Lecture 26: Putting it all together #5... Galerkin Finite Element Methods for ODE BVPs

Size: px
Start display at page:

Download "Lecture 26: Putting it all together #5... Galerkin Finite Element Methods for ODE BVPs"

Transcription

1 Lecture 26: Putting it all together #5... Galerkin Finite Element Methods for ODE BVPs Outline 1) : Review 2) A specific Example: Piecewise linear elements 3) Computational Issues and Algorithms A) Calculation of integrals: Basis functions vs Element View B) Element Matrices C) Global Assembly 4) Matlab Demo 5) The End (of the beginning) Example problem: Find best fit piecewise linear function ũ(x), that satisfies -u''+u = f(x) (u(0)=α, u(l)=β) in a least-squares sense u i-1 u i u i+1-1 x

2 Basis Function view: linear combination of "hat functions" u i-1 u i u i x Element view: union of piecewise linear elements (with local element basis functions) u i-1 u i u i Element i h i

3 Galerkin FEM as a least squares problem: The Continuous problem: find u(x) that satisfies The Discrete problem: find ũ(x) such that the residual r(x) is orthogonal to the basis functions Evaluating the integrals: 3 critical integrals to evaluate 1) Components of the stiffness matrix K ij 2) Components of the Mass matrix M ij 3) Components of the force vector f i

4 Putting it together, basis function view vs "element view": the Mass matrix 1 0 for basis function ϕ i want: -1 x i+1 Putting it together, basis function view vs "element view": the local element Mass matrix M e : consider the contributions from one element i N 1 Element basis functions: N 1, N 2 N 2-1 t 1 Need integrals for element mass matrix

5 Putting it together, basis function view vs "element view": the local element Mass matrix M e : consider the contributions from one element i N 1 Element Mass Matrix: N 2-1 t 1 Putting it together, basis function view vs "element view": Element Stiffness Matrix: N 1 N 2 N' 2 N' 1

6 Putting it together, basis function view vs "element view": Element Force vector: N 1 N 2-1 t 1

7 : Matlab function [Ke,Me] = getelementmatrix(xcoords) GETELEMENTMATRIX - returns element matrices for an individual element [Ke,Me] = getelementmatrix(xcoords) xcoords:- coordinates of 1D element [ xmin xmax ] Ke: - element stiffness matrix (assuming linear elements) Me: - element mass matrix (assuming linear hat elements) N1 (1-t)/2; linear hat function N2 (1+t)/2; N1p -.5*ones(size); derivative dn1/dt (not really a function) N2p quadrature points and weights (2-point Gauss-legendre) tq = [ -1 1 ]'/sqrt(3); wq = [ 1 1 ]; h = xcoords(2)-xcoords(1); element width Ke = zeros(2); Me = Ke; stiffness matrix Ke(1,1) = wq*(n1p(tq).*n1p(tq)); Ke(1,2) = wq*(n1p(tq).*n2p(tq)); Ke(2,1) = Ke(1,2); Ke(2,2) = wq*(n2p(tq).*n2p(tq)); Ke = Ke*2/h; Mass matrix Me(1,1) = wq*(n1(tq).*n1(tq)); Me(1,2) = wq*(n1(tq).*n2(tq)); Me(2,1) = Me(1,2); Me(2,2) = wq*(n2(tq).*n2(tq)); Me = Me*h/2; : Matlab function [fe] = getelementforcevector(func,xcoords) getelementforcevector - returns element force vector for an individual element [fe] = getelementforcevector(func,xcoords) func:-function handle to RHS f(x) xcoords:- coordinates of 1D element [ xmin xmax ] fe: - element force vector h = xcoords(2)-xcoords(1); element width N1 (1-t)/2; linear hat function N2 (1+t)/2; x xcoords(1) + h*(t + 1)/2; affine transformation quadrature points and weights (2-point Gauss-legendre) tq = [ -1 1 ]'/sqrt(3); wq = [ 1 1 ]; h = xcoords(2)-xcoords(1); element width Force vector matrix fe(1) = wq*(func(x(tq)).*n1(tq)); fe(2) = wq*(func(x(tq)).*n2(tq)); fe = fe'*h/2;

