1. (16 points) Write but do not evaluate the following integrals:

Size: px
Start display at page:

Download "1. (16 points) Write but do not evaluate the following integrals:"

Transcription

1 MATH xam # Solutions. (6 points) Write but do not evaluate the following integrals: (a) (6 points) A clindrical integral to calculate the volume of the solid which lies in the first octant (where x,, and z coordinates are all positive) under the paraboloid z x and above the cone z x +. The surface bounding this solid above can be written as z (x + ) r ; the lower bound is clearl z r. These two solids intersect when r r, which occurs when r + r, which is satisfied at the nonsensical value r and the eminentl sensible value r ; thus, this surface s outermost edge is r. The restriction to the first octant requires that z, x, and. The first of these restrictions is moot: the previous restriction z r ensures that z is non-negative; however, the restrictions on x and constrain θ to those values whose cosines and sines are both positive, which is to sa, the first-quadrant section θ π. Our integral is thus: π/ r dv rdzdrdθ (b) (5 points) A polar integral to calculate e x da, where is the region given b x + 4 with and x. The region in question consists of those values where r, sin θ, and cos θ sin θ. The former constraint on θ we know to cover the first and second quadrants, which are the range [, π]; however, for θ < π, θ s cosine exceeds its sine, so x > ; we must exclude 4 this region as per the second theta-constraint, so π θ π. Translating the integrand 4 and multipling b the integrating factor r, we get: e x da π π/4 r re r drdθ (c) (5 points) A spherical integral to calculate x + dv where is the hollow hemispherical shell given b x + + z 9 with. As seen above, when θ π; in addition, since x + + z ρ, the first constraint is that ρ. φ is, in this case, unrestricted. Finall, the integrand x + expands to ρ sin φ(cos θ + sin θ) ρ sin φ, and so: x + dv π π (ρ sin φ)(ρ sin φ)dρdφdθ. (6 points) alculate the following integrals, using whatever approach ou find most effective: (a) (6 points) 5dV where is the solid in the first octant bounded b the surfaces x,, x, z x, and z 4. The surfaces z x and z 4 meet when x 4; in the first octant, this guarantees that the solid lies within x. The coordinate is bounded b and x, so x; finall, since the solid lies between z x and z 4, x z 4, and so we have an Page of 5 Monda, November,

2 MATH xam # Solutions integral: 5dV x 4 x x 5dzddx 5z ] z4 zx ddx 5 ] x x dx x x5 ] 8 x 6 5x ddx x 5 x4 dx (b) (6 points) x da where is the region bounded b the curves x and x. These curves intersect when x x, or where x, or at the points x ±, so the region is given b x, and bounded above and below b x and x respectivel. Thus, our integral is: x da x x x ddx x ] x x dx x 4 x4 4x + 4 x ] x x (4 4x )dx ( ) ( ) 4( + ) ( + ) (c) (4 points) x + da where is the rectangle with corners (, ), (, ), (, ), and (, ). Since this is an integral over a rectangular region given b x and, the integral can be set up as a simple iterated integral with constant limits: x + da x + ddx x + ] dx 4x + dx ] x + x (4 9) + (5). (6 points) Using the transformations x u v and u + 4v, evaluate x + da over the region bounded b 4x + 8, 4x + 7, x, and x 9. Note that these four boundaries can be re-expressed easil in terms of u and v. 4x + 4(u v) + (u + 4v) 9u, so the inequalit 8 4x + 7 becomes u with ease; likewise x (u + 4v) (u v) 9v, so x 9 becomes v. Now, we need onl re-express the integrand and calculate the Jacobian. The integrand is x + (u v) + (u + 4v) u + v; the Jacobian is calculated here: (x, ) (u, v) x u u x v v 4 9 Page of 5 Monda, November,

3 MATH xam # Solutions so our integral can be transformed as follows: x + da (u + v) 9dvdu 7uv u + 7 u v ] ] v du v 7u + 7 du (9 + 4 ) 4. (8 points) Identif each of the following vector fields as either conservative or nonconservative; for each that is conservative, find a potential function: 8 F (x, ) (4x + )i + (4 + )j. We calculate (4x +), and (4+), so this vector field is nonconservative, x since these results are nonequal. G(x, ) x +, x. We calculate ( x x + ), and x ( x ) x, so this vector field is conservative. Using the partial integrals of each component, we find that the potential function g(x, ) is given b and g(x, ) g(x, ) x + dx x + x + () x d + x + (x) Although these appear different, the term x in the first integral is represented in the second within the junk term (x), and likewise the term in the second integral is subsumed into the first integral s junk term (). Thus, a potential function that matches both descriptions is g(x, ) x + x +. H(x, ) ln e x, 7 sin + x. We calculate (ln ex ), and (7 sin + x), so this vector field is conservative. x Using the partial integrals of each component, we find that the potential function h(x, ) is given b h(x, ) ln e x dx x ln e x + () and h(x, ) 7 sin + x d 7 cos + x ln + (x) Although these appear different, the term e x in the first integral is represented in the second within the junk term (x), and likewise the term 7 cos in the second integral is subsumed into the first integral s junk term (). Thus, a potential function that matches both descriptions is h(x, ) x ln 7 cos e x. 5. (4 points) alculate the following path integrals. Page of 5 Monda, November,

