos() is a potential function for F, so b the Fundamental Theorem of Calculus for Line Integrals, we have F d r f(,, ) f(,, ) (9 cos) ( cos) cos. C

Math 261 Solutions to Sample Final Exam Problems

Math 261 Solutions to Sample Final Exam Problems Math 61 Solutions to Sample Final Eam Problems 1 Math 61 Solutions to Sample Final Eam Problems 1. Let F i + ( + ) j, and let G ( + ) i + ( ) j, where C 1 is the curve consisting of the circle of radius,

More information

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 15.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

More information

D = 2(2) 3 2 = 4 9 = 5 < 0

D = 2(2) 3 2 = 4 9 = 5 < 0 1. (7 points) Let f(, ) = +3 + +. Find and classif each critical point of f as a local minimum, a local maimum, or a saddle point. Solution: f = + 3 f = 3 + + 1 f = f = 3 f = Both f = and f = onl at (

More information

MATHEMATICS 200 December 2014 Final Exam Solutions

MATHEMATICS 200 December 2014 Final Exam Solutions MATHEMATICS 2 December 214 Final Eam Solutions 1. Suppose that f,, z) is a function of three variables and let u 1 6 1, 1, 2 and v 1 3 1, 1, 1 and w 1 3 1, 1, 1. Suppose that at a point a, b, c), Find

More information

MATHEMATICS 200 December 2013 Final Exam Solutions

MATHEMATICS 200 December 2013 Final Exam Solutions MATHEMATICS 2 December 21 Final Eam Solutions 1. Short Answer Problems. Show our work. Not all questions are of equal difficult. Simplif our answers as much as possible in this question. (a) The line L

More information

Math 52 First Midterm January 29, 2009

Math 52 First Midterm January 29, 2009 Math 5 First Midterm Januar 9, 9 Name : KEY Section Leader: Josh Lan Xiannan (Circle one) Genauer Huang Li Section Time: : : :5 :5 (Circle one) This is a closed-book, closed-notes eam. No calculators or

More information

MTHE 227 Problem Set 10 Solutions. (1 y2 +z 2., 0, 0), y 2 + z 2 < 4 0, Otherwise.

MTHE 227 Problem Set 10 Solutions. (1 y2 +z 2., 0, 0), y 2 + z 2 < 4 0, Otherwise. MTHE 7 Problem Set Solutions. (a) Sketch the cross-section of the (hollow) clinder + = in the -plane, as well as the vector field in this cross-section. ( +,, ), + < F(,, ) =, Otherwise. This is a simple

More information

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter.

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter. Solutions Review for Eam #1 Math 1260 1. Consider the points P = (2, 5, 1) and Q = (4, 1, 1). (a) Find the distance from P to Q. Solution. dist(p, Q) = (4 2) 2 + (1 + 5) 2 + (1 + 1) 2 = 4 + 36 + 4 = 44

More information

Review Test 2. c ) is a local maximum. ) < 0, then the graph of f has a saddle point at ( c,, (, c ) = 0, no conclusion can be reached by this test.

Review Test 2. c ) is a local maximum. ) < 0, then the graph of f has a saddle point at ( c,, (, c ) = 0, no conclusion can be reached by this test. eview Test I. Finding local maima and minima for a function = f, : a) Find the critical points of f b solving simultaneousl the equations f, = and f, =. b) Use the Second Derivative Test for determining

More information

Math 221 Examination 2 Several Variable Calculus

Math 221 Examination 2 Several Variable Calculus Math Examination Spring Instructions These problems should be viewed as essa questions. Before making a calculation, ou should explain in words what our strateg is. Please write our solutions on our own

More information

MATHEMATICS 317 April 2017 Final Exam Solutions

MATHEMATICS 317 April 2017 Final Exam Solutions MATHEMATI 7 April 7 Final Eam olutions. Let r be the vector field r = îı + ĵj + z ˆk and let r be the function r = r. Let a be the constant vector a = a îı + a ĵj + a ˆk. ompute and simplif the following

More information

Triple Integrals. y x

Triple Integrals. y x Triple Integrals. (a) If is an solid (in space), what does the triple integral dv represent? Wh? (b) Suppose the shape of a solid object is described b the solid, and f(,, ) gives the densit of the object

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

MTH 234 Exam 2 April 10th, Without fully opening the exam, check that you have pages 1 through 12.

