Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p.1/26

Size: px
Start display at page:

Download "Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p.1/26"

Transcription

1 Performance of hybrid density functional methods, screened exchange and EXX-OEP methods in the PAW approach Georg Kresse, J Paier, R Hirschl, M Marsmann Institut für Materialphysik and Centre for Computational Materials Science, Universität Wien, A-1090 Wien, Austria Funded by the Austrian FWF Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p1/26

2 Introduction PAW method exact exchange (Fock) operator in the PAW method results for small molecules exact-exchange OEP method results for insulators, semiconductors and metals b-initio ackage All calculations were performed using VASP ienna imulation periodic plane wave code Fock operator implemented by R Hirschl EXX-OEP Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p2/26

3 Basic concepts of the PAW method Wave function is written as a sum of a pseudo wave function and one center corrections Ψa = Ψa i ( φi φi ) pi Ψa Same holds for charge density nab(r) = Ψ a(r)ψb(r) = ñab(r) ñ 1 ab (r) n1 ab (r) pseudo (node less) plane waves pseudo onsite radial grids exact onsite radial grids = exact Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p3/26

4 Exact exchange in the PAW method K = K K 1 K 1 ñab = Ψ a(r) Ψb(r) K = 1 2 ab fa fb Z {ñab nab} 1 r r {ñ ab nab} pseudo PW K 1 = 1 2 ab fa fb Z {ñ 1 ab n1 ab } 1 r r {ñ1 ab n1 ab } pseudo radial K 1 = 1 2 ab fa fb Z {n 1 ab } 1 r r {n1 ab } AE radial pseudo (node less) plane waves pseudo onsite radial grids exact onsite radial grids = exact Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p4/26

5 Exact exchange in the PAW method K = K K 1 K 1 ñab = Ψ a(r) Ψb(r) K = 1 2 ab fa fb Z {ñab nab} 1 r r {ñ ab nab} pseudo PW K 1 = 1 2 ab fa fb Z {ñ 1 ab n1 ab } 1 r r {ñ1 ab n1 ab } pseudo radial K 1 = 1 2 ab fa fb Z {n 1 ab } 1 r r {n1 ab } AE radial pseudo (node less) plane waves pseudo onsite radial grids exact onsite radial grids = exact n ab!!!!!!!!!!!!! " " " " " " " " " " " " # # # # # # # # # # # # # $ $ $ $ $ $ $ $ $ $ $ $ % % % % % % % % % % % % % ' ' ' ' ' ' ' ' ' ' ' ' ' ( ( ( ( ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) ) ) ) ) ) * * * * * * * * * * * * *,,,,,,,,,,,, / / / / / / / / / / / / / Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p4/26

6 Basic steps in exact exchange Loop over all pairs of states a, b (includes all k-point pairs) FFT of pseudo wave functions to real space and calculate charge n ab (r) = Ψ a(r) Ψ b (r) Add augmentation charges to correct moments n ab (r) FFT of charge to reciprocal space and division by Laplace operator n ab (r) FFT n ab (G) V ab (G) = 4πe2 G 2 n ab (G) FFT back to real space to obtain potential and multiplication with wavefunction V ab (r)ψ b (r) Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p5/26

7 Systematic assessment of the accuracy: PBE Molecule Exp PBE0 VASP exp PBE0 G03 exp V G O CO NO LiF SiO CS SO ClO ClF MAE MAE for G2 set (50 molecules), values in kcal, G03 aug-cc-pv5z basis (1 kcal=43 mev) Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p6/26

8 Systematic assessment of the accuracy: PBE0 Molecule Exp PBE0 VASP exp PBE0 G03 exp V G O CO NO LiF SiO CS SO ClO ClF MAE MAE for G2 set (50 molecules), values in kcal, G03 aug-cc-pv5z basis (1 kcal=43 mev) Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p7/26

9 Systematic assessment of the accuracy: PBE0 Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p8/26

10 Hybrid and screened exchange methods Split the Coulomb operator in the exchange into two terms eg 1 r = erfc(µr) r erf(µr) r or more generally 1 4πG 2 }{{} Coulomb = 1 4πG 2 1 ε(g) 4πG }{{} 2 (1 1 ε(g) ) }{{} exact DFT Hybrid functionals: ε = 4 1/4 EXX and 3/4 DFT screened exchange: ε = q 2 T F G 2 /G 2 HSE (ωpbe): ε = (1 e G2 /4µ 2 ) 1 J Heyd, GE Scuseria, J Chem Phys 121, 1187 Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p9/26