4 MATH xam # Solutions (a) (5 points) x ds where is the line segment from (, 4) to (, ). Let us parameterize this segment with x t, 4 t, for t. Then this integral is: x ds x(t) x (t) + (t) dt t 9t + ( ) dt ] (b) (5 points) F dr, where F (x,, z) 4 + z, x z, z and is the curve given b x t, t, and z t from (,, ) to (, 4, ). Since a parameterization is alread given (and the curve in question is from t to t, we ma evaluate this directl: F dr 4(t) + z(t), x(t) z(t), z(t) x (t), (t), z (t) dt 4t + t, t, t, t, dt 8t + tdt 8 t + t ] (c) (4 points) x d where is the curve x from (, ) to (4, 5). Using the parameterization x t, t on t 4, this integral becomes: 4 x d [x(t) (t)] (t)dt 4 4t 6t + 6tdt 4 t ] 4 t4 + t (5 point bonus) On the back of this sheet, identif the shape of the solid whose volume is described b the integral π π/4 csc φ ρ sin φdρdφdθ, and calculate its volume without taking π/4 an integral. This integral is obviousl dv, or the volume of, for given b θ π, π 4 φ π 4, and ρ csc φ. The shape has a full range of θ-values and no dependencies of the other parameters on θ, so it can be expected to be radiall smmetric about the z-axis. onsidering the φ-bounds, which are constant, we can expect this solid to be bounded between two cones. When φ π, we know that z is positive (since cos π is positive, and x z Page 4 of 5 Monda, November,

5 MATH xam # Solutions tan π 4, so the half-cone z x + describes the surface φ π 4 ; likewise, when φ π 4, z x +, so two bounds on the solid are the cones z x + and z x +. Now we consider the ρ-bound ρ csc φ. Multipling both sides b sin φ (which is guaranteed to be positive), we have ρ sin φ ; note that ρ sin φ x +, so this bound is the same as saing that our solid lies inside the clinder x +. So, our solid is a clinder of radius bounded above and below b right cones whose radius equals their height and which meet at the origin. We can thus see that this figure is a clinder of height 6, with two cones of height and radius carved out. We ma calculate this volume to be: 6(π ) (π ) 6π Page 5 of 5 Monda, November,

Math 221 Examination 2 Several Variable Calculus

Math 221 Examination 2 Several Variable Calculus Math Examination Spring Instructions These problems should be viewed as essa questions. Before making a calculation, ou should explain in words what our strateg is. Please write our solutions on our own

More information

( ) ( ) Math 17 Exam II Solutions

( ) ( ) Math 17 Exam II Solutions Math 7 Exam II Solutions. Sketch the vector field F(x,y) -yi + xj by drawing a few vectors. Draw the vectors associated with at least one point in each quadrant and draw the vectors associated with at

More information

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work. Exam 3 Math 850-007 Fall 04 Odenthal Name: Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.. Evaluate the iterated integral

More information

COMPLETE Chapter 15 Multiple Integrals. Section 15.1 Double Integrals Over Rectangles. Section 15.2 Iterated Integrals

COMPLETE Chapter 15 Multiple Integrals. Section 15.1 Double Integrals Over Rectangles. Section 15.2 Iterated Integrals Mat 7 Calculus III Updated on /3/7 Dr. Firoz COMPLT Chapter 5 Multiple Integrals Section 5. Double Integrals Over ectangles amples:. valuate the iterated integral a) (5 ) da, {(, ), } and b) (4 ) da, [,]

More information

Math 261 Solutions To Sample Exam 2 Problems

Math 261 Solutions To Sample Exam 2 Problems Solutions to Sample Eam Problems Math 6 Math 6 Solutions To Sample Eam Problems. Given to the right is the graph of a portion of four curves:,, and + 4. Note that these curves divide the plane into separate