MTH 234 Exam 2 April 10th, Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in our name, etc. on this first page. Without full opening the eam, check that ou have pages 1 through 12. Show all our work on the standard response

More information

Without fully opening the exam, check that you have pages 1 through 10.

Without fully opening the exam, check that you have pages 1 through 10. MTH 234 Solutions to Exam 2 April 11th 216 Name: Section: Recitation Instructor: INSTRUTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through

More information

1. (16 points) Write but do not evaluate the following integrals:

1. (16 points) Write but do not evaluate the following integrals: MATH xam # Solutions. (6 points) Write but do not evaluate the following integrals: (a) (6 points) A clindrical integral to calculate the volume of the solid which lies in the first octant (where x,, and

More information

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6 .(5pts) y = uv. ompute the Jacobian, Multiple hoice (x, y) (u, v), of the coordinate transformation x = u v 4, (a) u + 4v 4 (b) xu yv (c) u + 7v 6 (d) u (e) u v uv 4 Solution. u v 4v u = u + 4v 4..(5pts)

More information

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution Jim Lambers MAT 8 Fall emester 6-7 Practice Final Exam olution. Use Lagrange multipliers to find the point on the circle x + 4 closest to the point (, 5). olution We have f(x, ) (x ) + ( 5), the square

More information

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following:

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following: Math 323 Eam 2 - Practice Problem Solutions 1. Given the vectors a = 2,, 1, b = 3, 2,4, and c = 1, 4,, compute the following: (a) A unit vector in the direction of c. u = c c = 1, 4, 1 4 =,, 1+16+ 17 17

More information

CHAPTER SIXTEEN. = 4 x y + 6 x y + 3 x y + 4 x y = 17 x y = 31(0.1)(0.2) = f(x i, y i) x y = 7 x y + 10 x y + 6 x y + 8 x y = 31 x y. x = 0.

CHAPTER SIXTEEN. = 4 x y + 6 x y + 3 x y + 4 x y = 17 x y = 31(0.1)(0.2) = f(x i, y i) x y = 7 x y + 10 x y + 6 x y + 8 x y = 31 x y. x = 0. CHAPTE SIXTEEN 6. SOLUTIONS 5 Solutions for Section 6. Eercises. Mark the values of the function on the plane, as shown in Figure 6., so that ou can guess respectivel at the smallest and largest values

More information

( ) ( ) Math 17 Exam II Solutions

( ) ( ) Math 17 Exam II Solutions Math 7 Exam II Solutions. Sketch the vector field F(x,y) -yi + xj by drawing a few vectors. Draw the vectors associated with at least one point in each quadrant and draw the vectors associated with at

More information

MATHEMATICS 200 April 2010 Final Exam Solutions

MATHEMATICS 200 April 2010 Final Exam Solutions MATHEMATICS April Final Eam Solutions. (a) A surface z(, y) is defined by zy y + ln(yz). (i) Compute z, z y (ii) Evaluate z and z y in terms of, y, z. at (, y, z) (,, /). (b) A surface z f(, y) has derivatives

More information

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute alculus III Test 3 ample Problem Answers/olutions 1. Express the area of the surface Φ(u, v) u cosv, u sinv, 2v, with domain u 1, v 2π, as a double integral in u and v. o not evaluate the integral. In

More information

MATH 223 FINAL EXAM STUDY GUIDE ( )

MATH 223 FINAL EXAM STUDY GUIDE ( ) MATH 3 FINAL EXAM STUDY GUIDE (017-018) The following questions can be used as a review for Math 3 These questions are not actual samples of questions that will appear on the final eam, but the will provide

More information

3, 1, 3 3, 1, 1 3, 1, 1. x(t) = t cos(πt) y(t) = t sin(πt), z(t) = t 2 t 0

3, 1, 3 3, 1, 1 3, 1, 1. x(t) = t cos(πt) y(t) = t sin(πt), z(t) = t 2 t 0 Math 5 Final Eam olutions ecember 5, Problem. ( pts.) (a 5 pts.) Find the distance from the point P (,, 7) to the plane z +. olution. We can easil find a point P on the plane b choosing some values for

More information

51. General Surface Integrals

51. General Surface Integrals 51. General urface Integrals The area of a surface in defined parametrically by r(u, v) = x(u, v), y(u, v), z(u, v) over a region of integration in the input-variable plane is given by d = r u r v da.