11 EXX-OEP method M Städele, JA Majewski, and P Vogl, A Görling, Phys Rev Lett 79, 2089 (1997) S Kümmel, JP Perdew, Phys Rev Lett 90, (2003) Instead of inverting the irreducible polarizability matrix χ, the response of the system is determined by a linear response solver to obtain orbital shifts ( V EXX )Ψ (1) = ( V EXX V Fock ({Ψ (0) }))Ψ (0) where the wavefunctions Ψ (0) are eigenfunctions of Hamiltonian with the local exchange potential Update potential: ( V EXX )Ψ (0) = εψ (0) V EXX (r) = Ψ (0) (r)ψ (1) (r) cc f (1) Ψ (0) (r)ψ (0) (r) Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p10/26

12 EXX-OEP method practical considerations The residual is defined as R(r) = Ψ (0) (r)ψ (1) (r) cc = R[V EXX ] Efficient and stable Pulay mixer (RMM-DIIS) is used to minimize the norm of the residual vector P Pulay, Chem Phys Lett 73, 393 (1980) The optimizer performs an optimization in the yet visited sub space to determine V EXX (r) such that the norm of the residual vector is minimized The calculations are usually initialized from a LHF calculation (local Hartree Fock) Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p11/26

13 EXX-OEP method typical convergence log 10 V ev 400 ev Convergence is robust but fairly slow Convergence slows down, if more Fourier components of the potential are determined ie the potential cutoff is increased iteration Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p12/26

14 Convergence of the present OEP implementation Assume that the OEP method is applied to a conventional DFT functional, starting from a slightly perturbed potential V OEP = V sc δv Determine the KS eigenstates for this potential and resulting charge ( V OEP )Ψ (0) = εψ (0) ρ = Ψ (0) Ψ (0) = ρ sc χδv new potential V out = v(ρ sc χδv ) = V sc vχ δv Next determine linear response Ψ (1) ( V OEP )Ψ (1) = (V OEP V out )Ψ (0) = ε δv Ψ (0) Step along V OEP = Ψ (1) Ψ (0) cc = χε δv Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p13/26

15 Convergence of OEP method Eigenvalue spectrum of χε determines convergence response (au) 5 4 ε χ G (1/A 2 ) The error in the long range part is strongly overemphasized The error in the short range part is not visible to the mixer Preconditioner based on the inverse of the Lindhard dielectric matrix did not improve the convergence Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p14/26

16 PAW datasets All calculations are performed using LDA/ PBE pseudopotentials The pseudopotential generation code does not support exact exchange The core electrons are kept frozen in the calculations The core valence interaction is however reevaluated at the appropriate level (PBE0) In the LHF and EXX-OEP case the OEP potential is determined for the valence electrons only The core valence interaction is treated using Hartree Fock A consistent LHF treatment of valence and core electrons is feasible and presently under investigations Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p15/26

17 Results noble gas solids Γ 20 XX K Γ L Γ XX K Γ L 15 Energy (ev) Ne Energy (ev) Ar Energy (ev) Γ K-point distance Kr XX K K-point distance Γ L K-point distance line EXX o dots LDA good agreement with RJ Magyar, A Fleszar, and EKU Gross, Phys Rev B 69, (2004) Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p16/26

18 Collected results at Γ Ne Ar Kr C Si Ge ZnO ZnS GaN LDA LDA LHFc EXXc EXXc exp PBE LDA, LHFc, EXXc, PBE0 present work LDA, EXXc from: [1] RJ Magyar, A Fleszar, and EKU Gross, Phys Rev B 69, (2004) [2] KKR and LMTO: T Kotani, H Akai, Phys Rev B 54, (1996) [3] PP: M Städele, M Moukara, Majewski, P Vogl, G Görling, Phys Rev B 59, (1999) [4] PP: P Rincke, A Qteish, J Neugebauer, C Freysoldt, and M Scheffler Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p17/26

19 Some comments LDA pseudopotentials EXX only for valence core-valence HF typ PP type CdS valence gap d LDA LDA[1] 081 LDA LDA 3d 088 EXXc LDA 3d EXXc LDA 3p EXXc LDA 3s EXXc EXX[1] electrons treated as valence consistent LHF for core and valence timings: four P4 28 GHz RIM timings per iteration Ne 6x6x6 k-points, 5 sec Ne 8x8x8 k-points, 20 sec C 8x8x8 k-points, 25 sec state of the art CPU s are about 15 to 2 times faster Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p18/26

20 Nanotube (10,0): 40 atoms Energy (ev) (10,0) LDA 32 k-points Exx 8 k-points k (2π/a) EXX and LDA are practically identical for the nanotube EXX 820 mev LDA 750 mev It is known that LDA underestimates the optical gaps by a factor The experimental fundamental gaps are not known Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p19/26

21 Nanotube (7,0): 24 atoms Energy (ev) (7,0) LDA 32 k-points Exx 8 k-points increase of band gap EXX 280 mev LDA 480 mev GW 600 mev T Miyake S Saito, Phys Rev B 68, k (2π/a) Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p20/26