More information

Math 6A Practice Problems II

Math 6A Practice Problems II Math 6A Practice Problems II Written by Victoria Kala vtkala@math.ucsb.edu SH 64u Office Hours: R : :pm Last updated 5//6 Answers This page contains answers only. Detailed solutions are on the following

More information

Solution Midterm 2, Math 53, Summer (a) (10 points) Let f(x, y, z) be a differentiable function of three variables and define

Solution Midterm 2, Math 53, Summer (a) (10 points) Let f(x, y, z) be a differentiable function of three variables and define Solution Midterm, Math 5, Summer. (a) ( points) Let f(,, z) be a differentiable function of three variables and define F (s, t) = f(st, s + t, s t). Calculate the partial derivatives F s and F t in terms

More information

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8 Name: SOLUTIONS Date: /9/7 M55 alculus III Tutorial Worksheet 8. ompute R da where R is the region bounded by x + xy + y 8 using the change of variables given by x u + v and y v. Solution: We know R is

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force] ENGI 44 Advanced Calculus for Engineering Facult of Engineering and Applied Science Problem Set Solutions [Multiple Integration; Lines of Force]. Evaluate D da over the triangular region D that is bounded

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution Jim Lambers MAT 8 Fall emester 6-7 Practice Final Exam olution. Use Lagrange multipliers to find the point on the circle x + 4 closest to the point (, 5). olution We have f(x, ) (x ) + ( 5), the square

More information

Triple Integrals. y x

Triple Integrals. y x Triple Integrals. (a) If is an solid (in space), what does the triple integral dv represent? Wh? (b) Suppose the shape of a solid object is described b the solid, and f(,, ) gives the densit of the object

More information

D = 2(2) 3 2 = 4 9 = 5 < 0

D = 2(2) 3 2 = 4 9 = 5 < 0 1. (7 points) Let f(, ) = +3 + +. Find and classif each critical point of f as a local minimum, a local maimum, or a saddle point. Solution: f = + 3 f = 3 + + 1 f = f = 3 f = Both f = and f = onl at (

More information

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions McGill University April 4 Faculty of Science Final Examination Calculus 3 Math Tuesday April 9, 4 Solutions Problem (6 points) Let r(t) = (t, cos t, sin t). i. Find the velocity r (t) and the acceleration

More information

Practice Final Solutions

Practice Final Solutions Practice Final Solutions Math 1, Fall 17 Problem 1. Find a parameterization for the given curve, including bounds on the parameter t. Part a) The ellipse in R whose major axis has endpoints, ) and 6, )

More information

Math 234 Final Exam (with answers) Spring 2017

Math 234 Final Exam (with answers) Spring 2017 Math 234 Final Exam (with answers) pring 217 1. onsider the points A = (1, 2, 3), B = (1, 2, 2), and = (2, 1, 4). (a) [6 points] Find the area of the triangle formed by A, B, and. olution: One way to solve

More information

5. Triple Integrals. 5A. Triple integrals in rectangular and cylindrical coordinates. 2 + y + z x=0. y Outer: 1

5. Triple Integrals. 5A. Triple integrals in rectangular and cylindrical coordinates. 2 + y + z x=0. y Outer: 1 5. Triple Integrals 5A. Triple integrals in rectangular and clindrical coordinates ] 5A- a) (x + + )dxdd Inner: x + x( + ) + + x ] ] Middle: + + + ( ) + Outer: + 6 x ] x b) x ddxd Inner: x x 3 4 ] ] +

More information

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane. Math 54 - Vector Calculus Notes 3. - 3. Double Integrals Consider f(x, y) = 8 x y. Let s estimate the volume under this surface over the rectangle R = [, 4] [, ] in the xy-plane. Here is a particular estimate:

More information

dzdydx. [Hint: switch dzdydx into dxdydz.] z(2 z) dzdydx. z(2 z) 2 )dz z(2 z) 2 sin(πz)dz = 1 x = u + 3v (2 points) y = v (2 points) (u, v) = 1 2

dzdydx. [Hint: switch dzdydx into dxdydz.] z(2 z) dzdydx. z(2 z) 2 )dz z(2 z) 2 sin(πz)dz = 1 x = u + 3v (2 points) y = v (2 points) (u, v) = 1 2 Page of 6. (%) Evaluate x z( z) 微甲 8- 班期末考解答和評分標準 dzddx. [Hint: switch dzddx into dxddz.] We need to compute x z( z) dzddx. The region of integration is bounded b [, ] [, ] [, ] {(x,, z) 3 x +, z }. (4%

More information

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter.