More information

MATHEMATICS 200 December 2011 Final Exam Solutions

MATHEMATICS 200 December 2011 Final Exam Solutions MATHEMATICS December 11 Final Eam Solutions 1. Consider the function f(, ) e +4. (a) Draw a contour map of f, showing all tpes of level curves that occur. (b) Find the equation of the tangent plane to

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

Practice Final A. Miller Spring 89 Math Find the limits: a. lim x 1. c. lim x 0 (1 + x) 1/x. f. lim x 0

Practice Final A. Miller Spring 89 Math Find the limits: a. lim x 1. c. lim x 0 (1 + x) 1/x. f. lim x 0 Practice Final A. Miller Spring 89 Math 221 1. Find the limits: a. lim 1 ln() 1 b. lim 0 ln (3+ )2 9) c. lim 0 (1 + ) 1/ d. lim 2 +1 e e. lim 0 (sec()) 1 2 sec() 1 g. lim 0. 2. Find the integrals: a. ln(

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions Math 1, Fall 17 Problem 1. Find a parameterization for the given curve, including bounds on the parameter t. Part a) The ellipse in R whose major axis has endpoints, ) and 6, )

More information

Math 21a: Multivariable calculus. List of Worksheets. Harvard University, Spring 2009

Math 21a: Multivariable calculus. List of Worksheets. Harvard University, Spring 2009 Math 2a: Multivariable calculus Harvard Universit, Spring 2009 List of Worksheets Vectors and the Dot Product Cross Product and Triple Product Lines and Planes Functions and Graphs Quadric Surfaces Vector-Valued

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work. Exam 3 Math 850-007 Fall 04 Odenthal Name: Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.. Evaluate the iterated integral

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

f(p i )Area(T i ) F ( r(u, w) ) (r u r w ) da

f(p i )Area(T i ) F ( r(u, w) ) (r u r w ) da MAH 55 Flux integrals Fall 16 1. Review 1.1. Surface integrals. Let be a surface in R. Let f : R be a function defined on. efine f ds = f(p i Area( i lim mesh(p as a limit of Riemann sums over sampled-partitions.

More information

MULTIVARIABLE INTEGRATION

MULTIVARIABLE INTEGRATION MULTIVARIABLE INTEGRATION (SPHERICAL POLAR COORDINATES) Question 1 a) Determine with the aid of a diagram an expression for the volume element in r, θ, ϕ. spherical polar coordinates, ( ) [You may not

More information

Math Exam IV - Fall 2011

Math Exam IV - Fall 2011 Math 233 - Exam IV - Fall 2011 December 15, 2011 - Renato Feres NAME: STUDENT ID NUMBER: General instructions: This exam has 16 questions, each worth the same amount. Check that no pages are missing and

More information

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3 M7Q Multivariable alculus Spring 7 Review Problems for Exam Exam covers material from Sections 5.-5.4 and 6.-6. and 7.. As you prepare, note well that the Fall 6 Exam posted online did not cover exactly

More information

(a) We split the square up into four pieces, parametrizing and integrating one a time. Right side: C 1 is parametrized by r 1 (t) = (1, t), 0 t 1.

