Wavelet decomposition of data streams. by Dragana Veljkovic

Size: px
Start display at page:

Download "Wavelet decomposition of data streams. by Dragana Veljkovic"

Transcription

1 Wavelet decomposition of data streams by Dragana Veljkovic

2 Motivation Continuous data streams arise naturally in: telecommunication and internet traffic retail and banking transactions web server log records etc. Many applications need this data to be processed on a 24*7 basis in only one pass

3 Motivation cont. Usually this data is accumulated and archived for later use, but not always (e.g. network security) The ability to make decisions and interpret interesting patterns online can be crucial and has real dollar value for large corporations (e.g. fraud detection)

4 Our motivation Currently working on data collected from 100 electrodes receiving electrical potential of monkey brain over long periods of time We want to look at this data in real time and seek patterns, trends and surprises

5 Outline Background streams wavelets sketches error analysis Results Implementation details Strengths and weaknesses of this approach

6 Data streams Sequence of unbounded, real time data with high rate that can only be read once by an application Problems: Unbounded memory requirements High data rate

7 Underlying signal Signal is one dimensional function a: [0,, N-1]? Z + Data item that arrives in time is an ordered pair: <domain, value> Example: voting results <Texas, 60> Example: phone call records < , 12>

8 Data model Two different data models used for rendering the underlying signal: Cash register Aggregate Example: cash register model < ,10>, < ,13>, < , 20>, < , 5>, < , 2>, < , 30> where the underlying signal is < , 32>, < , 13>, < , 35>

9 Stream format Two distinct formats for the stream Ordered Unordered Example: Aggregate ordered stream any time series Example: Unordered cash-register stream phone call records Ordered cash-register is trivial to convert to order aggregate

10 Wavelets Basis functions of limited duration and average value of zero Basis functions are shifted and scaled versions of the original wavelet

11 Discrete wavelet transform Uses only fixed values for wavelet scales based on powers of two Wavelet positions are also fixed and non overlapping Wavelets form a set of wavelet basis vectors of length N Haar wavelets for signal of size 8 Example: Haar wavelets on signal of length N = 8 j = 1,, logn levels k = 0,, 2 j -1 spaces for each level

12 Wavelet decomposition Wavelet decomposition can be regarded as projection of the signal on the set of wavelet basis vectors Each wavelet coefficient can be computed as the dot product of the signal with the corresponding basis vector Example: Table 1. from Gilbert et al

13 Best B-term decomposition The signal can be fully recovered from the wavelet decomposition Best B-term decomposition uses only a small number of coefficients, B, that carry the highest energy The signal reconstructed using the B-term coefficients and the corresponding vectors is called the best B-term approximation Most signals that occur in nature can be well approximated using only a small number of coefficients (5-10).

14 Computing best B-term decomposition in runtime For the ordered aggregate model Maintain two sets of items Highest B wavelet basis coefficients for the signal seen so far logn straddling coefficients, one for each level When the data item is read the affected straddling coefficients get updated. If a coefficient is no longer straddling it is compared to existing highest B coefficient and the set is updated if necessary. New straddling coefficient is initialized. Takes O(B + logn) storage and time for the ordered aggregate model

15 Sketches Sketch is made by projecting a signal onto several different low dimensional spaces which are chosen at random Many properties of the signal, such as histograms, can be accurately estimated by looking at the sketch

16 Definition of a sketch Atomic sketch of signal a is the dot product <a, r> where r is a random vector of ±1 valued random variables A sketch of a signal is k independent atomic sketches, each with a different random vector r j Sketch size is small compared to the signal size

17 Sketches Maintaining the sketch is easy as we are receiving the data If element <i, a(i)> arrives, add a(i)*r ij to the sketch corresponding to random vector r j Example: In cash-register receive <5, 10>, need to add 10* r 5j to each atomic sketch corresponding to the random vector r j

18 Error metrics SSE (sum squared error) if R is a representation of the signal a then SSE is defined as Pseudoenergy of the representation R is computed as

19 Query processing Batched queries are posed at certain periodic intervals Ad hoc a query may be posed at any time

20 Batch query using best B-term approximation for day 0 of call records Figure 2. from Gilbert et al

21 Batch query using best B-term approximation for all 7 days of call records Figure 3. from Gilbert et al

22 Estimating a point query Answer to point query i is a(i) Direct point estimate directly estimating a(i) using the sketch Direct wavelet estimate use the sketch to estimate the wavelet coefficients whose support intersects i and reconstruct a(i) using these coefficients Another way is to compute a(i) using only the high wavelet coefficients (like the known B-term approximation) whose support intersects a(i)