8 : Global Matrix assembly x i+1 : Matlab function [A,f] = assembleglobalproblem(xcoords,func,alpha,beta) assembleglobalproblem - loops over elements and assembles global matrix and right-hand side and sets Dirichlet Boundary conditions [A,f] = assembleglobalproblem(func,xcoords,alpha,beta) xcoords:- coordinates of all elements func:-function handle to RHS f(x) alpha: - dirichlet condition at xcoords(1); beta:- dirichlet condition at xcoords(end); A: Global stiffness+mass matrix K+M f: Global force vector N = length(xcoords); numbier of points nels = N - 1; number of elements A = spalloc(n,n,3*n); f = zeros(n,1); for k = 1:nels loop over elements and assemble global matrix kel = k:k+1; index of element k [Ke,Me] = getelementmatrix(xcoords(kel)); fe = getelementforcevector(func,xcoords(kel)); A(kEl,kEl) = A(kEl,kEl) + Ke+Me; f(kel) = f(kel)+fe; end fix dirichlet boundary conditions A(1,1:2)=[ 1 0 ]; A(end,end-1:end)=[ 0 1 ]; f([ 1 end ]) = [ alpha ; beta ]';

9 : The future Linear hats on a line is the simplest problem... but Finite Elements is a very rich subject... Possible extensions: 1) higher order elements (quadratic, cubic, "spectral", mixed) 2) Higher spatial dimensions: meshing in 2 (and 3-D) Finite element calculation of viscous fluid flow around a "dolfin" : The future Extensions: 3) Space-time PDE's 4) Multi-physics/Multi-Scale models 5) Peta-scale high-performance computation 6) Advanced software design Point: If you're interested, computational science and modeling can be a very rewarding mix of Mathematics, Computer Science and domain specific science and engineering. We've just scratched the surface in this course...but understanding these building blocks is where you start...the fun is just beginning...

Lecture 24: Starting to put it all together #3... More 2-Point Boundary value problems

Lecture 24: Starting to put it all together #3... More 2-Point Boundary value problems Lecture 24: Starting to put it all together #3... More 2-Point Boundary value problems Outline 1) Our basic example again: -u'' + u = f(x); u(0)=α, u(l)=β 2) Solution of 2-point Boundary value problems

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

(f P Ω hf) vdx = 0 for all v V h, if and only if Ω (f P hf) φ i dx = 0, for i = 0, 1,..., n, where {φ i } V h is set of hat functions.

(f P Ω hf) vdx = 0 for all v V h, if and only if Ω (f P hf) φ i dx = 0, for i = 0, 1,..., n, where {φ i } V h is set of hat functions. Answer ALL FOUR Questions Question 1 Let I = [, 2] and f(x) = (x 1) 3 for x I. (a) Let V h be the continous space of linear piecewise function P 1 (I) on I. Write a MATLAB code to compute the L 2 -projection

More information

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V Part I: Introduction to Finite Element Methods Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Necel Winter 4/5 The Model Problem FEM Main Ingredients Wea Forms and Wea

More information

Lecture 3: Function Spaces I Finite Elements Modeling. Bruno Lévy

Lecture 3: Function Spaces I Finite Elements Modeling. Bruno Lévy Lecture 3: Function Spaces I Finite Elements Modeling Bruno Lévy Overview 1. Motivations 2. Function Spaces 3. Discretizing a PDE 4. Example: Discretizing the Laplacian 5. Eigenfunctions Spectral Mesh

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 3: Finite Elements in 2-D Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods 1 / 18 Outline 1 Boundary

More information

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem:

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem: Mathematics Chalmers & GU TMA37/MMG800: Partial Differential Equations, 011 08 4; kl 8.30-13.30. Telephone: Ida Säfström: 0703-088304 Calculators, formula notes and other subject related material are not