(a) We split the square up into four pieces, parametrizing and integrating one a time. Right side: C 1 is parametrized by r 1 (t) = (1, t), 0 t 1. Thursda, November 5 Green s Theorem Green s Theorem is a 2-dimensional version of the Fundamental Theorem of alculus: it relates the (integral of) a vector field F on the boundar of a region to the integral

More information

v n ds where v = x z 2, 0,xz+1 and S is the surface that

v n ds where v = x z 2, 0,xz+1 and S is the surface that M D T P. erif the divergence theorem for d where is the surface of the sphere + + = a.. Calculate the surface integral encloses the solid region + +,. (a directl, (b b the divergence theorem. v n d where

More information

Fundamentals of Applied Electromagnetics. Chapter 2 - Vector Analysis

Fundamentals of Applied Electromagnetics. Chapter 2 - Vector Analysis Fundamentals of pplied Electromagnetics Chapter - Vector nalsis Chapter Objectives Operations of vector algebra Dot product of two vectors Differential functions in vector calculus Divergence of a vector

More information

MA 351 Fall 2008 Exam #3 Review Solutions 1. (2) = λ = x 2y OR x = y = 0. = y = x 2y (2x + 2) = 2x2 + 2x 2y = 2y 2 = 2x 2 + 2x = y 2 = x 2 + x

MA 351 Fall 2008 Exam #3 Review Solutions 1. (2) = λ = x 2y OR x = y = 0. = y = x 2y (2x + 2) = 2x2 + 2x 2y = 2y 2 = 2x 2 + 2x = y 2 = x 2 + x MA 5 Fall 8 Eam # Review Solutions. Find the maimum of f, y y restricted to the curve + + y. Give both the coordinates of the point and the value of f. f, y y g, y + + y f < y, > g < +, y > solve y λ +

More information

Problem Set 5 Math 213, Fall 2016

Problem Set 5 Math 213, Fall 2016 Problem Set 5 Math 213, Fall 216 Directions: Name: Show all your work. You are welcome and encouraged to use Mathematica, or similar software, to check your answers and aid in your understanding of the

More information

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l. . If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

One side of each sheet is blank and may be used as scratch paper.

One side of each sheet is blank and may be used as scratch paper. Math 244 Spring 2017 (Practice) Final 5/11/2017 Time Limit: 2 hours Name: No calculators or notes are allowed. One side of each sheet is blank and may be used as scratch paper. heck your answers whenever

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Math 323 Exam 1 Practice Problem Solutions

Math 323 Exam 1 Practice Problem Solutions Math Exam Practice Problem Solutions. For each of the following curves, first find an equation in x and y whose graph contains the points on the curve. Then sketch the graph of C, indicating its orientation.

More information

Math 208 Surface integrals and the differentials for flux integrals. n and separately. But the proof on page 889 of the formula dσ = r r du dv on page

Math 208 Surface integrals and the differentials for flux integrals. n and separately. But the proof on page 889 of the formula dσ = r r du dv on page Math 08 urface integrals and the differentials for flu integrals Our tet fails to eplicitl state the formulas for n dσ, instead preferring to give formulas for n and separatel But the proof on page 88

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

MTH 234 Solutions to Exam 2 April 13, Multiple Choice. Circle the best answer. No work needed. No partial credit available.

MTH 234 Solutions to Exam 2 April 13, Multiple Choice. Circle the best answer. No work needed. No partial credit available. MTH 234 Solutions to Exam 2 April 3, 25 Multiple Choice. Circle the best answer. No work needed. No partial credit available.. (5 points) Parametrize of the part of the plane 3x+2y +z = that lies above

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

ln e 2s+2t σ(m) = 1 + h 2 x + h 2 yda = dA = 90 da R

ln e 2s+2t σ(m) = 1 + h 2 x + h 2 yda = dA = 90 da R olution to et 5, Friday ay 7th ection 5.6: 15, 17. ection 5.7:, 5, 7, 16. (1) (ection 5.5, Problem ) Find a parametrization of the suface + y 9 between z and z. olution: cost, y sint and z s with t π and

More information

Spring 2004 Math 253/ Vector Calculus 14.7 Surface Integrals Tue, 13/Apr c 2004, Art Belmonte

Spring 2004 Math 253/ Vector Calculus 14.7 Surface Integrals Tue, 13/Apr c 2004, Art Belmonte pring Math / Vector Calculus.7 urface Integrals Tue, /Apr c, Art Belmonte ummar efinitions Recall that a parametric surface in -space is the graph of a vector function s : R R of two parameters. s(u,v)