23 Using sketches to estimate dot product Following parameters characterize how well the sketch does e distortion parameter d failure probability? failure threshold Sketch of a signal is independent atomic sketches, each with a different random vector If the cosine between vectors a and b is greater than? we estimate the dot product within (1±e) with probability at least 1- d

24 Sketches and random vectors If element <i, a(i)> arrives, add a(i)*r ij to the sketch corresponding to random vector r j In order to use the sketches we need to get the elements r j quickly. r j is of size N, it can not be stored explicitly

25 Generating random vectors The paper shows that r ij can be generated by a pseudorandom number generator using a seed s j of size log O(1) N Generator G is based on second order Reed-Muller codes The generator G takes s j and i and outputs r j i = G(s j, i) quickly

26 Estimation of dot products using sketches Lemma: Let X be a O(logN/ d)-wise median of e 2 )-wise means of independent copies of O(1/ then we have with probability of 1-1 d Note: : use b=a to estimate energy of a using this lemma

27 Example: Want to estimate dot product of vectors a and b with no more than 30% error with probability of 80%, assuming the cosine between these two vectors is greater then 0.25 That is e = 0.3,? = 0.25 and d = 0.2 and for a signal of size N=1024 we would need about 30 atomic sketches

28 Theorem There is a streaming algorithm, A, such that, given a signal a[1,, N] with energy a 22 if there is a B-term representation with energy at least?* a 22, then, with probability at least (1-d) A finds a representation of at most B terms with pseudoenergy at least (1-e)?* a 22. If there is no such B-term representation with energy?* a 22, A reports no good representation. In any case A uses space and per item time while processing the stream. This holds with both aggregate and cash-register models Example: take?=0.3, d=0.2, e=0.3 and B=10. Then if there exists a 10 terms representation of the signal that captures at least 30% of the signal s energy the algorithm will output a 10 term representation with energy at least 21% of the signal with 80% probability

29 Strengths and weaknesses Good example how to work with cashregister models Shows several ways to estimate the signal using a sketch Time requirements seem higher than the paper claims On-line algorithms do not seem as promising as batch algorithms

30 References 1. A. C. Gilbert, Y. Kotidis, S. Muthukrishnan and M. J. Strauss, "Onepass wavelet decomposition of data streams," IEEE transactions on knowledge and data engineering, Vol. 15, No. 3, May/June A. C. Gilbert, Y. Kotidis, S. Muthukrishnan and M. J. Strauss, "Surfing wavelets on streams: one-pass summaries for approximate aggregate queries," Proceedings of the 27th VLDB Conference, Roma, Italy A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan and M. J. Strauss, "Fast, small-space algorithms for approximate histogram maintenance," STOC 02, May 19-21, 2002, Montreal, Quebec, Canada.

31 Answering queries on-line Comparison of sse/energy of top B wavelets against direct estimates Table 1. from Gilbert et al Table 2. from Gilbert et al

32 Direct estimates for the top 10 heavy hitters Figure 6. from Gilbert et al

33 Direct estimates for the top 10 heavy hitters using the greedy algorithm Figure 7. from Gilbert et al

34 Adaptive greedy pursuit for heavy hitters Obtain a very accurate estimate for the first heavy hitter Get a new sketch by subtracting this value from the original sketch. This can be done because sketches are linear New sketch is a good estimation of the residual distribution in which the second heavy hitter is the peak value Use the new sketch to estimate the second heavy hitter Repeat procedure for more heavy hitters Each estimate introduces an error and after many iterations the errors tend to overwhelm the benefits

B669 Sublinear Algorithms for Big Data

B669 Sublinear Algorithms for Big Data B669 Sublinear Algorithms for Big Data Qin Zhang 1-1 2-1 Part 1: Sublinear in Space The model and challenge The data stream model (Alon, Matias and Szegedy 1996) a n a 2 a 1 RAM CPU Why hard? Cannot store

More information

Linear Sketches A Useful Tool in Streaming and Compressive Sensing

Linear Sketches A Useful Tool in Streaming and Compressive Sensing Linear Sketches A Useful Tool in Streaming and Compressive Sensing Qin Zhang 1-1 Linear sketch Random linear projection M : R n R k that preserves properties of any v R n with high prob. where k n. M =