22 Ferromagnetic bcc Fe Desaster Hunds rule DOS (states/ev/atom) EXX LDA Energy (ev) 10x10x10 k-points: 180 seconds per iteration on four P MHz ferromagnet m= 35µ B Akai (1996): m= 34µ B 3p valence Qualitative similar results, when 3p is in the core Since the up and down potential are entirely free to vary, the solution is close to Hartree Fock Correlation, of course? Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p21/26

23 Conclusions EXX-OEP is certainly interesting, but will require improved correlation functionals Hybride functionals seem to offer significant improvements compared to usual semi-local functionals right now Reasonable energetics Reasonable one electron gaps Reasonable results for correlated systems (MnO, NiO) Fairly fast using a plane wave basis set Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p22/26

24 Acknowledgment funded by the Austrian FWF within the START program R Hirschl (did most of the work on the Fock operator) J Paier (testing) M Marsmann, I Gerber (screened exchange) J Furthmüller, F Bechstedt (model GW) Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p23/26

25 Results noble gas solids Ne Ar Kr present PP[1] present PP[1] present PP[1] LDA EXX EXXc LHFc exp optical exp PBE [1] RJ Magyar, A Fleszar, and EKU Gross, Phys Rev B 69, (2004) Computational time: 6x6x6 k-points, four P MHz: 5 seconds per iteration 8x8x8 k-points, four P MHz: 20 seconds per iteration Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p24/26

26 Group IV Elements LDA LDA EXXc EXXc exp PBE0 HSE present PP[1] present PP[1] C γ C L c C X c Si γ Si L c Si X c Ge γ Ge L c Ge X c [1] M Städele, M Moukara, Majewski, P Vogl, G Görling, Phys Rev B 59, (1999) [2] KKR and LMTO, T Kotani, H Akai, Phys Rev B 54, (1996) Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p25/26

27 Semiconductors with shallow core states type PP type ZnO ZnS CdS GaN valence gap d gap d gap d gap d LDA LDA[1] LDA LDA 3d EXXc LDA 3d EXXc LDA 3p EXXc LDA 3s EXXc EXX[1] exp PBE0 PBE HSE PBE electrons treated as valence [1] P Rincke, A Qteish, J Neugebauer, C Freysoldt, and M Scheffler Performance ofhybrid density functional methods,screened exchange and EXX-OEP methodsin the PAW approach p26/26

Combining quasiparticle energy calculations with exact-exchange density-functional theory

Combining quasiparticle energy calculations with exact-exchange density-functional theory Combining quasiparticle energy calculations with exact-exchange density-functional theory Patrick Rinke 1, Abdallah Qteish 1,2, Jörg Neugebauer 1,3,4, Christoph Freysoldt 1 and Matthias Scheffler 1 1 Fritz-Haber-Institut

More information

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Sangeeta Sharma 1,2, J. K. Dewhurst 3, C. Ambrosch-Draxl 4, S. Pittalis 2, S. Kurth 2, N. Helbig 2, S. Shallcross

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

GW quasiparticle energies

GW quasiparticle energies Chapter 4 GW quasiparticle energies Density functional theory provides a good description of ground state properties by mapping the problem of interacting electrons onto a KS system of independent particles

More information

Non-collinear OEP for solids: SDFT vs CSDFT

Non-collinear OEP for solids: SDFT vs CSDFT Non-collinear OEP for solids: SDFT vs Sangeeta Sharma 1,2, J. K. Dewhurst 3 S. Pittalis 2, S. Kurth 2, S. Shallcross 4 and E. K. U. Gross 2 1. Fritz-Haber nstitut of the Max Planck Society, Berlin, Germany

More information

Exact-exchange density-functional calculations for noble-gas solids

Exact-exchange density-functional calculations for noble-gas solids PHYSICAL REVIEW B 69, 045111 2004 Exact-exchange density-functional calculations for noble-gas solids R. J. Magyar, 1 A. Fleszar, 2 and E. K. U. Gross 1 1 Theoretische Physik, Freie Universität Berlin,

More information

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that Keith Refson STFC Rutherford Appleton Laboratory LDA/GGA DFT is good but... Naive LDA/GGA calculation severely underestimates band-gaps.

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC

Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC 286 Brazilian Journal of Physics, vol. 36, no. 2A, June, 2006 Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC Clas Persson and Susanne Mirbt Department

More information

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects Quantum Monte Carlo Benchmarks Density Functionals: Si Defects K P Driver, W D Parker, R G Hennig, J W Wilkins (OSU) C J Umrigar (Cornell), R Martin, E Batista, B Uberuaga (LANL), J Heyd, G Scuseria (Rice)

More information

Magnetism in transition metal oxides by post-dft methods

Magnetism in transition metal oxides by post-dft methods Magnetism in transition metal oxides by post-dft methods Cesare Franchini Faculty of Physics & Center for Computational Materials Science University of Vienna, Austria Workshop on Magnetism in Complex

