Multi-Dimensional Online Tracking

Size: px
Start display at page:

Download "Multi-Dimensional Online Tracking"

Transcription

1 Multi-Dimensional Online Tracking Ke Yi and Qin Zhang Hong Kong University of Science & Technology SODA 2009 January 4-6,

2 A natural problem Bob: tracker f(t) g(t) Alice: observer (t, g(t)) t 2-1

3 A natural problem Bob: tracker f(t) g(t) Alice: observer t (t, g(t)) message format at time t now : (t now, g(t now )). communicate to guarantee that at t now f(t now ) g(t last ) t last : the last time Bob got informed. 2-2

4 A natural problem Bob: tracker f(t) g(t) Alice: observer Our Goal: minimize communication, in terms of competitive ratios. For t (t, g(t)) message format at time t now : (t now, g(t now )). communicate to guarantee that at t now f(t now ) g(t last ) t last : the last time Bob got informed. 2-3

5 A natural problem Bob: tracker f(t) g(t) Alice: observer Our Goal: minimize communication, in terms of competitive ratios. For t 1. f : Z + Z 2. f : Z + Z d 3. with prediction (t, g(t)) message format at time t now : (t now, g(t now )). communicate to guarantee that at t now f(t now ) g(t last ) t last : the last time Bob got informed. 2-4

6 Motivation Wireless sensors Monitoring the temperature 1D case 3-1

7 Motivation Wireless sensors Transmission of Data is the biggest source of battery drain! Monitoring the temperature 1D case 3-2

8 Motivation Wireless sensors Location-based services Transmission of Data is the biggest source of battery drain! Monitoring the temperature 1D case Keep track of the user s location 2D case 3-3

9 Motivation Wireless sensors Location-based services Transmission of Data is the biggest source of battery drain! Monitoring the temperature 1D case Publish/subscribe system Keep track of the user s location 2D case Subscribers register (potentially the same) queries at the publisher; results (a set of items) change over time high-d case 3-4

10 Motivation Wireless sensors Location-based services Transmission of Data is the biggest source of battery drain! Monitoring the temperature 1D case Publish/subscribe system Bandwidth consumption is the main concern! Keep track of the user s location 2D case Subscribers register (potentially the same) queries at the publisher; results (a set of items) change over time high-d case 3-5

11 Naive solution fails Consider tracking the function f : Z + Z, and require an absolute error of at most. The natural solution is to 1. first communicate f(0) to Bob. 2. every time f(t) has changed by more than since the last communication, Alice updates Bob with the current f(t). 4-1

12 Naive solution fails Consider tracking the function f : Z + Z, and require an absolute error of at most. The natural solution is to 1. first communicate f(0) to Bob. 2. every time f(t) has changed by more than since the last communication, Alice updates Bob with the current f(t). Unbounded competitive ratio! 4-2

13 Naive solution fails Consider tracking the function f : Z + Z, and require an absolute error of at most. The natural solution is to 1. first communicate f(0) to Bob. 2. every time f(t) has changed by more than since the last communication, Alice updates Bob with the current f(t). Unbounded competitive ratio! 2 SOL =, OPT = 1! f(t) t 4-3

14 Our Results problem comp. ratio running time 1-dim O(log ) O(1) d-dim O(d 2 log(d )) poly(d, log ) 1-dim + prediction O(log( T )) poly(, T ) Results for online tracking. T : length of the tracking period. 5-1

15 Our Results problem comp. ratio running time 1-dim O(log ) O(1) d-dim O(d 2 log(d )) poly(d, log ) 1-dim + prediction O(log( T )) poly(, T ) Results for online tracking. T : length of the tracking period. Prediction. Allow to send prediction functions (e.g. linear functions) instead of only a single value every time. OPT also uses the same family of functions. f(t) g(t) line prediction 5-2

16 Related research domains Communication complexity Alice (has x) Our case. compute f(x, y) 1. Alice: observer, Bob: tracker. 2. Inputs arrive online, only seen by Alice. Bob (has y), x, y are given offline. 6-1

17 Related research domains Communication complexity Alice (has x) Our case. compute f(x, y) 1. Alice: observer, Bob: tracker. 2. Inputs arrive online, only seen by Alice. Data streams Small space. Our case: communication cost. Bob (has y), x, y are given offline. 6-2

18 One dimension General idea to track f : Z + Z. Divide the whole tracking period into rounds, and show that A OPT must communicate once in each round, while our algorithm communicates at most, say, k times competitive ratio k. 7-1

19 One dimension (Cont.) The Algorithm to track f : Z + Z 8-1

20 One dimension (Cont.) The Algorithm to track f : Z + Z f(t) S S t 8-2

21 One dimension (Cont.) The Algorithm to track f : Z + Z f(t) S S t The Analysis If A OPT hasn t sent a message in the current round, then its last message must be included in S. The cardinality of S decreases by half whenever Algorithm 1 sends a message. 8-3

22 One dimension (Cont.) The Algorithm to track f : Z + Z f(t) S S t The Analysis If A OPT hasn t sent a message in the current round, then its last message must be included in S. The cardinality of S decreases by half whenever Algorithm 1 sends a message. O(log ) -competitive 8-4

23 One dimension (Cont.) The Algorithm to track f : Z + Z f(t) S S t The Analysis If A OPT hasn t sent a message in the current round, then its last message must be included in S. The cardinality of S decreases by half whenever Algorithm 1 sends a message. O(log ) -competitive Also tight! 8-5