More information

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Anna C. Gilbert Department of Mathematics University of Michigan Sparse signal recovery measurements:

More information

Combining geometry and combinatorics

Combining geometry and combinatorics Combining geometry and combinatorics A unified approach to sparse signal recovery Anna C. Gilbert University of Michigan joint work with R. Berinde (MIT), P. Indyk (MIT), H. Karloff (AT&T), M. Strauss

More information

Explicit Constructions for Compressed Sensing of Sparse Signals

Explicit Constructions for Compressed Sensing of Sparse Signals Explicit Constructions for Compressed Sensing of Sparse Signals Piotr Indyk MIT July 12, 2007 1 Introduction Over the recent years, a new approach for obtaining a succinct approximate representation of

More information

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan Connection between... Sparse Approximation and Compressed

More information

A Pass-Efficient Algorithm for Clustering Census Data

A Pass-Efficient Algorithm for Clustering Census Data A Pass-Efficient Algorithm for Clustering Census Data Kevin Chang Yale University Ravi Kannan Yale University Abstract We present a number of streaming algorithms for a basic clustering problem for massive

More information

Sample Optimal Fourier Sampling in Any Constant Dimension

Sample Optimal Fourier Sampling in Any Constant Dimension 1 / 26 Sample Optimal Fourier Sampling in Any Constant Dimension Piotr Indyk Michael Kapralov MIT IBM Watson October 21, 2014 Fourier Transform and Sparsity Discrete Fourier Transform Given x C n, compute

More information

Maintaining Significant Stream Statistics over Sliding Windows

Maintaining Significant Stream Statistics over Sliding Windows Maintaining Significant Stream Statistics over Sliding Windows L.K. Lee H.F. Ting Abstract In this paper, we introduce the Significant One Counting problem. Let ε and θ be respectively some user-specified

More information

Heavy Hitters. Piotr Indyk MIT. Lecture 4

Heavy Hitters. Piotr Indyk MIT. Lecture 4 Heavy Hitters Piotr Indyk MIT Last Few Lectures Recap (last few lectures) Update a vector x Maintain a linear sketch Can compute L p norm of x (in zillion different ways) Questions: Can we do anything

More information

Estimating Dominance Norms of Multiple Data Streams Graham Cormode Joint work with S. Muthukrishnan

Estimating Dominance Norms of Multiple Data Streams Graham Cormode Joint work with S. Muthukrishnan Estimating Dominance Norms of Multiple Data Streams Graham Cormode graham@dimacs.rutgers.edu Joint work with S. Muthukrishnan Data Stream Phenomenon Data is being produced faster than our ability to process

More information

What s New: Finding Significant Differences in Network Data Streams

What s New: Finding Significant Differences in Network Data Streams What s New: Finding Significant Differences in Network Data Streams Graham Cormode S. Muthukrishnan Abstract Monitoring and analyzing network traffic usage patterns is vital for managing IP Networks. An

More information

Estimating Dominance Norms of Multiple Data Streams

Estimating Dominance Norms of Multiple Data Streams Estimating Dominance Norms of Multiple Data Streams Graham Cormode and S. Muthukrishnan Abstract. There is much focus in the algorithms and database communities on designing tools to manage and mine data

More information

A Deterministic Algorithm for Summarizing Asynchronous Streams over a Sliding Window

A Deterministic Algorithm for Summarizing Asynchronous Streams over a Sliding Window A Deterministic Algorithm for Summarizing Asynchronous Streams over a Sliding Window Costas Busch 1 and Srikanta Tirthapura 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY

More information

A Simpler and More Efficient Deterministic Scheme for Finding Frequent Items over Sliding Windows

A Simpler and More Efficient Deterministic Scheme for Finding Frequent Items over Sliding Windows A Simpler and More Efficient Deterministic Scheme for Finding Frequent Items over Sliding Windows ABSTRACT L.K. Lee Department of Computer Science The University of Hong Kong Pokfulam, Hong Kong lklee@cs.hku.hk

More information

The Count-Min-Sketch and its Applications

The Count-Min-Sketch and its Applications The Count-Min-Sketch and its Applications Jannik Sundermeier Abstract In this thesis, we want to reveal how to get rid of a huge amount of data which is at least dicult or even impossible to store in local