More information

Impact of widely used approximations to the G 0 W 0 method: An all-electron perspective

Impact of widely used approximations to the G 0 W 0 method: An all-electron perspective Impact of widely used approximations to the G 0 W 0 method: An all-electron perspective Xin-Zheng Li, 1 Ricardo Gómez-Abal, 1 Hong Jiang, 1, Claudia Ambrosch-Draxl, 2 and Matthias Scheffler 1 1 Fritz-Haber-Institut

More information

J. Paier, M. Marsman, G. Kresse, Kerstin Hummer. Computational Materials Physics Faculty of Physics University of Vienna. Funded by the Austrian FWF

J. Paier, M. Marsman, G. Kresse, Kerstin Hummer. Computational Materials Physics Faculty of Physics University of Vienna. Funded by the Austrian FWF J. Paier, M. Marsman, G. Kresse, Kerstin Hummer Computational Materials Physics Faculty of Physics University of Vienna Funded by the Austrian FWF Accurate calculation of optical absorption and electron

More information

1. Hydrogen atom in a box

1. Hydrogen atom in a box 1. Hydrogen atom in a box Recall H atom problem, V(r) = -1/r e r exact answer solved by expanding in Gaussian basis set, had to solve secular matrix involving matrix elements of basis functions place atom

More information

Some surprising results of the Kohn-Sham Density Functional

Some surprising results of the Kohn-Sham Density Functional arxiv:1409.3075v1 [cond-mat.mtrl-sci] 10 Sep 2014 Some surprising results of the Kohn-Sham Density Functional L. G. Ferreira 1, M. Marques 2, L. K. Teles 2, R. R. Pelá 2 1 Instituto de Física, Universidade

More information

Orbital Density Dependent Functionals

Orbital Density Dependent Functionals Orbital Density Dependent Functionals S. Kluepfel1, P. Kluepfel1, Hildur Guðmundsdóttir1 and Hannes Jónsson1,2 1. Univ. of Iceland; 2. Aalto University Outline: Problems with GGA approximation (PBE, RPBE,...)

More information

The Projector Augmented Wave method

The Projector Augmented Wave method The Projector Augmented Wave method Advantages of PAW. The theory. Approximations. Convergence. 1 The PAW method is... What is PAW? A technique for doing DFT calculations efficiently and accurately. An

More information

Ab initio Electronic Structure

Ab initio Electronic Structure Ab initio Electronic Structure M. Alouani IPCMS, UMR 7504, Université Louis Pasteur, Strasbourg France http://www-ipcms.u-strasbg.fr In coll. with: B. Arnaud, O. Bengone, Y. Dappe, and S. Lebègue 1965

More information

Novel Functionals and the GW Approach

Novel Functionals and the GW Approach Novel Functionals and the GW Approach Patrick Rinke FritzHaberInstitut der MaxPlanckGesellschaft, Berlin Germany IPAM 2005 Workshop III: DensityFunctional Theory Calculations for Modeling Materials and

More information

arxiv: v1 [cond-mat.mtrl-sci] 7 Nov 2011

arxiv: v1 [cond-mat.mtrl-sci] 7 Nov 2011 First Principles Study of Adsorption of O 2 on Al Surface with Hybrid Functionals Heng-Rui Liu, Hongjun Xiang and X. G. Gong 1 Key Laboratory for Computational Physical Sciences (MOE) and Surface Physics

More information

Introduction to DFT and its Application to Defects in Semiconductors

Introduction to DFT and its Application to Defects in Semiconductors Introduction to DFT and its Application to Defects in Semiconductors Noa Marom Physics and Engineering Physics Tulane University New Orleans The Future: Computer-Aided Materials Design Can access the space

More information

DFT: Exchange-Correlation

DFT: Exchange-Correlation DFT: Local functionals, exact exchange and other post-dft methods Stewart Clark University of Outline Introduction What is exchange and correlation? Quick tour of XC functionals (Semi-)local: LDA, PBE,

More information

Chris G. Van de Walle Materials Department, UCSB

Chris G. Van de Walle Materials Department, UCSB First-principles simulations of defects in oxides and nitrides Chris G. Van de Walle Materials Department, UCSB Acknowledgments: A. Janotti, J. Lyons, J. Varley, J. Weber (UCSB) P. Rinke (FHI), M. Scheffler

More information

MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science

MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science Dott.ssa Letizia Chiodo Nano-bio Spectroscopy Group & ETSF - European Theoretical Spectroscopy Facility,

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Orbital dependent correlation potentials in ab initio density functional theory

Orbital dependent correlation potentials in ab initio density functional theory Orbital dependent correlation potentials in ab initio density functional theory noniterative - one step - calculations Ireneusz Grabowski Institute of Physics Nicolaus Copernicus University Toruń, Poland