24 One dimension (Cont.) The Algorithm to track f : Z + Z Real range unbounded! f(t) S S t The Analysis If A OPT hasn t sent a message in the current round, then its last message must be included in S. The cardinality of S decreases by half whenever Algorithm 1 sends a message. O(log ) -competitive Also tight! 8-6

25 High dimensions The general idea follows from 1D Divide the whole tracking period into rounds, and show that the competitive ratio in each round is k. 9-1

26 High dimensions The general idea follows from 1D Divide the whole tracking period into rounds, and show that the competitive ratio in each round is k. The framework of one round 1. At time t = t start, initialize a set S = S 0. (Many choices of S 0 ) 2. In each iteration in the while loop, we first pick a median from S as g(t now ) and send it to Bob. 3. When f deviates from g(t last ) by more than, we cut S as S S ball(f(t now ), ). 4. When S becomes empty, we can terminate the round. 9-2

27 High dimensions (cont.) Initialize S = S 0 f(t start )/g(tnow ) 10-1

28 High dimensions (cont.) S S ball(f(t now ), ) g(tnow ) f(tnow ) : f(tnow ) g(t last ) > 10-2

29 High dimensions (cont.) S S ball(f(t now ), ) g(tnow ) f(tnow ) 10-3

30 High dimensions (cont.) f(tnow ) S =! Start next round 10-4

31 High dimensions (cont.) The key property of S. If S becomes empty at some time step, then A OPT must have communicated once in the current round. 11-1

32 High dimensions (cont.) The key property of S. If S becomes empty at some time step, then A OPT must have communicated once in the current round. Two main issues left How to choose the initial set S 0 so that above property is met? 2. How to pick the median so that we can have small competitive ratios? 11-2

33 Take one, Tukey medians Choices for two issues Set S 0 = C 2 C 3... C d+1 C l : be the collection of centers of the smallest enclosing balls of every l points in Ball(f(t start ), 2 ) Z d. Send the Tukey median of S at every triggering. 12-1

34 Take one, Tukey medians Choices for two issues Set S 0 = C 2 C 3... C d+1 C l : be the collection of centers of the smallest enclosing balls of every l points in Ball(f(t start ), 2 ) Z d. Send the Tukey median of S at every triggering. Definition of the Tukey medians Any halfspace containing Tukey median v also contains at least n points d+1 1 where n is the cardinality of the point set. v 12-2

35 Tukey medians (cont.) Analysis of competitive ratio (ρ) S 0 = O ( d ( e( 4 +1) d d+1 ) d+1 ) S deceases by a factor of at least 1/(d + 1) at every triggering of communication ρ = log 1+ 1 d S 0 = O(d 3 log ) 13-1

36 Tukey medians (cont.) Analysis of competitive ratio (ρ) S 0 = O ( d ( e( 4 +1) d d+1 ) d+1 ) S deceases by a factor of at least 1/(d + 1) at every triggering of communication ρ = log 1+ 1 d S 0 = O(d 3 log ) However, the running time is exponential in d :( 1. S 0 is too large. 2. Computing Tukey medians in high-d (even approximately) is hard. 13-2

37 Volume cutting O(d 2 log d )-competitive; running time polynomial in d and log. 14-1

38 Volume cutting O(d 2 log d )-competitive; running time polynomial in d and log. Send the (approximate) centroids of a convex set containing S. 14-2

39 Volume cutting O(d 2 log d )-competitive; running time polynomial in d and log. Send the (approximate) centroids of a convex set containing S. Use some geometry to bound the number of cuts performed until S

40 Volume cutting O(d 2 log d )-competitive; running time polynomial in d and log. Send the (approximate) centroids of a convex set containing S. Use some geometry to bound the number of cuts performed until S 1. Techniques similar to those used in convex programming to find the last point of S if exists. 14-4

41 With prediction We consider the case that algorithms are allowed to send a linear function to predict the future trend of f 15-1

42 With prediction We consider the case that algorithms are allowed to send a linear function to predict the future trend of f Ideas. 1. Still follow the general framewok. 2. Cutting in the parametric space. A line l passing (0, q 0 ), (t 1, q 1 ) a point (q 0, q 1 ) in 2D. 15-2

43 With prediction We consider the case that algorithms are allowed to send a linear function to predict the future trend of f Ideas. 1. Still follow the general framewok. 2. Cutting in the parametric space. A line l passing (0, q 0 ), (t 1, q 1 ) a point (q 0, q 1 ) in 2D. Competitive ratio: O(log( T )). T : length of the tracking period, 15-3

44 Open problems and future directions Generalize our techniques to multiple observers. What if the length of the messages is considered (in the high- D) case? Lower bounds for high dimensional tracking. Online tracking in other metric spaces. 16-1

45 Open problems and future directions Generalize our techniques to multiple observers. Need a stronger model. What if the length of the messages is considered (in the high- D) case? Lower bounds for high dimensional tracking. Online tracking in other metric spaces. 16-2

46 The End T HAN K YOU Q and A 17-1

Stream Computation and Arthur- Merlin Communication

Stream Computation and Arthur- Merlin Communication Stream Computation and Arthur- Merlin Communication Justin Thaler, Yahoo! Labs Joint Work with: Amit Chakrabarti, Dartmouth Graham Cormode, University of Warwick Andrew McGregor, Umass Amherst Suresh Venkatasubramanian,

More information

Efficient Network-wide Available Bandwidth Estimation through Active Learning and Belief Propagation

Efficient Network-wide Available Bandwidth Estimation through Active Learning and Belief Propagation Efficient Network-wide Available Bandwidth Estimation through Active Learning and Belief Propagation mark.coates@mcgill.ca McGill University Department of Electrical and Computer Engineering Montreal,