More information

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma This is an archive of past Calculus IV exam questions. You should first attempt the questions without looking

More information

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions McGill University April 4 Faculty of Science Final Examination Calculus 3 Math Tuesday April 9, 4 Solutions Problem (6 points) Let r(t) = (t, cos t, sin t). i. Find the velocity r (t) and the acceleration

More information

Solutions to Sample Questions for Final Exam

Solutions to Sample Questions for Final Exam olutions to ample Questions for Final Exam Find the points on the surface xy z 3 that are closest to the origin. We use the method of Lagrange Multipliers, with f(x, y, z) x + y + z for the square of the

More information

COMPLETE Chapter 15 Multiple Integrals. Section 15.1 Double Integrals Over Rectangles. Section 15.2 Iterated Integrals

COMPLETE Chapter 15 Multiple Integrals. Section 15.1 Double Integrals Over Rectangles. Section 15.2 Iterated Integrals Mat 7 Calculus III Updated on /3/7 Dr. Firoz COMPLT Chapter 5 Multiple Integrals Section 5. Double Integrals Over ectangles amples:. valuate the iterated integral a) (5 ) da, {(, ), } and b) (4 ) da, [,]

More information

Lecture 04. Curl and Divergence

Lecture 04. Curl and Divergence Lecture 04 Curl and Divergence UCF Curl of Vector Field (1) F c d l F C Curl (or rotor) of a vector field a n curlf F d l lim c s s 0 F s a n C a n : normal direction of s follow right-hand rule UCF Curl

More information

y=1/4 x x=4y y=x 3 x=y 1/3 Example: 3.1 (1/2, 1/8) (1/2, 1/8) Find the area in the positive quadrant bounded by y = 1 x and y = x3

y=1/4 x x=4y y=x 3 x=y 1/3 Example: 3.1 (1/2, 1/8) (1/2, 1/8) Find the area in the positive quadrant bounded by y = 1 x and y = x3 Eample: 3.1 Find the area in the positive quadrant bounded b 1 and 3 4 First find the points of intersection of the two curves: clearl the curves intersect at (, ) and at 1 4 3 1, 1 8 Select a strip at

More information

APPM 2350, Summer 2018: Exam 1 June 15, 2018

APPM 2350, Summer 2018: Exam 1 June 15, 2018 APPM 2350, Summer 2018: Exam 1 June 15, 2018 Instructions: Please show all of your work and make your methods and reasoning clear. Answers out of the blue with no supporting work will receive no credit

More information

MATHS 267 Answers to Stokes Practice Dr. Jones

MATHS 267 Answers to Stokes Practice Dr. Jones MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force] ENGI 44 Advanced Calculus for Engineering Facult of Engineering and Applied Science Problem Set Solutions [Multiple Integration; Lines of Force]. Evaluate D da over the triangular region D that is bounded

More information

Solutions to Practice Exam 2

Solutions to Practice Exam 2 Solutions to Practice Eam Problem : For each of the following, set up (but do not evaluate) iterated integrals or quotients of iterated integral to give the indicated quantities: Problem a: The average

More information

e x3 dx dy. 0 y x 2, 0 x 1.

e x3 dx dy. 0 y x 2, 0 x 1. Problem 1. Evaluate by changing the order of integration y e x3 dx dy. Solution:We change the order of integration over the region y x 1. We find and x e x3 dy dx = y x, x 1. x e x3 dx = 1 x=1 3 ex3 x=

More information

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11 1. ompute the surface integral M255 alculus III Tutorial Worksheet 11 x + y + z) d, where is a surface given by ru, v) u + v, u v, 1 + 2u + v and u 2, v 1. olution: First, we know x + y + z) d [ ] u +

More information

Ma 227 Final Exam Solutions 5/8/03

Ma 227 Final Exam Solutions 5/8/03 Ma 7 Final Eam Solutions 5/8/3 Name: Lecture Section: I pledge m honor that I have abided b the Stevens Honor Sstem. ID: Directions: Answer all questions. The point value of each problem is indicated.