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter. Solutions Review for Eam #1 Math 1260 1. Consider the points P = (2, 5, 1) and Q = (4, 1, 1). (a) Find the distance from P to Q. Solution. dist(p, Q) = (4 2) 2 + (1 + 5) 2 + (1 + 1) 2 = 4 + 36 + 4 = 44

More information

v n ds where v = x z 2, 0,xz+1 and S is the surface that

v n ds where v = x z 2, 0,xz+1 and S is the surface that M D T P. erif the divergence theorem for d where is the surface of the sphere + + = a.. Calculate the surface integral encloses the solid region + +,. (a directl, (b b the divergence theorem. v n d where

More information

Solutions to Practice Exam 2

Solutions to Practice Exam 2 Solutions to Practice Eam Problem : For each of the following, set up (but do not evaluate) iterated integrals or quotients of iterated integral to give the indicated quantities: Problem a: The average

More information

Vector Calculus. Dr. D. Sukumar

Vector Calculus. Dr. D. Sukumar Vector Calculus Dr. D. Sukumar Space co-ordinates Change of variable Cartesian co-ordinates < x < Cartesian co-ordinates < x < < y < Cartesian co-ordinates < x < < y < < z < Cylindrical Cylindrical Cylindrical

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

e x3 dx dy. 0 y x 2, 0 x 1.

e x3 dx dy. 0 y x 2, 0 x 1. Problem 1. Evaluate by changing the order of integration y e x3 dx dy. Solution:We change the order of integration over the region y x 1. We find and x e x3 dy dx = y x, x 1. x e x3 dx = 1 x=1 3 ex3 x=

More information

Math 212-Lecture Integration in cylindrical and spherical coordinates

Math 212-Lecture Integration in cylindrical and spherical coordinates Math 22-Lecture 6 4.7 Integration in cylindrical and spherical coordinates Cylindrical he Jacobian is J = (x, y, z) (r, θ, z) = cos θ r sin θ sin θ r cos θ = r. Hence, d rdrdθdz. If we draw a picture,

More information

Math 461 Homework 8. Paul Hacking. November 27, 2018

Math 461 Homework 8. Paul Hacking. November 27, 2018 Math 461 Homework 8 Paul Hacking November 27, 2018 (1) Let S 2 = {(x, y, z) x 2 + y 2 + z 2 = 1} R 3 be the sphere with center the origin and radius 1. Let N = (0, 0, 1) S 2 be the north pole. Let F :

More information

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6 .(5pts) y = uv. ompute the Jacobian, Multiple hoice (x, y) (u, v), of the coordinate transformation x = u v 4, (a) u + 4v 4 (b) xu yv (c) u + 7v 6 (d) u (e) u v uv 4 Solution. u v 4v u = u + 4v 4..(5pts)

More information

Math Review for Exam 3

Math Review for Exam 3 1. ompute oln: (8x + 36xy)ds = Math 235 - Review for Exam 3 (8x + 36xy)ds, where c(t) = (t, t 2, t 3 ) on the interval t 1. 1 (8t + 36t 3 ) 1 + 4t 2 + 9t 4 dt = 2 3 (1 + 4t2 + 9t 4 ) 3 2 1 = 2 3 ((14)

More information

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3 M7Q Multivariable alculus Spring 7 Review Problems for Exam Exam covers material from Sections 5.-5.4 and 6.-6. and 7.. As you prepare, note well that the Fall 6 Exam posted online did not cover exactly

More information

Review for the First Midterm Exam

Review for the First Midterm Exam Review for the First Midterm Exam Thomas Morrell 5 pm, Sunday, 4 April 9 B9 Van Vleck Hall For the purpose of creating questions for this review session, I did not make an effort to make any of the numbers

More information

y=1/4 x x=4y y=x 3 x=y 1/3 Example: 3.1 (1/2, 1/8) (1/2, 1/8) Find the area in the positive quadrant bounded by y = 1 x and y = x3

y=1/4 x x=4y y=x 3 x=y 1/3 Example: 3.1 (1/2, 1/8) (1/2, 1/8) Find the area in the positive quadrant bounded by y = 1 x and y = x3 Eample: 3.1 Find the area in the positive quadrant bounded b 1 and 3 4 First find the points of intersection of the two curves: clearl the curves intersect at (, ) and at 1 4 3 1, 1 8 Select a strip at