More information

Distributed Statistical Estimation of Matrix Products with Applications

Distributed Statistical Estimation of Matrix Products with Applications Distributed Statistical Estimation of Matrix Products with Applications David Woodruff CMU Qin Zhang IUB PODS 2018 June, 2018 1-1 The Distributed Computation Model p-norms, heavy-hitters,... A {0, 1} m

More information

An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems

An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems Arnab Bhattacharyya, Palash Dey, and David P. Woodruff Indian Institute of Science, Bangalore {arnabb,palash}@csa.iisc.ernet.in

More information

Finding Frequent Items in Probabilistic Data

Finding Frequent Items in Probabilistic Data Finding Frequent Items in Probabilistic Data Qin Zhang, Hong Kong University of Science & Technology Feifei Li, Florida State University Ke Yi, Hong Kong University of Science & Technology SIGMOD 2008

More information

Geometric Problems in Moderate Dimensions

Geometric Problems in Moderate Dimensions Geometric Problems in Moderate Dimensions Timothy Chan UIUC Basic Problems in Comp. Geometry Orthogonal range search preprocess n points in R d s.t. we can detect, or count, or report points inside a query

More information

Colored Bin Packing: Online Algorithms and Lower Bounds

Colored Bin Packing: Online Algorithms and Lower Bounds Noname manuscript No. (will be inserted by the editor) Colored Bin Packing: Online Algorithms and Lower Bounds Martin Böhm György Dósa Leah Epstein Jiří Sgall Pavel Veselý Received: date / Accepted: date

More information

Energy-Efficient Broadcast Scheduling. Speed-Controlled Transmission Channels

Energy-Efficient Broadcast Scheduling. Speed-Controlled Transmission Channels for Speed-Controlled Transmission Channels Joint work with Christian Gunia from Freiburg University in ISAAC 06. 25.10.07 Outline Problem Definition and Motivation 1 Problem Definition and Motivation 2

More information

Estimating Dominance Norms of Multiple Data Streams Graham Cormode Joint work with S. Muthukrishnan

Estimating Dominance Norms of Multiple Data Streams Graham Cormode Joint work with S. Muthukrishnan Estimating Dominance Norms of Multiple Data Streams Graham Cormode graham@dimacs.rutgers.edu Joint work with S. Muthukrishnan Data Stream Phenomenon Data is being produced faster than our ability to process

More information

10. Ellipsoid method

10. Ellipsoid method 10. Ellipsoid method EE236C (Spring 2008-09) ellipsoid method convergence proof inequality constraints 10 1 Ellipsoid method history developed by Shor, Nemirovski, Yudin in 1970s used in 1979 by Khachian

More information

Linear Sketches A Useful Tool in Streaming and Compressive Sensing

Linear Sketches A Useful Tool in Streaming and Compressive Sensing Linear Sketches A Useful Tool in Streaming and Compressive Sensing Qin Zhang 1-1 Linear sketch Random linear projection M : R n R k that preserves properties of any v R n with high prob. where k n. M =

More information

Distributed Distance-Bounded Network Design Through Distributed Convex Programming

Distributed Distance-Bounded Network Design Through Distributed Convex Programming Distributed Distance-Bounded Network Design Through Distributed Convex Programming OPODIS 2017 Michael Dinitz, Yasamin Nazari Johns Hopkins University December 18, 2017 Distance Bounded Network Design

More information

Stochastic Submodular Cover with Limited Adaptivity

Stochastic Submodular Cover with Limited Adaptivity Stochastic Submodular Cover with Limited Adaptivity Arpit Agarwal Sepehr Assadi Sanjeev Khanna Abstract In the submodular cover problem, we are given a non-negative monotone submodular function f over

More information

Markov decision processes with threshold-based piecewise-linear optimal policies

Markov decision processes with threshold-based piecewise-linear optimal policies 1/31 Markov decision processes with threshold-based piecewise-linear optimal policies T. Erseghe, A. Zanella, C. Codemo Dept. of Information Engineering, University of Padova, Italy Padova, June 2, 213

More information

Quantum Communication Complexity

Quantum Communication Complexity Quantum Communication Complexity Ronald de Wolf Communication complexity has been studied extensively in the area of theoretical computer science and has deep connections with seemingly unrelated areas,

More information

Trusting the Cloud with Practical Interactive Proofs

Trusting the Cloud with Practical Interactive Proofs Trusting the Cloud with Practical Interactive Proofs Graham Cormode G.Cormode@warwick.ac.uk Amit Chakrabarti (Dartmouth) Andrew McGregor (U Mass Amherst) Justin Thaler (Harvard/Yahoo!) Suresh Venkatasubramanian

More information

Introduction to Cryptography Lecture 13

Introduction to Cryptography Lecture 13 Introduction to Cryptography Lecture 13 Benny Pinkas June 5, 2011 Introduction to Cryptography, Benny Pinkas page 1 Electronic cash June 5, 2011 Introduction to Cryptography, Benny Pinkas page 2 Simple

More information

Lower Bound Techniques for Multiparty Communication Complexity

Lower Bound Techniques for Multiparty Communication Complexity Lower Bound Techniques for Multiparty Communication Complexity Qin Zhang Indiana University Bloomington Based on works with Jeff Phillips, Elad Verbin and David Woodruff 1-1 The multiparty number-in-hand

More information

Welfare Maximization with Production Costs: A Primal Dual Approach

Welfare Maximization with Production Costs: A Primal Dual Approach Welfare Maximization with Production Costs: A Primal Dual Approach Zhiyi Huang Anthony Kim The University of Hong Kong Stanford University January 4, 2015 Zhiyi Huang, Anthony Kim Welfare Maximization