More information

DFT: Exchange-Correlation

DFT: Exchange-Correlation DFT: Exchange-Correlation Local functionals, exact exchange and other post-dft methods Paul Tulip Centre for Materials Physics Department of Physics University of Durham Outline Introduction What is exchange

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz November 29, 2010 The self interaction error and its correction Perdew-Zunger SIC Average-density approximation Weighted density approximation

More information

Implementation and performance of the frequency-dependent GW method within the PAW framework

Implementation and performance of the frequency-dependent GW method within the PAW framework PHYSICAL REVIEW B 74, 035101 2006 Implementation and performance of the frequency-dependent method within the PAW framework M. Shishkin and G. Kresse Institut für Materialphysik and Centre for Computational

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Modified Becke-Johnson (mbj) exchange potential

Modified Becke-Johnson (mbj) exchange potential Modified Becke-Johnson (mbj) exchange potential Hideyuki Jippo Fujitsu Laboratories LTD. 2015.12.21-22 OpenMX developer s meeting @ Kobe Overview: mbj potential The semilocal exchange potential adding

More information

Towards ab initio device Design via Quasiparticle self-consistent GW theory

Towards ab initio device Design via Quasiparticle self-consistent GW theory Towards ab initio device Design via Quasiparticle self-consistent GW theory Mark van Schilfgaarde and Takao Kotani Arizona State University Limitations to the local density approximation, the GW approximation

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

DFT with Hybrid Functionals

DFT with Hybrid Functionals DFT with Hybrid Functionals Sanliang Ling University College London 4th CP2K Tutorial, 31st August 4th September 2015, Zurich What are hybrid functionals? Hybrid functionals: mixing non-local Hartree-Fock

More information

Theoretical spectroscopy

Theoretical spectroscopy Theoretical spectroscopy from basic developments to real-world applications M. A. L. Marques http://www.tddft.org/bmg/ 1 LPMCN, CNRS-Université Lyon 1, France 2 European Theoretical Spectroscopy Facility

More information

Pseudopotentials: design, testing, typical errors

Pseudopotentials: design, testing, typical errors Pseudopotentials: design, testing, typical errors Kevin F. Garrity Part 1 National Institute of Standards and Technology (NIST) Uncertainty Quantification in Materials Modeling 2015 Parameter free calculations.

More information

Practical Guide to Density Functional Theory (DFT)

Practical Guide to Density Functional Theory (DFT) Practical Guide to Density Functional Theory (DFT) Brad Malone, Sadas Shankar Quick recap of where we left off last time BD Malone, S Shankar Therefore there is a direct one-to-one correspondence between

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

PBS: FROM SOLIDS TO CLUSTERS

PBS: FROM SOLIDS TO CLUSTERS PBS: FROM SOLIDS TO CLUSTERS E. HOFFMANN AND P. ENTEL Theoretische Tieftemperaturphysik Gerhard-Mercator-Universität Duisburg, Lotharstraße 1 47048 Duisburg, Germany Semiconducting nanocrystallites like

More information

Self-Consistent Implementation of Self-Interaction Corrected DFT and of the Exact Exchange Functionals in Plane-Wave DFT

Self-Consistent Implementation of Self-Interaction Corrected DFT and of the Exact Exchange Functionals in Plane-Wave DFT Self-Consistent Implementation of Self-Interaction Corrected DFT and of the Exact Exchange Functionals in Plane-Wave DFT Kiril Tsemekhman (a), Eric Bylaska (b), Hannes Jonsson (a,c) (a) Department of Chemistry,

More information

Ab-initio Electronic Structure Calculations β and γ KNO 3 Energetic Materials

Ab-initio Electronic Structure Calculations β and γ KNO 3 Energetic Materials ISSN 0974-9373 Vol. 15 No.3 (2011) Journal of International Academy of Physical Sciences pp. 337-344 Ab-initio Electronic Structure Calculations of α, β and γ KNO 3 Energetic Materials Pradeep Jain and

More information

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory DFT and beyond: Hands-on Tutorial Workshop 2011 Tutorial 1: Basics of Electronic Structure Theory V. Atalla, O. T. Hofmann, S. V. Levchenko Theory Department, Fritz-Haber-Institut der MPG Berlin July 13,

More information

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) Born Oppenheimer Approximation: Ĥ el ( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) For a molecule with N electrons and M nuclei: Ĥ el What is E el (R)? s* potential surface Reaction Barrier Unstable intermediate

More information

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval

Many-Body Perturbation Theory. Lucia Reining, Fabien Bruneval , Fabien Bruneval Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) Belfast, 27.6.2007 Outline 1 Reminder 2 Perturbation Theory

More information

VASP: running on HPC resources. University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria

VASP: running on HPC resources. University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria VASP: running on HPC resources University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria The Many-Body Schrödinger equation 0 @ 1 2 X i i + X i Ĥ (r 1,...,r