More information

MATHEMATICS 200 December 2014 Final Exam Solutions

MATHEMATICS 200 December 2014 Final Exam Solutions MATHEMATICS 2 December 214 Final Eam Solutions 1. Suppose that f,, z) is a function of three variables and let u 1 6 1, 1, 2 and v 1 3 1, 1, 1 and w 1 3 1, 1, 1. Suppose that at a point a, b, c), Find

More information

e x2 dxdy, e x2 da, e x2 x 3 dx = e

e x2 dxdy, e x2 da, e x2 x 3 dx = e STS26-4 Calculus II: The fourth exam Dec 15, 214 Please show all your work! Answers without supporting work will be not given credit. Write answers in spaces provided. You have 1 hour and 2minutes to complete

More information

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma This is an archive of past Calculus IV exam questions. You should first attempt the questions without looking

More information

Math 261 Solutions to Sample Final Exam Problems

Math 261 Solutions to Sample Final Exam Problems Math 61 Solutions to Sample Final Eam Problems 1 Math 61 Solutions to Sample Final Eam Problems 1. Let F i + ( + ) j, and let G ( + ) i + ( ) j, where C 1 is the curve consisting of the circle of radius,

More information

Triple integrals in Cartesian coordinates (Sect. 15.5)

Triple integrals in Cartesian coordinates (Sect. 15.5) Triple integrals in Cartesian coordinates (Sect. 5.5) Triple integrals in rectangular boes. Triple integrals in arbitrar domains. Volume on a region in space. Triple integrals in rectangular boes Definition

More information

EXERCISES Chapter 15: Multiple Integrals. Evaluating Integrals in Cylindrical Coordinates

EXERCISES Chapter 15: Multiple Integrals. Evaluating Integrals in Cylindrical Coordinates 08 Chapter 5: Multiple Integrals EXERCISES 5.6 Evaluating Integrals in Clindrical Evaluate the clindrical coordinate integrals in Eercises 6... 3. 4. 5. 6. Changing Order of Integration in Clindrical The

More information

51. General Surface Integrals

51. General Surface Integrals 51. General urface Integrals The area of a surface in defined parametrically by r(u, v) = x(u, v), y(u, v), z(u, v) over a region of integration in the input-variable plane is given by d = r u r v da.

More information

MATH2321, Calculus III for Science and Engineering, Fall Name (Printed) Print your name, the date, and then sign the exam on the line

MATH2321, Calculus III for Science and Engineering, Fall Name (Printed) Print your name, the date, and then sign the exam on the line MATH2321, Calculus III for Science and Engineering, Fall 218 1 Exam 2 Name (Printed) Date Signature Instructions STOP. above. Print your name, the date, and then sign the exam on the line This exam consists

More information

Figure 25:Differentials of surface.

Figure 25:Differentials of surface. 2.5. Change of variables and Jacobians In the previous example we saw that, once we have identified the type of coordinates which is best to use for solving a particular problem, the next step is to do

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

1 4 (1 cos(4θ))dθ = θ 4 sin(4θ)

1 4 (1 cos(4θ))dθ = θ 4 sin(4θ) M48M Final Exam Solutions, December 9, 5 ) A polar curve Let C be the portion of the cloverleaf curve r = sin(θ) that lies in the first quadrant a) Draw a rough sketch of C This looks like one quarter

More information

One side of each sheet is blank and may be used as scratch paper.

One side of each sheet is blank and may be used as scratch paper. Math 244 Spring 2017 (Practice) Final 5/11/2017 Time Limit: 2 hours Name: No calculators or notes are allowed. One side of each sheet is blank and may be used as scratch paper. heck your answers whenever

More information

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017 Math 3B iscussion ession Week 1 Notes March 14 and March 16, 17 We ll use this week to review for the final exam. For the most part this will be driven by your questions, and I ve included a practice final

More information

MULTIVARIABLE INTEGRATION

MULTIVARIABLE INTEGRATION MULTIVARIABLE INTEGRATION (SPHERICAL POLAR COORDINATES) Question 1 a) Determine with the aid of a diagram an expression for the volume element in r, θ, ϕ. spherical polar coordinates, ( ) [You may not

More information

Math 461 Homework 8 Paul Hacking November 27, 2018

Math 461 Homework 8 Paul Hacking November 27, 2018 (1) Let Math 461 Homework 8 Paul Hacking November 27, 2018 S 2 = {(x, y, z) x 2 +y 2 +z 2 = 1} R 3 be the sphere with center the origin and radius 1. Let N = (0, 0, 1) S 2 be the north pole. Let F : S

More information

Solutions to the Final Exam, Math 53, Summer 2012

Solutions to the Final Exam, Math 53, Summer 2012 olutions to the Final Exam, Math 5, ummer. (a) ( points) Let be the boundary of the region enclosedby the parabola y = x and the line y = with counterclockwise orientation. alculate (y + e x )dx + xdy.