More information

Implementation of the dg method

Implementation of the dg method Implementation of the dg method Matteo Cicuttin CERMICS - École Nationale des Ponts et Chaussées Marne-la-Vallée March 6, 2017 Outline Model problem, fix notation Representing polynomials Computing integrals

More information

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods Høst 2014

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods Høst 2014 Norwegian University of Science and Technology Department of Mathematical Sciences TMA422 Numerical Solution of Partial Differential Equations Using Element Methods Høst 214 Exercise set 2 1 Consider the

More information

Weighted Residual Methods

Weighted Residual Methods Weighted Residual Methods Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy of Sciences

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

Time-dependent variational forms

Time-dependent variational forms Time-dependent variational forms Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Oct 30, 2015 PRELIMINARY VERSION

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Outline. 1 Boundary Value Problems. 2 Numerical Methods for BVPs. Boundary Value Problems Numerical Methods for BVPs

Outline. 1 Boundary Value Problems. 2 Numerical Methods for BVPs. Boundary Value Problems Numerical Methods for BVPs Boundary Value Problems Numerical Methods for BVPs Outline Boundary Value Problems 2 Numerical Methods for BVPs Michael T. Heath Scientific Computing 2 / 45 Boundary Value Problems Numerical Methods for

More information

Question 9: PDEs Given the function f(x, y), consider the problem: = f(x, y) 2 y2 for 0 < x < 1 and 0 < x < 1. x 2 u. u(x, 0) = u(x, 1) = 0 for 0 x 1

Question 9: PDEs Given the function f(x, y), consider the problem: = f(x, y) 2 y2 for 0 < x < 1 and 0 < x < 1. x 2 u. u(x, 0) = u(x, 1) = 0 for 0 x 1 Question 9: PDEs Given the function f(x, y), consider the problem: 2 u x 2 u = f(x, y) 2 y2 for 0 < x < 1 and 0 < x < 1 u(x, 0) = u(x, 1) = 0 for 0 x 1 u(0, y) = u(1, y) = 0 for 0 y 1. a. Discuss how you

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

Computational Methods for Engineering Applications II. Homework Problem Sheet 4

Computational Methods for Engineering Applications II. Homework Problem Sheet 4 S. Mishra K. O. Lye L. Scarabosio Autumn Term 2015 Computational Methods for Engineering Applications II ETH Zürich D-MATH Homework Problem Sheet 4 This assignment sheet contains some tasks marked as Core

More information

Finite Elements for Nonlinear Problems

Finite Elements for Nonlinear Problems Finite Elements for Nonlinear Problems Computer Lab 2 In this computer lab we apply finite element method to nonlinear model problems and study two of the most common techniques for solving the resulting

More information

Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems

Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems Stan Tomov Innovative Computing Laboratory Computer Science Department The University of Tennessee Wednesday April 4,

More information

Motivation: Sparse matrices and numerical PDE's

Motivation: Sparse matrices and numerical PDE's Lecture 20: Numerical Linear Algebra #4 Iterative methods and Eigenproblems Outline 1) Motivation: beyond LU for Ax=b A little PDE's and sparse matrices A) Temperature Equation B) Poisson Equation 2) Splitting

More information

TMA4220: Programming project - part 1

TMA4220: Programming project - part 1 TMA4220: Programming project - part 1 TMA4220 - Numerical solution of partial differential equations using the finite element method The programming project will be split into two parts. This is the first

More information

Isogeometric Analysis:

Isogeometric Analysis: Isogeometric Analysis: some approximation estimates for NURBS L. Beirao da Veiga, A. Buffa, Judith Rivas, G. Sangalli Euskadi-Kyushu 2011 Workshop on Applied Mathematics BCAM, March t0th, 2011 Outline

More information

LibMesh Experience and Usage

LibMesh Experience and Usage LibMesh Experience and Usage John W. Peterson peterson@cfdlab.ae.utexas.edu Univ. of Texas at Austin January 12, 2007 1 Introduction 2 Weighted Residuals 3 Poisson Equation 4 Other Examples 5 Essential