More information

Calculus of Several Variables (TEN A), (TEN 1)

Calculus of Several Variables (TEN A), (TEN 1) Famil name: First name: I number: KTH Campus Haninge EXAMINATION Jan 6 Time: 8.5-.5 Calculus o Several Variables TEN A TEN Course: Transorm Methods and Calculus o Several Variables 6H79 Ten Ten A Lecturer

More information

Green s, Divergence, Stokes: Statements and First Applications

Green s, Divergence, Stokes: Statements and First Applications Math 425 Notes 12: Green s, Divergence, tokes: tatements and First Applications The Theorems Theorem 1 (Divergence (planar version)). Let F be a vector field in the plane. Let be a nice region of the plane

More information

(0,2) L 1 L 2 R (-1,0) (2,0) MA4006: Exercise Sheet 3: Solutions. 1. Evaluate the integral R

(0,2) L 1 L 2 R (-1,0) (2,0) MA4006: Exercise Sheet 3: Solutions. 1. Evaluate the integral R MA6: Eercise Sheet 3: Solutions 1. Evaluate the integral d d over the triangle with vertices ( 1, ), (, 2) and (2, ). Solution. See Figure 1. Let be the inner variable and the outer variable. we need the

More information

Sample Final Exam Problems Solutions Math 107

Sample Final Exam Problems Solutions Math 107 Sample Final Eam Problems Solutions Math 107 1 (a) We first factor the numerator and the denominator of the function to obtain f() = (3 + 1)( 4) 4( 1) i To locate vertical asymptotes, we eamine all locations

More information

Math 53 Spring 2018 Practice Midterm 2

Math 53 Spring 2018 Practice Midterm 2 Math 53 Spring 218 Practice Midterm 2 Nikhil Srivastava 8 minutes, closed book, closed notes 1. alculate 1 y 2 (x 2 + y 2 ) 218 dxdy Solution. Since the type 2 region D = { y 1, x 1 y 2 } is a quarter

More information

Math 11 Fall 2016 Final Practice Problem Solutions

Math 11 Fall 2016 Final Practice Problem Solutions Math 11 Fall 216 Final Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

is the curve of intersection of the plane y z 2 and the cylinder x oriented counterclockwise when viewed from above.

is the curve of intersection of the plane y z 2 and the cylinder x oriented counterclockwise when viewed from above. The questions below are representative or actual questions that have appeared on final eams in Math from pring 009 to present. The questions below are in no particular order. There are tpicall 10 questions

More information

Extra Problems Chapter 7

Extra Problems Chapter 7 MA11: Prepared b Asst.Prof.Dr. Archara Pacheenburawana 1 Etra Problems hapter 7 1. onsider the vector field F = i+z j +z 3 k. a) ompute div F. b) ompute curl F. Solution a) div F = +z +3z b) curl F = i

More information

Extra Problems Chapter 7

Extra Problems Chapter 7 MA11: Prepared b Asst.Prof.Dr. Archara Pacheenburawana 1 Etra Problems hapter 7 1. onsider the vector field F = i+z j +z 3 k. a) ompute div F. b) ompute curl F. Solution a) div F = +z +3z b) curl F = i

More information

ES.182A Topic 44 Notes Jeremy Orloff

ES.182A Topic 44 Notes Jeremy Orloff E.182A Topic 44 Notes Jeremy Orloff 44 urface integrals and flux Note: Much of these notes are taken directly from the upplementary Notes V8, V9 by Arthur Mattuck. urface integrals are another natural

More information

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin Math 45 Homework et olutions Points. ( pts) The integral is, x + z y d = x + + z da 8 6 6 where is = x + z 8 x + z = 4 o, is the disk of radius centered on the origin. onverting to polar coordinates then

More information

1. (30 points) In the x-y plane, find and classify all local maxima, local minima, and saddle points of the function. f(x, y) = 3y 2 2y 3 3x 2 + 6xy.