More information

Optimizing Energy Consumption under Flow and Stretch Constraints

Optimizing Energy Consumption under Flow and Stretch Constraints Optimizing Energy Consumption under Flow and Stretch Constraints Zhi Zhang, Fei Li Department of Computer Science George Mason University {zzhang8, lifei}@cs.gmu.edu November 17, 2011 Contents 1 Motivation

More information

Asymmetric Communication Complexity and Data Structure Lower Bounds

Asymmetric Communication Complexity and Data Structure Lower Bounds Asymmetric Communication Complexity and Data Structure Lower Bounds Yuanhao Wei 11 November 2014 1 Introduction This lecture will be mostly based off of Miltersen s paper Cell Probe Complexity - a Survey

More information

Algorithms for Distributed Functional Monitoring

Algorithms for Distributed Functional Monitoring Algorithms for Distributed Functional Monitoring Graham Cormode AT&T Labs and S. Muthukrishnan Google Inc. and Ke Yi Hong Kong University of Science and Technology We study what we call functional monitoring

More information

Information Complexity vs. Communication Complexity: Hidden Layers Game

Information Complexity vs. Communication Complexity: Hidden Layers Game Information Complexity vs. Communication Complexity: Hidden Layers Game Jiahui Liu Final Project Presentation for Information Theory in TCS Introduction Review of IC vs CC Hidden Layers Game Upper Bound

More information

Linear sketching for Functions over Boolean Hypercube

Linear sketching for Functions over Boolean Hypercube Linear sketching for Functions over Boolean Hypercube Grigory Yaroslavtsev (Indiana University, Bloomington) http://grigory.us with Sampath Kannan (U. Pennsylvania), Elchanan Mossel (MIT) and Swagato Sanyal

More information

Online bin packing 24.Januar 2008

Online bin packing 24.Januar 2008 Rob van Stee: Approximations- und Online-Algorithmen 1 Online bin packing 24.Januar 2008 Problem definition First Fit and other algorithms The asymptotic performance ratio Weighting functions Lower bounds

More information

Nondeterminism LECTURE Nondeterminism as a proof system. University of California, Los Angeles CS 289A Communication Complexity

Nondeterminism LECTURE Nondeterminism as a proof system. University of California, Los Angeles CS 289A Communication Complexity University of California, Los Angeles CS 289A Communication Complexity Instructor: Alexander Sherstov Scribe: Matt Brown Date: January 25, 2012 LECTURE 5 Nondeterminism In this lecture, we introduce nondeterministic

More information

A Tight Lower Bound for Dynamic Membership in the External Memory Model

A Tight Lower Bound for Dynamic Membership in the External Memory Model A Tight Lower Bound for Dynamic Membership in the External Memory Model Elad Verbin ITCS, Tsinghua University Qin Zhang Hong Kong University of Science & Technology April 2010 1-1 The computational model

More information

Distributed Partial Clustering. Yi Li NTU

Distributed Partial Clustering. Yi Li NTU Distributed Partial Clustering Sudipto Guha Upenn Yi Li NTU Qin Zhang IUB SPAA 2017 July 25, 2017 1-1 Clustering Metric space (X, d) n input points A; want to find k centers Objective function (k-median):

More information

Welfare Maximization with Friends-of-Friends Network Externalities

Welfare Maximization with Friends-of-Friends Network Externalities Welfare Maximization with Friends-of-Friends Network Externalities Extended version of a talk at STACS 2015, Munich Wolfgang Dvořák 1 joint work with: Sayan Bhattacharya 2, Monika Henzinger 1, Martin Starnberger

More information

Competitive Management of Non-Preemptive Queues with Multiple Values

Competitive Management of Non-Preemptive Queues with Multiple Values Competitive Management of Non-Preemptive Queues with Multiple Values Nir Andelman and Yishay Mansour School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel Abstract. We consider the online problem

More information

Communication Complexity

Communication Complexity Communication Complexity Jaikumar Radhakrishnan School of Technology and Computer Science Tata Institute of Fundamental Research Mumbai 31 May 2012 J 31 May 2012 1 / 13 Plan 1 Examples, the model, the

More information

Cryptography and Security Final Exam

Cryptography and Security Final Exam Cryptography and Security Final Exam Serge Vaudenay 29.1.2018 duration: 3h no documents allowed, except one 2-sided sheet of handwritten notes a pocket calculator is allowed communication devices are not

More information

Massachusetts Institute of Technology 6.854J/18.415J: Advanced Algorithms Friday, March 18, 2016 Ankur Moitra. Problem Set 6

Massachusetts Institute of Technology 6.854J/18.415J: Advanced Algorithms Friday, March 18, 2016 Ankur Moitra. Problem Set 6 Massachusetts Institute of Technology 6.854J/18.415J: Advanced Algorithms Friday, March 18, 2016 Ankur Moitra Problem Set 6 Due: Wednesday, April 6, 2016 7 pm Dropbox Outside Stata G5 Collaboration policy:

More information

Partitions and Covers

Partitions and Covers University of California, Los Angeles CS 289A Communication Complexity Instructor: Alexander Sherstov Scribe: Dong Wang Date: January 2, 2012 LECTURE 4 Partitions and Covers In previous lectures, we saw

More information

Lecture th January 2009 Fall 2008 Scribes: D. Widder, E. Widder Today s lecture topics

Lecture th January 2009 Fall 2008 Scribes: D. Widder, E. Widder Today s lecture topics 0368.4162: Introduction to Cryptography Ran Canetti Lecture 11 12th January 2009 Fall 2008 Scribes: D. Widder, E. Widder Today s lecture topics Introduction to cryptographic protocols Commitments 1 Cryptographic