More information

An Introductory Course on Modelling of Multiphysics Problems

An Introductory Course on Modelling of Multiphysics Problems An Introductory Course on Modelling of Multiphysics Problems Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

PDEs, part 1: Introduction and elliptic PDEs

PDEs, part 1: Introduction and elliptic PDEs PDEs, part 1: Introduction and elliptic PDEs Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Partial di erential equations The solution depends on several variables,

More information

Introduction to Finite Element Modelling in Geosciences

Introduction to Finite Element Modelling in Geosciences Introduction to Finite Element Modelling in Geosciences Dave A. May (dave.may@erdw.ethz.ch) Marcel Frehner (marcel.frehner@erdw.ethz.ch) Mike Afanasiev (ETH Zürich) Patrick Sanan (USI Lugano) 651-4144-L

More information

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically Finite difference and finite element methods Lecture 1 Scope of the course Analysis and implementation of numerical methods for pricing options. Models: Black-Scholes, stochastic volatility, exponential

More information

Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations Numerical Methods for Partial Differential Equations Eric de Sturler University of Illinois at Urbana-Champaign Read section 8. to see where equations of type (au x ) x = f show up and their (exact) solution

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

Weighted Residual Methods

Weighted Residual Methods Weighted Residual Methods Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Table of Contents Problem definition. oundary-value Problem..................

More information

Algorithms for Scientific Computing

Algorithms for Scientific Computing Algorithms for Scientific Computing Finite Element Methods Michael Bader Technical University of Munich Summer 2016 Part I Looking Back: Discrete Models for Heat Transfer and the Poisson Equation Modelling

More information

Finite-Elements Method 2

Finite-Elements Method 2 Finite-Elements Method 2 January 29, 2014 2 From Applied Numerical Analysis Gerald-Wheatley (2004), Chapter 9. Finite-Elements Method 3 Introduction Finite-element methods (FEM) are based on some mathematical

More information

Method of Finite Elements I

Method of Finite Elements I Method of Finite Elements I PhD Candidate - Charilaos Mylonas HIL H33.1 and Boundary Conditions, 26 March, 2018 Institute of Structural Engineering Method of Finite Elements I 1 Outline 1 2 Penalty method

More information

Numerical Modelling in Geosciences

Numerical Modelling in Geosciences Numerical Modelling in Geosciences Dave A. May (ETHZ) dave.may@erdw.ethz.ch Laetitia Le Pourhiet (UPMC) Jonas Ruh (UPMC) Liang Zheng (ETHZ) Zooming In between Plates (FP7 64713) ZIP WP5.1 Short-course

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017 ACM/CMS 17 Linear Analysis & Applications Fall 217 Assignment 2: PDEs and Finite Element Methods Due: 7th November 217 For this assignment the following MATLAB code will be required: Introduction http://wwwmdunloporg/cms17/assignment2zip

More information

Finite Element Method for Ordinary Differential Equations

Finite Element Method for Ordinary Differential Equations 52 Chapter 4 Finite Element Method for Ordinary Differential Equations In this chapter we consider some simple examples of the finite element method for the approximate solution of ordinary differential

More information

WRT in 2D: Poisson Example

WRT in 2D: Poisson Example WRT in 2D: Poisson Example Consider 2 u f on [, L x [, L y with u. WRT: For all v X N, find u X N a(v, u) such that v u dv v f dv. Follows from strong form plus integration by parts: ( ) 2 u v + 2 u dx

More information

LibMesh Experience and Usage

LibMesh Experience and Usage LibMesh Experience and Usage John W. Peterson peterson@cfdlab.ae.utexas.edu and Roy H. Stogner roystgnr@cfdlab.ae.utexas.edu Univ. of Texas at Austin September 9, 2008 1 Introduction 2 Weighted Residuals

More information

Numerical Analysis Comprehensive Exam Questions

Numerical Analysis Comprehensive Exam Questions Numerical Analysis Comprehensive Exam Questions 1. Let f(x) = (x α) m g(x) where m is an integer and g(x) C (R), g(α). Write down the Newton s method for finding the root α of f(x), and study the order