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based Supporting information Realizing Two-Dimensional Magnetic Semiconductors with Enhanced Curie Temperature by Antiaromatic Ring Based Organometallic Frameworks Xingxing Li and Jinlong Yang* Department of

More information

A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY

A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY A FRESH LOOK AT THE BAND-GAP PROBLEM IN DENSITY FUNCTIONAL THEORY JOHN P. PERDEW PHYSICS & CHEMISTRY, TEMPLE UNIVERSITY PHILADELPHIA, PENNSYLVANIA, USA SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, EFRC

More information

Electronic Structure Calculations, Density Functional Theory and its Modern Implementations

Electronic Structure Calculations, Density Functional Theory and its Modern Implementations Tutoriel Big RENOBLE Electronic Structure Calculations, Density Functional Theory and its Modern Implementations Thierry Deutsch L_Sim - CEA renoble 19 October 2011 Outline 1 of Atomistic calculations

More information

Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type

Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type Zhigang Gu, a Lars Heinke, a,* Christof Wöll a, Tobias Neumann,

More information

The Nature of the Interlayer Interaction in Bulk. and Few-Layer Phosphorus

The Nature of the Interlayer Interaction in Bulk. and Few-Layer Phosphorus Supporting Information for: The Nature of the Interlayer Interaction in Bulk and Few-Layer Phosphorus L. Shulenburger, A.D. Baczewski, Z. Zhu, J. Guan, and D. Tománek, Sandia National Laboratories, Albuquerque,

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory 1 Introduction to Density Functional Theory 21 February 2011; V172 P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 21 February 2011 Introduction to DFT 2 3 4 Ab initio Computational

More information

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany KITP Program Excitations in Condensed Matter Localized and Itinerant States in a Unified Picture beyond Density Functional Theory Hong Jiang 1, Patrick Rinke 2 and Matthias Scheffler 2 1 College of Chemistry,

More information

From Quantum Mechanics to Materials Design

From Quantum Mechanics to Materials Design The Basics of Density Functional Theory Volker Eyert Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg December 03, 2010 Outline Formalism 1 Formalism Definitions

More information

TDDFT in Chemistry and Biochemistry III

TDDFT in Chemistry and Biochemistry III TDDFT in Chemistry and Biochemistry III Dmitrij Rappoport Department of Chemistry and Chemical Biology Harvard University TDDFT Winter School Benasque, January 2010 Dmitrij Rappoport (Harvard U.) TDDFT

More information

Nonlocal exchange correlation in screened-exchange density functional methods

Nonlocal exchange correlation in screened-exchange density functional methods Nonlocal exchange correlation in screened-exchange density functional methods Byounghak Lee and Lin-Wang Wang Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California

More information

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Question 1: Basis sets Consider the split valence SV3-21G one electron basis set for formaldehyde

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

Key concepts in Density Functional Theory (II) Silvana Botti

Key concepts in Density Functional Theory (II) Silvana Botti Kohn-Sham scheme, band structure and optical spectra European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address:

More information

NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material]

NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material] NiS - An unusual self-doped, nearly compensated antiferromagnetic metal [Supplemental Material] S. K. Panda, I. dasgupta, E. Şaşıoğlu, S. Blügel, and D. D. Sarma Partial DOS, Orbital projected band structure

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » Recap of HK theorems and KS equations» The physical meaning of the XC energy» Solution of a one-particle Schroedinger equation» Pseudo Potentials»

More information

The Plane-Wave Pseudopotential Method

The Plane-Wave Pseudopotential Method Hands-on Workshop on Density Functional Theory and Beyond: Computational Materials Science for Real Materials Trieste, August 6-15, 2013 The Plane-Wave Pseudopotential Method Ralph Gebauer ICTP, Trieste

More information

Supporting information. The Unusual and the Expected in the Si/C Phase Diagram. Guoying Gao, N. W. Ashcroft and Roald Hoffmann.

Supporting information. The Unusual and the Expected in the Si/C Phase Diagram. Guoying Gao, N. W. Ashcroft and Roald Hoffmann. Supporting information The Unusual and the Expected in the Si/C Phase Diagram Guoying Gao, N. W. Ashcroft and Roald Hoffmann Table of Contents Computational Methods...S1 Hypothetical Structures for Si

More information

University of Chinese Academy of Sciences, Beijing , People s Republic of China,

University of Chinese Academy of Sciences, Beijing , People s Republic of China, SiC 2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cell Liu-Jiang Zhou,, Yong-Fan Zhang, Li-Ming Wu *, State Key Laboratory of Structural Chemistry, Fujian Institute of Research

More information

Norm-conserving pseudopotentials and basis sets in electronic structure calculations. Javier Junquera. Universidad de Cantabria