More information

Group Secret Key Agreement over State-Dependent Wireless Broadcast Channels

Group Secret Key Agreement over State-Dependent Wireless Broadcast Channels Group Secret Key Agreement over State-Dependent Wireless Broadcast Channels Mahdi Jafari Siavoshani Sharif University of Technology, Iran Shaunak Mishra, Suhas Diggavi, Christina Fragouli Institute of

More information

Algorithms for Calculating Statistical Properties on Moving Points

Algorithms for Calculating Statistical Properties on Moving Points Algorithms for Calculating Statistical Properties on Moving Points Dissertation Proposal Sorelle Friedler Committee: David Mount (Chair), William Gasarch Samir Khuller, Amitabh Varshney January 14, 2009

More information

Efficient Bandit Algorithms for Online Multiclass Prediction

Efficient Bandit Algorithms for Online Multiclass Prediction Efficient Bandit Algorithms for Online Multiclass Prediction Sham Kakade, Shai Shalev-Shwartz and Ambuj Tewari Presented By: Nakul Verma Motivation In many learning applications, true class labels are

More information

Today s class. Constrained optimization Linear programming. Prof. Jinbo Bi CSE, UConn. Numerical Methods, Fall 2011 Lecture 12

Today s class. Constrained optimization Linear programming. Prof. Jinbo Bi CSE, UConn. Numerical Methods, Fall 2011 Lecture 12 Today s class Constrained optimization Linear programming 1 Midterm Exam 1 Count: 26 Average: 73.2 Median: 72.5 Maximum: 100.0 Minimum: 45.0 Standard Deviation: 17.13 Numerical Methods Fall 2011 2 Optimization

More information

Linear Programming. Scheduling problems

Linear Programming. Scheduling problems Linear Programming Scheduling problems Linear programming (LP) ( )., 1, for 0 min 1 1 1 1 1 11 1 1 n i x b x a x a b x a x a x c x c x z i m n mn m n n n n! = + + + + + + = Extreme points x ={x 1,,x n

More information

Recoverabilty Conditions for Rankings Under Partial Information

Recoverabilty Conditions for Rankings Under Partial Information Recoverabilty Conditions for Rankings Under Partial Information Srikanth Jagabathula Devavrat Shah Abstract We consider the problem of exact recovery of a function, defined on the space of permutations

More information

1 Approximate Quantiles and Summaries

1 Approximate Quantiles and Summaries CS 598CSC: Algorithms for Big Data Lecture date: Sept 25, 2014 Instructor: Chandra Chekuri Scribe: Chandra Chekuri Suppose we have a stream a 1, a 2,..., a n of objects from an ordered universe. For simplicity

More information

Advances in processor, memory, and communication technologies

Advances in processor, memory, and communication technologies Discrete and continuous min-energy schedules for variable voltage processors Minming Li, Andrew C. Yao, and Frances F. Yao Department of Computer Sciences and Technology and Center for Advanced Study,

More information

Computing the Entropy of a Stream

Computing the Entropy of a Stream Computing the Entropy of a Stream To appear in SODA 2007 Graham Cormode graham@research.att.com Amit Chakrabarti Dartmouth College Andrew McGregor U. Penn / UCSD Outline Introduction Entropy Upper Bound

More information

Outline Network structure and objectives Routing Routing protocol protocol System analysis Results Conclusion Slide 2

Outline Network structure and objectives Routing Routing protocol protocol System analysis Results Conclusion Slide 2 2007 Radio and Wireless Symposium 9 11 January 2007, Long Beach, CA. Lifetime-Aware Hierarchical Wireless Sensor Network Architecture with Mobile Overlays Maryam Soltan, Morteza Maleki, and Massoud Pedram

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 5 Optimizing Fixed Size Samples Sampling as

More information

On Two Class-Constrained Versions of the Multiple Knapsack Problem

On Two Class-Constrained Versions of the Multiple Knapsack Problem On Two Class-Constrained Versions of the Multiple Knapsack Problem Hadas Shachnai Tami Tamir Department of Computer Science The Technion, Haifa 32000, Israel Abstract We study two variants of the classic

More information

Theory of Computation Chapter 12: Cryptography

Theory of Computation Chapter 12: Cryptography Theory of Computation Chapter 12: Cryptography Guan-Shieng Huang Dec. 20, 2006 0-0 Introduction Alice wants to communicate with Bob secretely. x Alice Bob John Alice y=e(e,x) y Bob y??? John Assumption

More information

Quantum sampling of mixed states

Quantum sampling of mixed states Quantum sampling of mixed states Philippe Lamontagne January 7th Philippe Lamontagne Quantum sampling of mixed states January 7th 1 / 9 The setup Philippe Lamontagne Quantum sampling of mixed states January

More information

10 Distributed Matrix Sketching

10 Distributed Matrix Sketching 10 Distributed Matrix Sketching In order to define a distributed matrix sketching problem thoroughly, one has to specify the distributed model, data model and the partition model of data. The distributed

More information

Nearest Neighbor Searching Under Uncertainty. Wuzhou Zhang Supervised by Pankaj K. Agarwal Department of Computer Science Duke University

Nearest Neighbor Searching Under Uncertainty. Wuzhou Zhang Supervised by Pankaj K. Agarwal Department of Computer Science Duke University Nearest Neighbor Searching Under Uncertainty Wuzhou Zhang Supervised by Pankaj K. Agarwal Department of Computer Science Duke University Nearest Neighbor Searching (NNS) S: a set of n points in R. q: any

More information

Tight Bounds for Distributed Functional Monitoring

Tight Bounds for Distributed Functional Monitoring Tight Bounds for Distributed Functional Monitoring Qin Zhang MADALGO, Aarhus University Joint with David Woodruff, IBM Almaden NII Shonan meeting, Japan Jan. 2012 1-1 The distributed streaming model (a.k.a.