More information

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l. . If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

More information

ln e 2s+2t σ(m) = 1 + h 2 x + h 2 yda = dA = 90 da R

ln e 2s+2t σ(m) = 1 + h 2 x + h 2 yda = dA = 90 da R olution to et 5, Friday ay 7th ection 5.6: 15, 17. ection 5.7:, 5, 7, 16. (1) (ection 5.5, Problem ) Find a parametrization of the suface + y 9 between z and z. olution: cost, y sint and z s with t π and

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

Final Exam Review Sheet : Comments and Selected Solutions

Final Exam Review Sheet : Comments and Selected Solutions MATH 55 Applied Honors alculus III Winter Final xam Review heet : omments and elected olutions Note: The final exam will cover % among topics in chain rule, linear approximation, maximum and minimum values,

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL Determine the domain and range for each of the following functions.

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL Determine the domain and range for each of the following functions. UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 1 1 Determine the domain and range for each of the following functions a = + b = 1 c = d = ln( ) + e = e /( 1) Sketch the level curves

More information

MTHE 227 Problem Set 10 Solutions. (1 y2 +z 2., 0, 0), y 2 + z 2 < 4 0, Otherwise.

MTHE 227 Problem Set 10 Solutions. (1 y2 +z 2., 0, 0), y 2 + z 2 < 4 0, Otherwise. MTHE 7 Problem Set Solutions. (a) Sketch the cross-section of the (hollow) clinder + = in the -plane, as well as the vector field in this cross-section. ( +,, ), + < F(,, ) =, Otherwise. This is a simple

More information

Topic 5.6: Surfaces and Surface Elements

Topic 5.6: Surfaces and Surface Elements Math 275 Notes Topic 5.6: Surfaces and Surface Elements Textbook Section: 16.6 From the Toolbox (what you need from previous classes): Using vector valued functions to parametrize curves. Derivatives of

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

MATH 223 FINAL EXAM STUDY GUIDE ( )

MATH 223 FINAL EXAM STUDY GUIDE ( ) MATH 3 FINAL EXAM STUDY GUIDE (017-018) The following questions can be used as a review for Math 3 These questions are not actual samples of questions that will appear on the final eam, but the will provide

More information

f x,y da 2 9. x 2 y 2 dydx y 2 dy x2 dx 2 9. y x da 4 x

f x,y da 2 9. x 2 y 2 dydx y 2 dy x2 dx 2 9. y x da 4 x MATH 3 (Calculus III) -Exam 4 (Version ) Solutions March 5, 5 S. F. Ellermeer Name Instructions. Your work on this exam will be graded according to two criteria: mathematical correctness and clarit of

More information

MATHEMATICS 200 December 2013 Final Exam Solutions

MATHEMATICS 200 December 2013 Final Exam Solutions MATHEMATICS 2 December 21 Final Eam Solutions 1. Short Answer Problems. Show our work. Not all questions are of equal difficult. Simplif our answers as much as possible in this question. (a) The line L

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 3. Double Integrals 3A. Double

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

4.4 Change of Variable in Integrals: The Jacobian

4.4 Change of Variable in Integrals: The Jacobian 4.4. CHANGE OF VAIABLE IN INTEGALS: THE JACOBIAN 4 4.4 Change of Variable in Integrals: The Jacobian In this section, we generalize to multiple integrals the substitution technique used with definite integrals.

More information

MATHS 267 Answers to Stokes Practice Dr. Jones

MATHS 267 Answers to Stokes Practice Dr. Jones MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

MEMORIAL UNIVERSITY OF NEWFOUNDLAND MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Volumes Math 11 Winter 17 SOLUTIONS 1. (a) i. The axis of smmetr is a horizontal line, so we integrate with respect to x. The

More information

on an open connected region D, then F is conservative on D. (c) If curl F=curl G on R 3, then C F dr = C G dr for all closed path C.

on an open connected region D, then F is conservative on D. (c) If curl F=curl G on R 3, then C F dr = C G dr for all closed path C. . (5%) Determine the statement is true ( ) or false ( ). 微甲 -4 班期末考解答和評分標準 (a) If f(x, y) is continuous on the rectangle R = {(x, y) a x b, c y d} except for finitely many points, then f(x, y) is integrable

More information

Triple Integrals in Cartesian Coordinates. Triple Integrals in Cylindrical Coordinates. Triple Integrals in Spherical Coordinates

Triple Integrals in Cartesian Coordinates. Triple Integrals in Cylindrical Coordinates. Triple Integrals in Spherical Coordinates Chapter 3 Multiple Integral 3. Double Integrals 3. Iterated Integrals 3.3 Double Integrals in Polar Coordinates 3.4 Triple Integrals Triple Integrals in Cartesian Coordinates Triple Integrals in Clindrical

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

MTH 234 Exam 2 April 10th, Without fully opening the exam, check that you have pages 1 through 12.