More information

Introduction into Implementation of Optimization problems with PDEs: Sheet 3

Introduction into Implementation of Optimization problems with PDEs: Sheet 3 Technische Universität München Center for Mathematical Sciences, M17 Lucas Bonifacius, Korbinian Singhammer www-m17.ma.tum.de/lehrstuhl/lehresose16labcourseoptpde Summer 216 Introduction into Implementation

More information

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Bernhard Hientzsch Courant Institute of Mathematical Sciences, New York University, 51 Mercer Street, New

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

Numerical modeling of rock deformation: 06 FEM Introduction

Numerical modeling of rock deformation: 06 FEM Introduction Numerical modeling of rock deformation: 6 FEM Introduction Stefan Schmalholz schmalholz@erdw.ethz.ch NO E 6 AS 9, Thursday -, NO D Introduction We have learned that geodynamic processes can be described

More information

From Completing the Squares and Orthogonal Projection to Finite Element Methods

From Completing the Squares and Orthogonal Projection to Finite Element Methods From Completing the Squares and Orthogonal Projection to Finite Element Methods Mo MU Background In scientific computing, it is important to start with an appropriate model in order to design effective

More information

LEAST-SQUARES FINITE ELEMENT MODELS

LEAST-SQUARES FINITE ELEMENT MODELS LEAST-SQUARES FINITE ELEMENT MODELS General idea of the least-squares formulation applied to an abstract boundary-value problem Works of our group Application to Poisson s equation Application to flows

More information

Introduction. Finite and Spectral Element Methods Using MATLAB. Second Edition. C. Pozrikidis. University of Massachusetts Amherst, USA

Introduction. Finite and Spectral Element Methods Using MATLAB. Second Edition. C. Pozrikidis. University of Massachusetts Amherst, USA Introduction to Finite and Spectral Element Methods Using MATLAB Second Edition C. Pozrikidis University of Massachusetts Amherst, USA (g) CRC Press Taylor & Francis Group Boca Raton London New York CRC

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

Introduction to PDEs: Assignment 9: Finite elements in 1D

Introduction to PDEs: Assignment 9: Finite elements in 1D Institute of Scientific Computing Technical University Braunschweig Dr. Elmar Zander Dr. Noemi Friedman Winter Semester 213/14 Assignment 9 Due date: 6.2.214 Introduction to PDEs: Assignment 9: Finite

More information

Fast Structured Spectral Methods

Fast Structured Spectral Methods Spectral methods HSS structures Fast algorithms Conclusion Fast Structured Spectral Methods Yingwei Wang Department of Mathematics, Purdue University Joint work with Prof Jie Shen and Prof Jianlin Xia

More information

Chapter 1: The Finite Element Method

Chapter 1: The Finite Element Method Chapter 1: The Finite Element Method Michael Hanke Read: Strang, p 428 436 A Model Problem Mathematical Models, Analysis and Simulation, Part Applications: u = fx), < x < 1 u) = u1) = D) axial deformation

More information

Fixed point iteration and root finding

Fixed point iteration and root finding Fixed point iteration and root finding The sign function is defined as x > 0 sign(x) = 0 x = 0 x < 0. It can be evaluated via an iteration which is useful for some problems. One such iteration is given

More information

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM Finite Elements January 15, 2018 Why Can solve PDEs on complicated domains. Have flexibility to increase order of accuracy and match the numerics to the physics. has an elegant mathematical formulation

More information

The Finite Element Method

The Finite Element Method Chapter 1 The Finite Element Method 1.1 Introduction This document provides a brief introduction to the finite element method and illustrates how the method is implemented in oomph-lib. The first few sections

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Variational Problems of the Dirichlet BVP of the Poisson Equation 1 For the homogeneous