More information

Data Stream Methods. Graham Cormode S. Muthukrishnan

Data Stream Methods. Graham Cormode S. Muthukrishnan Data Stream Methods Graham Cormode graham@dimacs.rutgers.edu S. Muthukrishnan muthu@cs.rutgers.edu Plan of attack Frequent Items / Heavy Hitters Counting Distinct Elements Clustering items in Streams Motivating

More information

Block Heavy Hitters Alexandr Andoni, Khanh Do Ba, and Piotr Indyk

Block Heavy Hitters Alexandr Andoni, Khanh Do Ba, and Piotr Indyk Computer Science and Artificial Intelligence Laboratory Technical Report -CSAIL-TR-2008-024 May 2, 2008 Block Heavy Hitters Alexandr Andoni, Khanh Do Ba, and Piotr Indyk massachusetts institute of technology,

More information

Data Streams & Communication Complexity

Data Streams & Communication Complexity Data Streams & Communication Complexity Lecture 1: Simple Stream Statistics in Small Space Andrew McGregor, UMass Amherst 1/25 Data Stream Model Stream: m elements from universe of size n, e.g., x 1, x

More information

An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems

An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems Arnab Bhattacharyya, Palash Dey, and David P. Woodruff Indian Institute of Science, Bangalore {arnabb,palash}@csa.iisc.ernet.in

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Anna C. Gilbert Department of Mathematics University of Michigan Intuition from ONB Key step in algorithm: r, ϕ j = x c i ϕ i, ϕ j

More information

Efficient Sketches for Earth-Mover Distance, with Applications

Efficient Sketches for Earth-Mover Distance, with Applications Efficient Sketches for Earth-Mover Distance, with Applications Alexandr Andoni MIT andoni@mit.edu Khanh Do Ba MIT doba@mit.edu Piotr Indyk MIT indyk@mit.edu David Woodruff IBM Almaden dpwoodru@us.ibm.com

More information

Two applications of max stable distributions: Random sketches and Heavy tail exponent estimation

Two applications of max stable distributions: Random sketches and Heavy tail exponent estimation Two applications of max stable distributions: Random sketches and Heavy tail exponent estimation Stilian Stoev (sstoev@umich.edu) Department of Statistics University of Michigan Boston University Probability

More information

15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018

15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018 15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018 Today we ll talk about a topic that is both very old (as far as computer science

More information

Sparse Fourier Transform (lecture 1)

Sparse Fourier Transform (lecture 1) 1 / 73 Sparse Fourier Transform (lecture 1) Michael Kapralov 1 1 IBM Watson EPFL St. Petersburg CS Club November 2015 2 / 73 Given x C n, compute the Discrete Fourier Transform (DFT) of x: x i = 1 x n

More information

Sparse Fourier Transform (lecture 4)

Sparse Fourier Transform (lecture 4) 1 / 5 Sparse Fourier Transform (lecture 4) Michael Kapralov 1 1 IBM Watson EPFL St. Petersburg CS Club November 215 2 / 5 Given x C n, compute the Discrete Fourier Transform of x: x i = 1 n x j ω ij, j

More information

Lecture 1: Introduction to Sublinear Algorithms

Lecture 1: Introduction to Sublinear Algorithms CSE 522: Sublinear (and Streaming) Algorithms Spring 2014 Lecture 1: Introduction to Sublinear Algorithms March 31, 2014 Lecturer: Paul Beame Scribe: Paul Beame Too much data, too little time, space for

More information

Estimating Frequencies and Finding Heavy Hitters Jonas Nicolai Hovmand, Morten Houmøller Nygaard,

Estimating Frequencies and Finding Heavy Hitters Jonas Nicolai Hovmand, Morten Houmøller Nygaard, Estimating Frequencies and Finding Heavy Hitters Jonas Nicolai Hovmand, 2011 3884 Morten Houmøller Nygaard, 2011 4582 Master s Thesis, Computer Science June 2016 Main Supervisor: Gerth Stølting Brodal

More information

Algorithms for Streaming Data

Algorithms for Streaming Data Algorithms for Piotr Indyk Problems defined over elements P={p 1,,p n } The algorithm sees p 1, then p 2, then p 3, Key fact: it has limited storage Can store only s