More information

communication complexity lower bounds yield data structure lower bounds

communication complexity lower bounds yield data structure lower bounds communication complexity lower bounds yield data structure lower bounds Implementation of a database - D: D represents a subset S of {...N} 2 3 4 Access to D via "membership queries" - Q for each i, can

More information

Cryptography and Security Final Exam

Cryptography and Security Final Exam Cryptography and Security Final Exam Solution Serge Vaudenay 29.1.2018 duration: 3h no documents allowed, except one 2-sided sheet of handwritten notes a pocket calculator is allowed communication devices

More information

Streaming Graph Computations with a Helpful Advisor. Justin Thaler Graham Cormode and Michael Mitzenmacher

Streaming Graph Computations with a Helpful Advisor. Justin Thaler Graham Cormode and Michael Mitzenmacher Streaming Graph Computations with a Helpful Advisor Justin Thaler Graham Cormode and Michael Mitzenmacher Thanks to Andrew McGregor A few slides borrowed from IITK Workshop on Algorithms for Processing

More information

Approximating Minimum-Power Degree and Connectivity Problems

Approximating Minimum-Power Degree and Connectivity Problems Approximating Minimum-Power Degree and Connectivity Problems Guy Kortsarz Vahab S. Mirrokni Zeev Nutov Elena Tsanko Abstract Power optimization is a central issue in wireless network design. Given a graph

More information

Linear Secret-Sharing Schemes for Forbidden Graph Access Structures

Linear Secret-Sharing Schemes for Forbidden Graph Access Structures Linear Secret-Sharing Schemes for Forbidden Graph Access Structures Amos Beimel 1, Oriol Farràs 2, Yuval Mintz 1, and Naty Peter 1 1 Ben Gurion University of the Negev, Be er Sheva, Israel 2 Universitat

More information

Wavelet decomposition of data streams. by Dragana Veljkovic

Wavelet decomposition of data streams. by Dragana Veljkovic Wavelet decomposition of data streams by Dragana Veljkovic Motivation Continuous data streams arise naturally in: telecommunication and internet traffic retail and banking transactions web server log records

More information

Lecture Lecture 9 October 1, 2015

Lecture Lecture 9 October 1, 2015 CS 229r: Algorithms for Big Data Fall 2015 Lecture Lecture 9 October 1, 2015 Prof. Jelani Nelson Scribe: Rachit Singh 1 Overview In the last lecture we covered the distance to monotonicity (DTM) and longest

More information

Kernelization Lower Bounds: A Brief History

Kernelization Lower Bounds: A Brief History Kernelization Lower Bounds: A Brief History G Philip Max Planck Institute for Informatics, Saarbrücken, Germany New Developments in Exact Algorithms and Lower Bounds. Pre-FSTTCS 2014 Workshop, IIT Delhi

More information

Lecture 7: Fingerprinting. David Woodruff Carnegie Mellon University

Lecture 7: Fingerprinting. David Woodruff Carnegie Mellon University Lecture 7: Fingerprinting David Woodruff Carnegie Mellon University How to Pick a Random Prime How to pick a random prime in the range {1, 2,, M}? How to pick a random integer X? Pick a uniformly random

More information

Stochastic Submodular Cover with Limited Adaptivity

Stochastic Submodular Cover with Limited Adaptivity Stochastic Submodular Cover with Limited Adaptivity Arpit Agarwal Sepehr Assadi Sanjeev Khanna University of Pennsylvania {aarpit,sassadi,sanjeev}@cis.upenn.edu arxiv:1810.13351v1 [cs.ds] 31 Oct 2018 Abstract

More information

Chapter 8: Taylor s theorem and L Hospital s rule

Chapter 8: Taylor s theorem and L Hospital s rule Chapter 8: Taylor s theorem and L Hospital s rule Theorem: [Inverse Mapping Theorem] Suppose that a < b and f : [a, b] R. Given that f (x) > 0 for all x (a, b) then f 1 is differentiable on (f(a), f(b))

More information

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography David R. Wilkins Copyright c David R. Wilkins 2006 Contents 9 Introduction to Number Theory and Cryptography 1 9.1 Subgroups

More information

2.2 Asymptotic Order of Growth. definitions and notation (2.2) examples (2.4) properties (2.2)

2.2 Asymptotic Order of Growth. definitions and notation (2.2) examples (2.4) properties (2.2) 2.2 Asymptotic Order of Growth definitions and notation (2.2) examples (2.4) properties (2.2) Asymptotic Order of Growth Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and n 0 0 such that

More information

Communication-efficient and Differentially-private Distributed SGD

Communication-efficient and Differentially-private Distributed SGD 1/36 Communication-efficient and Differentially-private Distributed SGD Ananda Theertha Suresh with Naman Agarwal, Felix X. Yu Sanjiv Kumar, H. Brendan McMahan Google Research November 16, 2018 2/36 Outline

More information

Closest String and Closest Substring Problems

Closest String and Closest Substring Problems January 8, 2010 Problem Formulation Problem Statement I Closest String Given a set S = {s 1, s 2,, s n } of strings each length m, find a center string s of length m minimizing d such that for every string