Norm-conserving pseudopotentials and basis sets in electronic structure calculations. Javier Junquera. Universidad de Cantabria Norm-conserving pseudopotentials and basis sets in electronic structure calculations Javier Junquera Universidad de Cantabria Outline Pseudopotentials Why pseudopotential approach is useful Orthogonalized

More information

The Plane-wave Pseudopotential Method

The Plane-wave Pseudopotential Method The Plane-wave Pseudopotential Method k(r) = X G c k,g e i(g+k) r Chris J Pickard Electrons in a Solid Nearly Free Electrons Nearly Free Electrons Nearly Free Electrons Electronic Structures Methods Empirical

More information

arxiv:cond-mat/ v2 [cond-mat.other] 14 Apr 2006

arxiv:cond-mat/ v2 [cond-mat.other] 14 Apr 2006 Beyond time-dependent exact-exchange: the need for long-range correlation arxiv:cond-mat/0604358v2 [cond-mat.other] 14 Apr 2006 Fabien Bruneval 1,, Francesco Sottile 1,2,, Valerio Olevano 1,3, and Lucia

More information

17. Computational Chemistry Research Unit

17. Computational Chemistry Research Unit 17. Computational Chemistry Research Unit 17.1. Unit members Kimihiko Hirao (Unit Leader) Jong-Won Song (Research Scientist) Rahul Kar (Postdoctoral Researcher) Takao Tsuneda (Senior Visiting Scientist)

More information

Beyond time-dependent exact exchange: The need for long-range correlation

Beyond time-dependent exact exchange: The need for long-range correlation THE JOURNAL OF CHEMICAL PHYSICS 124, 144113 2006 Beyond time-dependent exact exchange: The need for long-range correlation Fabien Bruneval a European Theoretical Spectroscopy Facility (ETSF), Laboratoire

More information

Principles of Quantum Mechanics

Principles of Quantum Mechanics Principles of Quantum Mechanics - indistinguishability of particles: bosons & fermions bosons: total wavefunction is symmetric upon interchange of particle coordinates (space,spin) fermions: total wavefuncftion

More information

Random-phase approximation and beyond for materials: concepts, practice, and future perspectives. Xinguo Ren

Random-phase approximation and beyond for materials: concepts, practice, and future perspectives. Xinguo Ren Random-phase approximation and beyond for materials: concepts, practice, and future perspectives Xinguo Ren University of Science and Technology of China, Hefei USTC-FHI workshop on frontiers of Advanced

More information

Recent advances in development of single-point orbital-free kinetic energy functionals

Recent advances in development of single-point orbital-free kinetic energy functionals PacifiChem 2010 p. 1/29 Recent advances in development of single-point orbital-free kinetic energy functionals Valentin V. Karasiev vkarasev@qtp.ufl.edu Quantum Theory Project, Departments of Physics and

More information

MODULE 2: QUANTUM MECHANICS. Principles and Theory

MODULE 2: QUANTUM MECHANICS. Principles and Theory MODULE 2: QUANTUM MECHANICS Principles and Theory You are here http://www.lbl.gov/cs/html/exascale4energy/nuclear.html 2 Short Review of Quantum Mechanics Why do we need quantum mechanics? Bonding and

More information

Electronic Structure: Density Functional Theory

Electronic Structure: Density Functional Theory Electronic Structure: Density Functional Theory S. Kurth, M. A. L. Marques, and E. K. U. Gross Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany (Dated:

More information

Self-consistent GW calculations for semiconductors and insulators

Self-consistent GW calculations for semiconductors and insulators PHYSICAL REVIEW B 75, 235102 2007 Self-consistent GW calculations for semiconductors and insulators M. Shishkin* and G. Kresse Institut für Materialphysik and Centre for Computational Materials Science,

More information

Table S2. Pseudopotentials PBE 5.2 applied in the calculations using VASP

Table S2. Pseudopotentials PBE 5.2 applied in the calculations using VASP Supporting Information for Understanding the Adsorption of CuPc and ZnPc on Noble Metal Surfaces by Combining Quantum-Mechanical Modelling and Photoelectron Spectroscopy 1. Used vdw Coefficients PBE-vdW

More information

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation Julien Toulouse 1 I. Gerber 2, G. Jansen 3, A. Savin 1, W. Zhu 1, J. Ángyán 4 1 Laboratoire de Chimie Théorique,

More information

Projector augmented wave Implementation

Projector augmented wave Implementation Projector augmented wave Implementation Peter. E. Blöchl Institute for Theoretical Physics Clausthal University of Technology, Germany http://www.pt.tu-clausthal.de/atp/ 1 = Projector augmented wave +

More information

and strong interlayer quantum confinement

and strong interlayer quantum confinement Supporting Information GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement Yu Jing 1,3, Yandong Ma 1, Yafei Li 2, *, Thomas Heine 1,3 * 1 Wilhelm-Ostwald-Institute

More information

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients

Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients 1/10 Assessment of range-separated time-dependent density-functional theory for calculating C 6 dispersion coefficients Julien Toulouse 1,2, Elisa Rebolini 1, Tim Gould 3, John F. Dobson 3, Prasenjit Seal

More information

Combining GW calculations with exact-exchange density-functional theory: an analysis of valenceband photoemission for compound semiconductors

Combining GW calculations with exact-exchange density-functional theory: an analysis of valenceband photoemission for compound semiconductors Combining GW calculations with exact-exchange density-functional theory: an analysis of valenceband photoemission for compound semiconductors To cite this article: Patrick Rinke et al 2005 New J. Phys.