More information

Approximate Query Processing Using Wavelets

Approximate Query Processing Using Wavelets Approximate Query Processing Using Wavelets Kaushik Chakrabarti Minos Garofalakis Rajeev Rastogi Kyuseok Shim Presented by Guanghua Yan Outline Approximate query processing: Problem and Prior solutions

More information

Sketching and Streaming for Distributions

Sketching and Streaming for Distributions Sketching and Streaming for Distributions Piotr Indyk Andrew McGregor Massachusetts Institute of Technology University of California, San Diego Main Material: Stable distributions, pseudo-random generators,

More information

Probabilistic Near-Duplicate. Detection Using Simhash

Probabilistic Near-Duplicate. Detection Using Simhash Probabilistic Near-Duplicate Detection Using Simhash Sadhan Sood, Dmitri Loguinov Presented by Matt Smith Internet Research Lab Department of Computer Science and Engineering Texas A&M University 27 October

More information

DATA STREAMS. Elena Ikonomovska Jožef Stefan Institute Department of Knowledge Technologies

DATA STREAMS. Elena Ikonomovska Jožef Stefan Institute Department of Knowledge Technologies QUERYING AND MINING DATA STREAMS Elena Ikonomovska Jožef Stefan Institute Department of Knowledge Technologies Outline Definitions Datastream models Similarity measures Historical background Foundations

More information

Streaming Algorithms for Set Cover. Piotr Indyk With: Sepideh Mahabadi, Ali Vakilian

Streaming Algorithms for Set Cover. Piotr Indyk With: Sepideh Mahabadi, Ali Vakilian Streaming Algorithms for Set Cover Piotr Indyk With: Sepideh Mahabadi, Ali Vakilian Set Cover Input: a collection S of sets S 1...S m that covers U={1...n} I.e., S 1 S 2. S m = U Output: a subset I of

More information

Cambridge University Press The Mathematics of Signal Processing Steven B. Damelin and Willard Miller Excerpt More information

Cambridge University Press The Mathematics of Signal Processing Steven B. Damelin and Willard Miller Excerpt More information Introduction Consider a linear system y = Φx where Φ can be taken as an m n matrix acting on Euclidean space or more generally, a linear operator on a Hilbert space. We call the vector x a signal or input,

More information

An Adaptive Sublinear Time Block Sparse Fourier Transform

An Adaptive Sublinear Time Block Sparse Fourier Transform An Adaptive Sublinear Time Block Sparse Fourier Transform Volkan Cevher Michael Kapralov Jonathan Scarlett Amir Zandieh EPFL February 8th 217 Given x C N, compute the Discrete Fourier Transform (DFT) of

More information

A Non-sparse Tutorial on Sparse FFTs

A Non-sparse Tutorial on Sparse FFTs A Non-sparse Tutorial on Sparse FFTs Mark Iwen Michigan State University April 8, 214 M.A. Iwen (MSU) Fast Sparse FFTs April 8, 214 1 / 34 Problem Setup Recover f : [, 2π] C consisting of k trigonometric

More information

12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters)

12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters) 12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters) Many streaming algorithms use random hashing functions to compress data. They basically randomly map some data items on top of each other.

More information

Improved Range-Summable Random Variable Construction Algorithms

Improved Range-Summable Random Variable Construction Algorithms Improved Range-Summable Random Variable Construction Algorithms A. R. Calderbank A. Gilbert K. Levchenko S. Muthukrishnan M. Strauss January 19, 2005 Abstract Range-summable universal hash functions, also

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 5 Optimizing Fixed Size Samples Sampling as

More information

Lecture 01 August 31, 2017

Lecture 01 August 31, 2017 Sketching Algorithms for Big Data Fall 2017 Prof. Jelani Nelson Lecture 01 August 31, 2017 Scribe: Vinh-Kha Le 1 Overview In this lecture, we overviewed the six main topics covered in the course, reviewed

More information

Wavelet Synopsis for Data Streams: Minimizing Non-Euclidean Error

Wavelet Synopsis for Data Streams: Minimizing Non-Euclidean Error Wavelet Synopsis for Data Streams: Minimizing Non-Euclidean Error Sudipto Guha Department of Computer Science University of Pennsylvania Philadelphia, PA 904. sudipto@cis.upenn.edu Boulos Harb Department