More information

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations

Sparse Linear Systems. Iterative Methods for Sparse Linear Systems. Motivation for Studying Sparse Linear Systems. Partial Differential Equations Sparse Linear Systems Iterative Methods for Sparse Linear Systems Matrix Computations and Applications, Lecture C11 Fredrik Bengzon, Robert Söderlund We consider the problem of solving the linear system

More information

Mathematical methods for engineering. The finite element method

Mathematical methods for engineering. The finite element method . The finite element method University of Trento Trento Winter School on Numerical Methods February 20 th - March 3 rd, 2017 FEM: Remarks on programming Model problem: with a o 0. u + a 0 u = f u = 0 u

More information

Finite Elements with Symbolic Computations and Code Generation

Finite Elements with Symbolic Computations and Code Generation Finite Elements with Symbolic Computations and Code Generation August 15, 2007 Outline We will focus on creating/assembling matrices based on FEM Manual implementation of the integrand/variational form

More information

Simple Examples on Rectangular Domains

Simple Examples on Rectangular Domains 84 Chapter 5 Simple Examples on Rectangular Domains In this chapter we consider simple elliptic boundary value problems in rectangular domains in R 2 or R 3 ; our prototype example is the Poisson equation

More information

Finite Difference and Finite Element Methods

Finite Difference and Finite Element Methods Finite Difference and Finite Element Methods Georgy Gimel farb COMPSCI 369 Computational Science 1 / 39 1 Finite Differences Difference Equations 3 Finite Difference Methods: Euler FDMs 4 Finite Element

More information

The Finite Element Method for the Wave Equation

The Finite Element Method for the Wave Equation The Finite Element Method for the Wave Equation 1 The Wave Equation We consider the scalar wave equation modelling acoustic wave propagation in a bounded domain 3, with boundary Γ : 1 2 u c(x) 2 u 0, in

More information

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere Michael Levy University of Colorado at Boulder Department of Applied Mathematics August 10, 2007 Outline 1 Background

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

GeoPDEs. An Octave/Matlab software for research on IGA. R. Vázquez. IMATI Enrico Magenes, Pavia Consiglio Nazionale della Ricerca

GeoPDEs. An Octave/Matlab software for research on IGA. R. Vázquez. IMATI Enrico Magenes, Pavia Consiglio Nazionale della Ricerca GeoPDEs An Octave/Matlab software for research on IGA R. Vázquez IMATI Enrico Magenes, Pavia Consiglio Nazionale della Ricerca Joint work with C. de Falco and A. Reali Supported by the ERC Starting Grant:

More information

Interpolation. 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter

Interpolation. 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter Key References: Interpolation 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter 6. 2. Press, W. et. al. Numerical Recipes in C, Cambridge: Cambridge University Press. Chapter 3

More information

Chapter 3 Variational Formulation & the Galerkin Method

Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 1 Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 2 Today s Lecture Contents: Introduction Differential formulation

More information

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes).

LECTURE 16 GAUSS QUADRATURE In general for Newton-Cotes (equispaced interpolation points/ data points/ integration points/ nodes). CE 025 - Lecture 6 LECTURE 6 GAUSS QUADRATURE In general for ewton-cotes (equispaced interpolation points/ data points/ integration points/ nodes). x E x S fx dx hw' o f o + w' f + + w' f + E 84 f 0 f

More information

The Spectral-Element Method: Introduction

The Spectral-Element Method: Introduction The Spectral-Element Method: Introduction Heiner Igel Department of Earth and Environmental Sciences Ludwig-Maximilians-University Munich Computational Seismology 1 / 59 Outline 1 Introduction 2 Lagrange

More information

Computation Fluid Dynamics

Computation Fluid Dynamics Computation Fluid Dynamics CFD I Jitesh Gajjar Maths Dept Manchester University Computation Fluid Dynamics p.1/189 Garbage In, Garbage Out We will begin with a discussion of errors. Useful to understand

More information

Higher-Order Compact Finite Element Method

Higher-Order Compact Finite Element Method Higher-Order Compact Finite Element Method Major Qualifying Project Advisor: Professor Marcus Sarkis Amorn Chokchaisiripakdee Worcester Polytechnic Institute Abstract The Finite Element Method (FEM) is