MTH 234 Exam 2 April 10th, Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in our name, etc. on this first page. Without full opening the eam, check that ou have pages 1 through 12. Show all our work on the standard response

More information

Line and Surface Integrals. Stokes and Divergence Theorems

Line and Surface Integrals. Stokes and Divergence Theorems Math Methods 1 Lia Vas Line and urface Integrals. tokes and Divergence Theorems Review of urves. Intuitively, we think of a curve as a path traced by a moving particle in space. Thus, a curve is a function

More information

Math Exam IV - Fall 2011

Math Exam IV - Fall 2011 Math 233 - Exam IV - Fall 2011 December 15, 2011 - Renato Feres NAME: STUDENT ID NUMBER: General instructions: This exam has 16 questions, each worth the same amount. Check that no pages are missing and

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

Green s Theorem Jeremy Orloff

Green s Theorem Jeremy Orloff Green s Theorem Jerem Orloff Line integrals and Green s theorem. Vector Fields Vector notation. In 8.4 we will mostl use the notation (v) = (a, b) for vectors. The other common notation (v) = ai + bj runs

More information

CHAPTER SIXTEEN. = 4 x y + 6 x y + 3 x y + 4 x y = 17 x y = 31(0.1)(0.2) = f(x i, y i) x y = 7 x y + 10 x y + 6 x y + 8 x y = 31 x y. x = 0.

CHAPTER SIXTEEN. = 4 x y + 6 x y + 3 x y + 4 x y = 17 x y = 31(0.1)(0.2) = f(x i, y i) x y = 7 x y + 10 x y + 6 x y + 8 x y = 31 x y. x = 0. CHAPTE SIXTEEN 6. SOLUTIONS 5 Solutions for Section 6. Eercises. Mark the values of the function on the plane, as shown in Figure 6., so that ou can guess respectivel at the smallest and largest values

More information

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y.

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y. Math 35 - Review for Exam 1. Compute the second degree Taylor polynomial of f e x+3y about (, ). Solution. A computation shows that f x(, ), f y(, ) 3, f xx(, ) 4, f yy(, ) 9, f xy(, ) 6. The second degree

More information

Multiple Choice. 1.(6 pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

Multiple Choice. 1.(6 pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. Multiple Choice.(6 pts) Find smmetric equations of the line L passing through the point (, 5, ) and perpendicular to the plane x + 3 z = 9. (a) x = + 5 3 = z (c) (x ) + 3( 3) (z ) = 9 (d) (e) x = 3 5 =

More information

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014 MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014 Dr. E. Jacobs The main texts for this course are Calculus by James Stewart and Fundamentals of Differential Equations by Nagle, Saff

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL Determine the domain and range for each of the following functions.

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL Determine the domain and range for each of the following functions. UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 1 1 Determine the domain and range for each of the following functions a = + b = 1 c = d = ln( ) + e = e /( 1) Sketch the level curves

More information

McGill University April 16, Advanced Calculus for Engineers

McGill University April 16, Advanced Calculus for Engineers McGill University April 16, 2014 Faculty of cience Final examination Advanced Calculus for Engineers Math 264 April 16, 2014 Time: 6PM-9PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer

More information

Multivariable Calculus Lecture #11 Notes

Multivariable Calculus Lecture #11 Notes Multivariable alculus Lecture #11 Notes In this lecture, we ll discuss changing coordinates more generally in multiple integrals. We ll also discuss the idea of integration along a curve and the application

More information

Solution. This is a routine application of the chain rule.