More information

Processing Count Queries over Event Streams at Multiple Time Granularities

Processing Count Queries over Event Streams at Multiple Time Granularities Processing Count Queries over Event Streams at Multiple Time Granularities Aykut Ünal, Yücel Saygın, Özgür Ulusoy Department of Computer Engineering, Bilkent University, Ankara, Turkey. Faculty of Engineering

More information

Finding Frequent Items in Probabilistic Data

Finding Frequent Items in Probabilistic Data Finding Frequent Items in Probabilistic Data Qin Zhang, Hong Kong University of Science & Technology Feifei Li, Florida State University Ke Yi, Hong Kong University of Science & Technology SIGMOD 2008

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

Image Compression. 1. Introduction. Greg Ames Dec 07, 2002

Image Compression. 1. Introduction. Greg Ames Dec 07, 2002 Image Compression Greg Ames Dec 07, 2002 Abstract Digital images require large amounts of memory to store and, when retrieved from the internet, can take a considerable amount of time to download. The

More information

Multi-Dimensional Online Tracking

Multi-Dimensional Online Tracking Multi-Dimensional Online Tracking Ke Yi and Qin Zhang Hong Kong University of Science & Technology SODA 2009 January 4-6, 2009 1-1 A natural problem Bob: tracker f(t) g(t) Alice: observer (t, g(t)) t 2-1

More information

Image Compression Using the Haar Wavelet Transform

Image Compression Using the Haar Wavelet Transform College of the Redwoods http://online.redwoods.cc.ca.us/instruct/darnold/laproj/fall2002/ames/ 1/33 Image Compression Using the Haar Wavelet Transform Greg Ames College of the Redwoods Math 45 Linear Algebra

More information

Lecture 2. Frequency problems

Lecture 2. Frequency problems 1 / 43 Lecture 2. Frequency problems Ricard Gavaldà MIRI Seminar on Data Streams, Spring 2015 Contents 2 / 43 1 Frequency problems in data streams 2 Approximating inner product 3 Computing frequency moments

More information

An Improved Frequent Items Algorithm with Applications to Web Caching

An Improved Frequent Items Algorithm with Applications to Web Caching An Improved Frequent Items Algorithm with Applications to Web Caching Kevin Chen and Satish Rao UC Berkeley Abstract. We present a simple, intuitive algorithm for the problem of finding an approximate

More information

13 Searching the Web with the SVD

13 Searching the Web with the SVD 13 Searching the Web with the SVD 13.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

9 Searching the Internet with the SVD

9 Searching the Internet with the SVD 9 Searching the Internet with the SVD 9.1 Information retrieval Over the last 20 years the number of internet users has grown exponentially with time; see Figure 1. Trying to extract information from this

More information

Leveraging Big Data: Lecture 13

Leveraging Big Data: Lecture 13 Leveraging Big Data: Lecture 13 http://www.cohenwang.com/edith/bigdataclass2013 Instructors: Edith Cohen Amos Fiat Haim Kaplan Tova Milo What are Linear Sketches? Linear Transformations of the input vector

More information

Online Forest Density Estimation

Online Forest Density Estimation Online Forest Density Estimation Frédéric Koriche CRIL - CNRS UMR 8188, Univ. Artois koriche@cril.fr UAI 16 1 Outline 1 Probabilistic Graphical Models 2 Online Density Estimation 3 Online Forest Density

More information

Sparse Recovery Using Sparse (Random) Matrices

Sparse Recovery Using Sparse (Random) Matrices Sparse Recovery Using Sparse (Random) Matrices Piotr Indyk MIT Joint work with: Radu Berinde, Anna Gilbert, Howard Karloff, Martin Strauss and Milan Ruzic Linear Compression (learning Fourier coeffs, linear

More information

Lecture 16 Oct. 26, 2017

Lecture 16 Oct. 26, 2017 Sketching Algorithms for Big Data Fall 2017 Prof. Piotr Indyk Lecture 16 Oct. 26, 2017 Scribe: Chi-Ning Chou 1 Overview In the last lecture we constructed sparse RIP 1 matrix via expander and showed that

More information

Succinct Data Structures for Approximating Convex Functions with Applications

Succinct Data Structures for Approximating Convex Functions with Applications Succinct Data Structures for Approximating Convex Functions with Applications Prosenjit Bose, 1 Luc Devroye and Pat Morin 1 1 School of Computer Science, Carleton University, Ottawa, Canada, K1S 5B6, {jit,morin}@cs.carleton.ca