More information

Math 320-2: Final Exam Practice Solutions Northwestern University, Winter 2015

Math 320-2: Final Exam Practice Solutions Northwestern University, Winter 2015 Math 30-: Final Exam Practice Solutions Northwestern University, Winter 015 1. Give an example of each of the following. No justification is needed. (a) A closed and bounded subset of C[0, 1] which is

More information

An Introduction to Quantum Information and Applications

An Introduction to Quantum Information and Applications An Introduction to Quantum Information and Applications Iordanis Kerenidis CNRS LIAFA-Univ Paris-Diderot Quantum information and computation Quantum information and computation How is information encoded

More information

COMP9334: Capacity Planning of Computer Systems and Networks

COMP9334: Capacity Planning of Computer Systems and Networks COMP9334: Capacity Planning of Computer Systems and Networks Week 2: Operational analysis Lecturer: Prof. Sanjay Jha NETWORKS RESEARCH GROUP, CSE, UNSW Operational analysis Operational: Collect performance

More information

Communication-Efficient Computation on Distributed Noisy Datasets. Qin Zhang Indiana University Bloomington

Communication-Efficient Computation on Distributed Noisy Datasets. Qin Zhang Indiana University Bloomington Communication-Efficient Computation on Distributed Noisy Datasets Qin Zhang Indiana University Bloomington SPAA 15 June 15, 2015 1-1 Model of computation The coordinator model: k sites and 1 coordinator.

More information

Tight Bounds for Distributed Streaming

Tight Bounds for Distributed Streaming Tight Bounds for Distributed Streaming (a.k.a., Distributed Functional Monitoring) David Woodruff IBM Research Almaden Qin Zhang MADALGO, Aarhus Univ. STOC 12 May 22, 2012 1-1 The distributed streaming

More information

CS Introduction to Complexity Theory. Lecture #11: Dec 8th, 2015

CS Introduction to Complexity Theory. Lecture #11: Dec 8th, 2015 CS 2401 - Introduction to Complexity Theory Lecture #11: Dec 8th, 2015 Lecturer: Toniann Pitassi Scribe Notes by: Xu Zhao 1 Communication Complexity Applications Communication Complexity (CC) has many

More information

CLASS NOTES FOR APRIL 14, 2000

CLASS NOTES FOR APRIL 14, 2000 CLASS NOTES FOR APRIL 14, 2000 Announcement: Section 1.2, Questions 3,5 have been deferred from Assignment 1 to Assignment 2. Section 1.4, Question 5 has been dropped entirely. 1. Review of Wednesday class

More information

Lecture 11: Quantum Information III - Source Coding

Lecture 11: Quantum Information III - Source Coding CSCI5370 Quantum Computing November 25, 203 Lecture : Quantum Information III - Source Coding Lecturer: Shengyu Zhang Scribe: Hing Yin Tsang. Holevo s bound Suppose Alice has an information source X that

More information

Instantaneous Nonlocal Measurements

Instantaneous Nonlocal Measurements Instantaneous Nonlocal Measurements Li Yu Department of Physics, Carnegie-Mellon University, Pittsburgh, PA July 22, 2010 References Entanglement consumption of instantaneous nonlocal quantum measurements.

More information

Password Cracking: The Effect of Bias on the Average Guesswork of Hash Functions

Password Cracking: The Effect of Bias on the Average Guesswork of Hash Functions Password Cracking: The Effect of Bias on the Average Guesswork of Hash Functions Yair Yona, and Suhas Diggavi, Fellow, IEEE Abstract arxiv:608.0232v4 [cs.cr] Jan 207 In this work we analyze the average

More information

Probabilistically Checkable Arguments

Probabilistically Checkable Arguments Probabilistically Checkable Arguments Yael Tauman Kalai Microsoft Research yael@microsoft.com Ran Raz Weizmann Institute of Science ran.raz@weizmann.ac.il Abstract We give a general reduction that converts

More information

Exam Spring Embedded Systems. Prof. L. Thiele

Exam Spring Embedded Systems. Prof. L. Thiele Exam Spring 20 Embedded Systems Prof. L. Thiele NOTE: The given solution is only a proposal. For correctness, completeness, or understandability no responsibility is taken. Sommer 20 Eingebettete Systeme

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Introduction to Algorithms October 1, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Piotr Indyk and Charles E. Leiserson Handout 9 Problem Set 2 Solutions Reading: Chapters 5-9,

More information

Notes for Lecture 17

Notes for Lecture 17 U.C. Berkeley CS276: Cryptography Handout N17 Luca Trevisan March 17, 2009 Notes for Lecture 17 Scribed by Matt Finifter, posted April 8, 2009 Summary Today we begin to talk about public-key cryptography,

More information

The Perceptron Algorithm, Margins

The Perceptron Algorithm, Margins The Perceptron Algorithm, Margins MariaFlorina Balcan 08/29/2018 The Perceptron Algorithm Simple learning algorithm for supervised classification analyzed via geometric margins in the 50 s [Rosenblatt

More information

Submodular Secretary Problem and Extensions

Submodular Secretary Problem and Extensions Submodular Secretary Problem and Extensions MohammadHossein Bateni MohammadTaghi Hajiaghayi Morteza Zadimoghaddam Abstract Online auction is the essence of many modern markets, particularly networked markets,

More information

Reducing The Computational Cost of Bayesian Indoor Positioning Systems

Reducing The Computational Cost of Bayesian Indoor Positioning Systems Reducing The Computational Cost of Bayesian Indoor Positioning Systems Konstantinos Kleisouris, Richard P. Martin Computer Science Department Rutgers University WINLAB Research Review May 15 th, 2006 Motivation