More information

FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES

FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES FINITE VOLUME METHOD: BASIC PRINCIPLES AND EXAMPLES SHRUTI JAIN B.Tech III Year, Electronics and Communication IIT Roorkee Tutors: Professor G. Biswas Professor S. Chakraborty ACKNOWLEDGMENTS I would like

More information

Lecture 6, Sci. Comp. for DPhil Students

Lecture 6, Sci. Comp. for DPhil Students Lecture 6, Sci. Comp. for DPhil Students Nick Trefethen, Thursday 1.11.18 Today II.3 QR factorization II.4 Computation of the QR factorization II.5 Linear least-squares Handouts Quiz 4 Householder s 4-page

More information

Efficient hp-finite elements

Efficient hp-finite elements Efficient hp-finite elements Ammon Washburn July 31, 2015 Abstract Ways to make an hp-finite element method efficient are presented. Standard FEMs and hp-fems with their various strengths and weaknesses

More information

Continuous Optimization

Continuous Optimization Continuous Optimization Sanzheng Qiao Department of Computing and Software McMaster University March, 2009 Outline 1 Introduction 2 Golden Section Search 3 Multivariate Functions Steepest Descent Method

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

Hierarchical Parallel Solution of Stochastic Systems

Hierarchical Parallel Solution of Stochastic Systems Hierarchical Parallel Solution of Stochastic Systems Second M.I.T. Conference on Computational Fluid and Solid Mechanics Contents: Simple Model of Stochastic Flow Stochastic Galerkin Scheme Resulting Equations

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

Spectral Representation of Random Processes

Spectral Representation of Random Processes Spectral Representation of Random Processes Example: Represent u(t,x,q) by! u K (t, x, Q) = u k (t, x) k(q) where k(q) are orthogonal polynomials. Single Random Variable:! Let k (Q) be orthogonal with

More information

Spectral methods for fuzzy structural dynamics: modal vs direct approach

Spectral methods for fuzzy structural dynamics: modal vs direct approach Spectral methods for fuzzy structural dynamics: modal vs direct approach S Adhikari Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Wales, UK IUTAM Symposium

More information

Alex Townsend Cornell University

Alex Townsend Cornell University Continuous analogues of Krylov methods for differential operators Alex Townsend Cornell University townsend@cornell.edu Joint work with: Marc Aurèle Gilles Based on Continuous analogues of Krylov methods

More information

Fractional Spectral and Spectral Element Methods

Fractional Spectral and Spectral Element Methods Fractional Calculus, Probability and Non-local Operators: Applications and Recent Developments Nov. 6th - 8th 2013, BCAM, Bilbao, Spain Fractional Spectral and Spectral Element Methods (Based on PhD thesis

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

FEM Convergence for PDEs with Point Sources in 2-D and 3-D

FEM Convergence for PDEs with Point Sources in 2-D and 3-D FEM Convergence for PDEs with Point Sources in 2-D and 3-D Kourosh M. Kalayeh 1, Jonathan S. Graf 2 Matthias K. Gobbert 2 1 Department of Mechanical Engineering 2 Department of Mathematics and Statistics

More information

Partial Differential Equations and the Finite Element Method

Partial Differential Equations and the Finite Element Method Partial Differential Equations and the Finite Element Method Pavel Solin The University of Texas at El Paso Academy of Sciences ofthe Czech Republic iwiley- INTERSCIENCE A JOHN WILEY & SONS, INC, PUBLICATION

More information

Solution of Matrix Eigenvalue Problem

Solution of Matrix Eigenvalue Problem Outlines October 12, 2004 Outlines Part I: Review of Previous Lecture Part II: Review of Previous Lecture Outlines Part I: Review of Previous Lecture Part II: Standard Matrix Eigenvalue Problem Other Forms

More information

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Introduction Till now we dealt only with finite elements having straight edges.