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

Computing the Entropy of a Stream

Computing the Entropy of a Stream Computing the Entropy of a Stream To appear in SODA 2007 Graham Cormode graham@research.att.com Amit Chakrabarti Dartmouth College Andrew McGregor U. Penn / UCSD Outline Introduction Entropy Upper Bound

More information

Finding Frequent Items in Data Streams

Finding Frequent Items in Data Streams Finding Frequent Items in Data Streams Moses Charikar 1, Kevin Chen 2, and Martin Farach-Colton 3 1 Princeton University moses@cs.princeton.edu 2 UC Berkeley kevinc@cs.berkeley.edu 3 Rutgers University

More information

Boutsidis, Garber, Karnin, Liberty. PRESENTED BY Firstname Lastname August 25, 2013 PRESENTED BY Zohar Karnin November 23, 2014

Boutsidis, Garber, Karnin, Liberty. PRESENTED BY Firstname Lastname August 25, 2013 PRESENTED BY Zohar Karnin November 23, 2014 A Online PowerPoint Principal Presentation Component Analysis Boutsidis, Garber, Karnin, Liberty PRESENTED BY Firstname Lastname August 5, 013 PRESENTED BY Zohar Karnin November 3, 014 Data Matrix Often,

More information

Approximate counting: count-min data structure. Problem definition

Approximate counting: count-min data structure. Problem definition Approximate counting: count-min data structure G. Cormode and S. Muthukrishhan: An improved data stream summary: the count-min sketch and its applications. Journal of Algorithms 55 (2005) 58-75. Problem

More information

Mining Data Streams. The Stream Model. The Stream Model Sliding Windows Counting 1 s

Mining Data Streams. The Stream Model. The Stream Model Sliding Windows Counting 1 s Mining Data Streams The Stream Model Sliding Windows Counting 1 s 1 The Stream Model Data enters at a rapid rate from one or more input ports. The system cannot store the entire stream. How do you make

More information

Classic Network Measurements meets Software Defined Networking

Classic Network Measurements meets Software Defined Networking Classic Network s meets Software Defined Networking Ran Ben Basat, Technion, Israel Joint work with Gil Einziger and Erez Waisbard (Nokia Bell Labs) Roy Friedman (Technion) and Marcello Luzieli (UFGRS)

More information

Time-Decayed Correlated Aggregates over Data Streams

Time-Decayed Correlated Aggregates over Data Streams Time-Decayed Correlated Aggregates over Data Streams Graham Cormode AT&T Labs Research graham@research.att.com Srikanta Tirthapura Bojian Xu ECE Dept., Iowa State University {snt,bojianxu}@iastate.edu

More information

Causality & Concurrency. Time-Stamping Systems. Plausibility. Example TSS: Lamport Clocks. Example TSS: Vector Clocks

Causality & Concurrency. Time-Stamping Systems. Plausibility. Example TSS: Lamport Clocks. Example TSS: Vector Clocks Plausible Clocks with Bounded Inaccuracy Causality & Concurrency a b exists a path from a to b Brad Moore, Paul Sivilotti Computer Science & Engineering The Ohio State University paolo@cse.ohio-state.edu

More information

14.1 Finding frequent elements in stream

14.1 Finding frequent elements in stream Chapter 14 Streaming Data Model 14.1 Finding frequent elements in stream A very useful statistics for many applications is to keep track of elements that occur more frequently. It can come in many flavours

More information

Lecture 6 September 13, 2016

Lecture 6 September 13, 2016 CS 395T: Sublinear Algorithms Fall 206 Prof. Eric Price Lecture 6 September 3, 206 Scribe: Shanshan Wu, Yitao Chen Overview Recap of last lecture. We talked about Johnson-Lindenstrauss (JL) lemma [JL84]

More information

Stream Computation and Arthur- Merlin Communication

Stream Computation and Arthur- Merlin Communication Stream Computation and Arthur- Merlin Communication Justin Thaler, Yahoo! Labs Joint Work with: Amit Chakrabarti, Dartmouth Graham Cormode, University of Warwick Andrew McGregor, Umass Amherst Suresh Venkatasubramanian,