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2017 Kannan Ramchandran March 21, 2017.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2017 Kannan Ramchandran March 21, 2017. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2017 Kannan Ramchandran March 21, 2017 Midterm Exam 2 Last name First name SID Name of student on your left: Name of

More information

Introduction to Modern Cryptography Lecture 11

Introduction to Modern Cryptography Lecture 11 Introduction to Modern Cryptography Lecture 11 January 10, 2017 Instructor: Benny Chor Teaching Assistant: Orit Moskovich School of Computer Science Tel-Aviv University Fall Semester, 2016 17 Tuesday 12:00

More information

CSE 123: Computer Networks

CSE 123: Computer Networks CSE 123: Computer Networks Total points: 40 Homework 1 - Solutions Out: 10/4, Due: 10/11 Solutions 1. Two-dimensional parity Given below is a series of 7 7-bit items of data, with an additional bit each

More information

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory

Motivating examples Introduction to algorithms Simplex algorithm. On a particular example General algorithm. Duality An application to game theory Instructor: Shengyu Zhang 1 LP Motivating examples Introduction to algorithms Simplex algorithm On a particular example General algorithm Duality An application to game theory 2 Example 1: profit maximization

More information

Table I: Symbols and descriptions

Table I: Symbols and descriptions 2017 IEEE 33rd International Conference on Data Engineering Tracking Matrix Approximation over Distributed Sliding Windows Haida Zhang* Zengfeng Huang* School of CSE, UNSW {haida.zhang, zengfeng.huang}@unsw.edu.au

More information

Lecture 10 Oct. 3, 2017

Lecture 10 Oct. 3, 2017 CS 388R: Randomized Algorithms Fall 2017 Lecture 10 Oct. 3, 2017 Prof. Eric Price Scribe: Jianwei Chen, Josh Vekhter NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS 1 Overview In the

More information

Energy-Efficient Real-Time Task Scheduling in Multiprocessor DVS Systems

Energy-Efficient Real-Time Task Scheduling in Multiprocessor DVS Systems Energy-Efficient Real-Time Task Scheduling in Multiprocessor DVS Systems Jian-Jia Chen *, Chuan Yue Yang, Tei-Wei Kuo, and Chi-Sheng Shih Embedded Systems and Wireless Networking Lab. Department of Computer

More information

Lecture 1: Introduction to Public key cryptography

Lecture 1: Introduction to Public key cryptography Lecture 1: Introduction to Public key cryptography Thomas Johansson T. Johansson (Lund University) 1 / 44 Key distribution Symmetric key cryptography: Alice and Bob share a common secret key. Some means

More information

Algorithms for Querying Noisy Distributed/Streaming Datasets

Algorithms for Querying Noisy Distributed/Streaming Datasets Algorithms for Querying Noisy Distributed/Streaming Datasets Qin Zhang Indiana University Bloomington Sublinear Algo Workshop @ JHU Jan 9, 2016 1-1 The big data models The streaming model (Alon, Matias

More information

Santa Claus Schedules Jobs on Unrelated Machines

Santa Claus Schedules Jobs on Unrelated Machines Santa Claus Schedules Jobs on Unrelated Machines Ola Svensson (osven@kth.se) Royal Institute of Technology - KTH Stockholm, Sweden March 22, 2011 arxiv:1011.1168v2 [cs.ds] 21 Mar 2011 Abstract One of the

More information

Algorithms for Distributed Functional Monitoring

Algorithms for Distributed Functional Monitoring Algorithms for Distributed Functional Monitoring Graham Cormode AT&T Labs Florham Park, NJ graham@research.att.com S. Muthukrishnan Google Inc. New York, NY muthu@google.com Ke Yi Hong Kong U.S.T. Kowloon,

More information

Local Self-Tuning in Nonparametric Regression. Samory Kpotufe ORFE, Princeton University

Local Self-Tuning in Nonparametric Regression. Samory Kpotufe ORFE, Princeton University Local Self-Tuning in Nonparametric Regression Samory Kpotufe ORFE, Princeton University Local Regression Data: {(X i, Y i )} n i=1, Y = f(x) + noise f nonparametric F, i.e. dim(f) =. Learn: f n (x) = avg

More information

On the tightness of the Buhrman-Cleve-Wigderson simulation

On the tightness of the Buhrman-Cleve-Wigderson simulation On the tightness of the Buhrman-Cleve-Wigderson simulation Shengyu Zhang Department of Computer Science and Engineering, The Chinese University of Hong Kong. syzhang@cse.cuhk.edu.hk Abstract. Buhrman,

More information

Good Triangulations. Jean-Daniel Boissonnat DataShape, INRIA

Good Triangulations. Jean-Daniel Boissonnat DataShape, INRIA Good Triangulations Jean-Daniel Boissonnat DataShape, INRIA http://www-sop.inria.fr/geometrica Algorithmic Geometry Good Triangulations J-D. Boissonnat 1 / 29 Definition and existence of nets Definition

More information

Adaptive Online Learning in Dynamic Environments

Adaptive Online Learning in Dynamic Environments Adaptive Online Learning in Dynamic Environments Lijun Zhang, Shiyin Lu, Zhi-Hua Zhou National Key Laboratory for Novel Software Technology Nanjing University, Nanjing 210023, China {zhanglj, lusy, zhouzh}@lamda.nju.edu.cn

More information

Lecture 15 April 9, 2007

Lecture 15 April 9, 2007 6.851: Advanced Data Structures Spring 2007 Mihai Pătraşcu Lecture 15 April 9, 2007 Scribe: Ivaylo Riskov 1 Overview In the last lecture we considered the problem of finding the predecessor in its static

More information