1. (30 points) In the x-y plane, find and classify all local maxima, local minima, and saddle points of the function. f(x, y) = 3y 2 2y 3 3x 2 + 6xy. APPM 35 FINAL EXAM FALL 13 INSTUTIONS: Electronic devices, books, and crib sheets are not permitted. Write your name and your instructor s name on the front of your bluebook. Work all problems. Show your

More information

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C Math 35 Solutions for Final Exam Page Problem. ( points) (a) ompute the line integral F ds for the path c(t) = (t 2, t 3, t) with t and the vector field F (x, y, z) = xi + zj + xk. (b) ompute the line

More information

8.1 Solutions to Exercises

8.1 Solutions to Exercises Last edited 9/6/17 8.1 Solutions to Exercises 1. Since the sum of all angles in a triangle is 180, 180 = 70 + 50 + α. Thus α = 60. 10 α B The easiest way to find A and B is to use Law of Sines. sin( )

More information

Solution Midterm 2, Math 53, Summer (a) (10 points) Let f(x, y, z) be a differentiable function of three variables and define

Solution Midterm 2, Math 53, Summer (a) (10 points) Let f(x, y, z) be a differentiable function of three variables and define Solution Midterm, Math 5, Summer. (a) ( points) Let f(,, z) be a differentiable function of three variables and define F (s, t) = f(st, s + t, s t). Calculate the partial derivatives F s and F t in terms

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c. MATH 35 PRACTICE FINAL FALL 17 SAMUEL S. WATSON Problem 1 Verify that if a and b are nonzero vectors, the vector c = a b + b a bisects the angle between a and b. The cosine of the angle between a and c

More information

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

Problem Points S C O R E

Problem Points S C O R E MATH 34F Final Exam March 19, 13 Name Student I # Your exam should consist of this cover sheet, followed by 7 problems. Check that you have a complete exam. Unless otherwise indicated, show all your work

More information

Math 21a Homework 07 Solutions Spring, 2014

Math 21a Homework 07 Solutions Spring, 2014 Math a Homework 7 Solutions Spring, 4. valuate the iterated integral. a) Stewart.7 # 6 ) e d d d We perform the iterated integral: e d d d e d d e d [ e [ ] 4 e + 4e. Note that we ve twice done an integral

More information

Surface integrals, Divergence theorem of Gauss

Surface integrals, Divergence theorem of Gauss c jbquig-ucd Februar 13, 3 Chapter 6 Surface integrals, Divergence theorem of Gauss introduction A solid D R 3 might be described b an inequalit, see chapter5. A surface R 3 is often described b a single

More information

Math 6A Practice Problems II

Math 6A Practice Problems II Math 6A Practice Problems II Written by Victoria Kala vtkala@math.ucsb.edu SH 64u Office Hours: R : :pm Last updated 5//6 Answers This page contains answers only. Detailed solutions are on the following

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

MATH 2400 Final Exam Review Solutions

MATH 2400 Final Exam Review Solutions MATH Final Eam eview olutions. Find an equation for the collection of points that are equidistant to A, 5, ) and B6,, ). AP BP + ) + y 5) + z ) 6) y ) + z + ) + + + y y + 5 + z 6z + 9 + 6 + y y + + z +

More information

MATH2321, Calculus III for Science and Engineering, Fall Name (Printed) Print your name, the date, and then sign the exam on the line

MATH2321, Calculus III for Science and Engineering, Fall Name (Printed) Print your name, the date, and then sign the exam on the line MATH2321, Calculus III for Science and Engineering, Fall 218 1 Exam 2 Name (Printed) Date Signature Instructions STOP. above. Print your name, the date, and then sign the exam on the line This exam consists

More information

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b vectors and POLAR COORDINATES LEARNING OBJECTIVES In this section, ou will: View vectors geometricall. Find magnitude and direction. Perform vector addition and scalar multiplication. Find the component

More information

Examples of the Accumulation Function (ANSWERS) dy dx. This new function now passes through (0,2). Make a sketch of your new shifted graph.

Examples of the Accumulation Function (ANSWERS) dy dx. This new function now passes through (0,2). Make a sketch of your new shifted graph. Eamples of the Accumulation Function (ANSWERS) Eample. Find a function y=f() whose derivative is that f()=. dy d tan that satisfies the condition We can use the Fundamental Theorem to write a function

More information