More information

APPLICATION OF VARIATIONAL METHODS AND GALERKIN METHOD IN SOLVING ENGINEERING PROBLEMS REPRESENTED BY ORDINARY DIFFERENTIAL EQUATIONS

APPLICATION OF VARIATIONAL METHODS AND GALERKIN METHOD IN SOLVING ENGINEERING PROBLEMS REPRESENTED BY ORDINARY DIFFERENTIAL EQUATIONS APPLICATION OF VARIATIONAL METHODS AND GALERKIN METHOD IN SOLVING ENGINEERING PROBLEMS REPRESENTED BY ORDINARY DIFFERENTIAL EQUATIONS 1 B.V. SIVA PRASAD REDDY, 2 K. RAJESH BABU 1,2 Department of Mechanical

More information

NUMERICAL METHODS. lor CHEMICAL ENGINEERS. Using Excel', VBA, and MATLAB* VICTOR J. LAW. CRC Press. Taylor & Francis Group

NUMERICAL METHODS. lor CHEMICAL ENGINEERS. Using Excel', VBA, and MATLAB* VICTOR J. LAW. CRC Press. Taylor & Francis Group NUMERICAL METHODS lor CHEMICAL ENGINEERS Using Excel', VBA, and MATLAB* VICTOR J. LAW CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup,

More information

FINITE VOLUME METHODS FOR ONE-DIMENSIONAL SCALAR CONSERVATION LAWS

FINITE VOLUME METHODS FOR ONE-DIMENSIONAL SCALAR CONSERVATION LAWS 1.73 - COMPUTATIONAL METHODS FOR FLOW IN POROUS MEDIA Spring 009 FINITE VOLUME METHODS FOR ONE-DIMENSIONAL SCALAR CONSERVATION LAWS Luis Cueto-Felgueroso 1.1. Problem statement Consider the 1D scalar conservation

More information

One-dimensional and nonlinear problems

One-dimensional and nonlinear problems Solving PDE s with FEniCS One-dimensional and nonlinear problems L. Ridgway Scott The Institute for Biophysical Dynamics, The Computation Institute, and the Departments of Computer Science and Mathematics,

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

A short introduction to FreeFem++

A short introduction to FreeFem++ A short introduction to FreeFem++ M. Ersoy Basque Center for Applied Mathematics 12 November 2010 Outline of the talk Outline of the talk 1 Introduction 2 HOW TO solve steady pdes : e.g. Laplace equation

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

INVESTIGATION OF STABILITY AND ACCURACY OF HIGH ORDER GENERALIZED FINITE ELEMENT METHODS HAOYANG LI THESIS

INVESTIGATION OF STABILITY AND ACCURACY OF HIGH ORDER GENERALIZED FINITE ELEMENT METHODS HAOYANG LI THESIS c 2014 Haoyang Li INVESTIGATION OF STABILITY AND ACCURACY OF HIGH ORDER GENERALIZED FINITE ELEMENT METHODS BY HAOYANG LI THESIS Submitted in partial fulfillment of the requirements for the degree of Master

More information

CE-570 Advanced Structural Mechanics - Arun Prakash

CE-570 Advanced Structural Mechanics - Arun Prakash Ch1-Intro Page 1 CE-570 Advanced Structural Mechanics - Arun Prakash The BIG Picture What is Mechanics? Mechanics is study of how things work: how anything works, how the world works! People ask: "Do you

More information

An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence

An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence John Pearson MSc Special Topic Abstract Numerical approximations of

More information

Instructions for Matlab Routines

Instructions for Matlab Routines Instructions for Matlab Routines August, 2011 2 A. Introduction This note is devoted to some instructions to the Matlab routines for the fundamental spectral algorithms presented in the book: Jie Shen,

More information

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes Root finding: 1 a The points {x n+1, }, {x n, f n }, {x n 1, f n 1 } should be co-linear Say they lie on the line x + y = This gives the relations x n+1 + = x n +f n = x n 1 +f n 1 = Eliminating α and

More information