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

Optical Properties of Solid from DFT

Optical Properties of Solid from DFT Optical Properties of Solid from DFT 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cmt15

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Density functional theory study of MnO by a hybrid functional approach

Density functional theory study of MnO by a hybrid functional approach Density functional theory study of MnO by a hybrid functional approach C. Franchini,* V. Bayer, and R. Podloucky Institut für Physikalische Chemie, Universität Wien and Center for Computational Materials

More information

Exchange-Correlation Functional

Exchange-Correlation Functional Exchange-Correlation Functional Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes Ryosuke Senga 1, Hannu-Pekka Komsa 2, Zheng Liu 1, Kaori Hirose-Takai 1, Arkady V. Krasheninnikov 2

More information

Additional information on J. Chem. Phys. Florian Göltl and Jürgen Hafner

Additional information on J. Chem. Phys. Florian Göltl and Jürgen Hafner Structure and properties of metal-exchanged zeolites studied using gradient-corrected and hybrid functionals. II. Electronic structure and photoluminescence spectra Florian Göltl and Jürgen Hafner Citation:

More information

GW Many-Body Theory for Electronic Structure. Rex Godby

GW Many-Body Theory for Electronic Structure. Rex Godby GW Many-Body Theory for Electronic Structure Rex Godby Outline Lecture 1 (Monday) Introduction to MBPT The GW approximation (non-sc and SC) Implementation of GW Spectral properties Lecture 2 (Tuesday)

More information

Re-evaluating CeO 2 Expansion Upon Reduction: Non-counterpoised Forces, Not Ionic Radius Effects, are the Cause

Re-evaluating CeO 2 Expansion Upon Reduction: Non-counterpoised Forces, Not Ionic Radius Effects, are the Cause Re-evaluating CeO 2 Expansion Upon Reduction: Non-counterpoised Forces, Not Ionic Radius Effects, are the Cause Christopher L. Muhich, a* a ETH Zurich, Department of Mechanical and Process Engineering,

More information

Supporting information for: Electronic chemical. potentials of porous metal-organic frameworks

Supporting information for: Electronic chemical. potentials of porous metal-organic frameworks Supporting information for: Electronic chemical potentials of porous metal-organic frameworks Keith T. Butler, Christopher H. Hendon, and Aron Walsh Department of Chemistry, University of Bath, Claverton

More information

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å H atom 4 E a me =, n=,,3,... 8ε 0 0 π me e e 0 hn ε h = = 0.59Å E = me (4 πε ) 4 e 0 n n in a.u. atomic units E = r = Z n nao Z = e = me = 4πε = 0 energy: a.u. = 7. ev distance a.u. = 0.59 Å General results

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

DFT EXERCISES. FELIPE CERVANTES SODI January 2006 DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a

More information

Basis sets for SIESTA. Emilio Artacho. Nanogune, Ikerbasque & DIPC, San Sebastian, Spain Cavendish Laboratory, University of Cambridge

Basis sets for SIESTA. Emilio Artacho. Nanogune, Ikerbasque & DIPC, San Sebastian, Spain Cavendish Laboratory, University of Cambridge Basis sets for SIESTA Emilio Artacho Nanogune, Ikerbasque & DIPC, San Sebastian, Spain Cavendish Laboratory, University of Cambridge Solving: Basis set Expand in terms of a finite set of basis functions

More information

Role of van der Waals Interactions in Physics, Chemistry, and Biology

Role of van der Waals Interactions in Physics, Chemistry, and Biology Role of van der Waals Interactions in Physics, Chemistry, and Biology How can we describe vdw forces in materials accurately? Failure of DFT Approximations for (Long-Range) Van der Waals Interactions 1

More information

Atomic orbitals of finite range as basis sets. Javier Junquera

Atomic orbitals of finite range as basis sets. Javier Junquera Atomic orbitals of finite range as basis sets Javier Junquera Most important reference followed in this lecture in previous chapters: the many body problem reduced to a problem of independent particles

More information

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics

Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics Optimized Effective Potential method for non-collinear Spin-DFT: view to spindynamics S. Sharma and E. K. U. Gross nstitut für Theoretische Physik, FU Berlin Fritz-Haber nstitut, Berlin 21 Sept 2006 Synopsis

More information