Solution. This is a routine application of the chain rule. EXAM 2 SOLUTIONS 1. If z = e r cos θ, r = st, θ = s 2 + t 2, find the partial derivatives dz ds chain rule. Write your answers entirely in terms of s and t. dz and dt using the Solution. This is a routine

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253 SOLUTIONS TO HOMEWORK ASSIGNMENT #, Math 5. Find the equation of a sphere if one of its diameters has end points (, 0, 5) and (5, 4, 7). The length of the diameter is (5 ) + ( 4 0) + (7 5) = =, so the

More information

Calculus II. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAC / 1

Calculus II. Philippe Rukimbira. Department of Mathematics Florida International University PR (FIU) MAC / 1 Calculus II Philippe Rukimbira Department of Mathematics Florida International University PR (FIU) MAC 2312 1 / 1 5.4. Sigma notation; The definition of area as limit Assignment: page 350, #11-15, 27,

More information

MATH 271 Test #4T Solutions

MATH 271 Test #4T Solutions MATH 7 Test #4T Solutions You do not need to evaluate the integrals in problems () (5); just set them up. () ( points) Consider the curve which is represented b the parametric equations x = + t + t, =

More information

Math 208 Surface integrals and the differentials for flux integrals. n and separately. But the proof on page 889 of the formula dσ = r r du dv on page

Math 208 Surface integrals and the differentials for flux integrals. n and separately. But the proof on page 889 of the formula dσ = r r du dv on page Math 08 urface integrals and the differentials for flu integrals Our tet fails to eplicitl state the formulas for n dσ, instead preferring to give formulas for n and separatel But the proof on page 88

More information

Math 53 Spring 2018 Practice Midterm 2

Math 53 Spring 2018 Practice Midterm 2 Math 53 Spring 218 Practice Midterm 2 Nikhil Srivastava 8 minutes, closed book, closed notes 1. alculate 1 y 2 (x 2 + y 2 ) 218 dxdy Solution. Since the type 2 region D = { y 1, x 1 y 2 } is a quarter

More information

MATH 12 CLASS 23 NOTES, NOV Contents 1. Change of variables: the Jacobian 1

MATH 12 CLASS 23 NOTES, NOV Contents 1. Change of variables: the Jacobian 1 MATH 12 CLASS 23 NOTES, NOV 11 211 Contents 1. Change of variables: the Jacobian 1 1. Change of variables: the Jacobian So far, we have seen three examples of situations where we change variables to help

More information

Calculus with Analytic Geometry 3 Fall 2018

Calculus with Analytic Geometry 3 Fall 2018 alculus with Analytic Geometry 3 Fall 218 Practice Exercises for the Final Exam I present here a number of exercises that could serve as practice for the final exam. Some are easy and straightforward;

More information

Review Test 2. c ) is a local maximum. ) < 0, then the graph of f has a saddle point at ( c,, (, c ) = 0, no conclusion can be reached by this test.

Review Test 2. c ) is a local maximum. ) < 0, then the graph of f has a saddle point at ( c,, (, c ) = 0, no conclusion can be reached by this test. eview Test I. Finding local maima and minima for a function = f, : a) Find the critical points of f b solving simultaneousl the equations f, = and f, =. b) Use the Second Derivative Test for determining

More information

Dr. Allen Back. Dec. 3, 2014

Dr. Allen Back. Dec. 3, 2014 Dr. Allen Back Dec. 3, 2014 forms are sums of wedge products of the basis 1-forms dx, dy, and dz. They are kinds of tensors generalizing ordinary scalar functions and vector fields. They have a skew-symmetry

More information

HOMEWORK 8 SOLUTIONS

HOMEWORK 8 SOLUTIONS HOMEWOK 8 OLUTION. Let and φ = xdy dz + ydz dx + zdx dy. let be the disk at height given by: : x + y, z =, let X be the region in 3 bounded by the cone and the disk. We orient X via dx dy dz, then by definition

More information

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of

More information

FOCUS ON THEORY. We now consider a general change of variable, where x; y coordinates are related to s; t coordinates by the differentiable functions

FOCUS ON THEORY. We now consider a general change of variable, where x; y coordinates are related to s; t coordinates by the differentiable functions FOCUS ON HEOY 753 CHANGE OF VAIABLES IN A MULIPLE INEGAL In the previous sections, we used polar, clindrical, and spherical coordinates to simplif iterated integrals. In this section, we discuss more general

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

is the curve of intersection of the plane y z 2 and the cylinder x oriented counterclockwise when viewed from above.

is the curve of intersection of the plane y z 2 and the cylinder x oriented counterclockwise when viewed from above. The questions below are representative or actual questions that have appeared on final eams in Math from pring 009 to present. The questions below are in no particular order. There are tpicall 10 questions

More information

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x + MATH 06 0 Practice Exam #. (0 points) Evaluate the following integrals: (a) (0 points). t +t+7 This is an irreducible quadratic; its denominator can thus be rephrased via completion of the square as a

More information