More information

Zero-One Laws for Sliding Windows and Universal Sketches

Zero-One Laws for Sliding Windows and Universal Sketches Zero-One Laws for Sliding Windows and Universal Sketches Vladimir Braverman 1, Rafail Ostrovsky 2, and Alan Roytman 3 1 Department of Computer Science, Johns Hopkins University, USA vova@cs.jhu.edu 2 Department

More information

Hash-based Indexing: Application, Impact, and Realization Alternatives

Hash-based Indexing: Application, Impact, and Realization Alternatives : Application, Impact, and Realization Alternatives Benno Stein and Martin Potthast Bauhaus University Weimar Web-Technology and Information Systems Text-based Information Retrieval (TIR) Motivation Consider

More information

Title: Count-Min Sketch Name: Graham Cormode 1 Affil./Addr. Department of Computer Science, University of Warwick,

Title: Count-Min Sketch Name: Graham Cormode 1 Affil./Addr. Department of Computer Science, University of Warwick, Title: Count-Min Sketch Name: Graham Cormode 1 Affil./Addr. Department of Computer Science, University of Warwick, Coventry, UK Keywords: streaming algorithms; frequent items; approximate counting, sketch

More information

Outline. Approximation: Theory and Algorithms. Application Scenario. 3 The q-gram Distance. Nikolaus Augsten. Definition and Properties

Outline. Approximation: Theory and Algorithms. Application Scenario. 3 The q-gram Distance. Nikolaus Augsten. Definition and Properties Outline Approximation: Theory and Algorithms Nikolaus Augsten Free University of Bozen-Bolzano Faculty of Computer Science DIS Unit 3 March 13, 2009 2 3 Nikolaus Augsten (DIS) Approximation: Theory and

More information

Lecture 5: Web Searching using the SVD

Lecture 5: Web Searching using the SVD Lecture 5: Web Searching using the SVD Information Retrieval Over the last 2 years the number of internet users has grown exponentially with time; see Figure. Trying to extract information from this exponentially

More information

Is Quantum Search Practical?

Is Quantum Search Practical? DARPA Is Quantum Search Practical? George F. Viamontes Igor L. Markov John P. Hayes University of Michigan, EECS Outline Motivation Background Quantum search Practical Requirements Quantum search versus

More information

Some notes on streaming algorithms continued

Some notes on streaming algorithms continued U.C. Berkeley CS170: Algorithms Handout LN-11-9 Christos Papadimitriou & Luca Trevisan November 9, 016 Some notes on streaming algorithms continued Today we complete our quick review of streaming algorithms.

More information

MATCHING-PURSUIT DICTIONARY PRUNING FOR MPEG-4 VIDEO OBJECT CODING

MATCHING-PURSUIT DICTIONARY PRUNING FOR MPEG-4 VIDEO OBJECT CODING MATCHING-PURSUIT DICTIONARY PRUNING FOR MPEG-4 VIDEO OBJECT CODING Yannick Morvan, Dirk Farin University of Technology Eindhoven 5600 MB Eindhoven, The Netherlands email: {y.morvan;d.s.farin}@tue.nl Peter

More information

Sketching in Adversarial Environments

Sketching in Adversarial Environments Sketching in Adversarial Environments Ilya Mironov Moni Naor Gil Segev Abstract We formalize a realistic model for computations over massive data sets. The model, referred to as the adversarial sketch

More information

Resource Allocation for Video Streaming in Wireless Environment

Resource Allocation for Video Streaming in Wireless Environment Resource Allocation for Video Streaming in Wireless Environment Shahrokh Valaee and Jean-Charles Gregoire Abstract This paper focuses on the development of a new resource allocation scheme for video streaming

More information

Wavelets for Efficient Querying of Large Multidimensional Datasets

Wavelets for Efficient Querying of Large Multidimensional Datasets Wavelets for Efficient Querying of Large Multidimensional Datasets Cyrus Shahabi University of Southern California Integrated Media Systems Center (IMSC) and Dept. of Computer Science Los Angeles, CA 90089-0781

More information

A Mergeable Summaries

A Mergeable Summaries A Mergeable Summaries Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei Wei, and Ke Yi We study the mergeability of data summaries. Informally speaking, mergeability requires

More information

Range-efficient computation of F 0 over massive data streams

Range-efficient computation of F 0 over massive data streams Range-efficient computation of F 0 over massive data streams A. Pavan Dept. of Computer Science Iowa State University pavan@cs.iastate.edu Srikanta Tirthapura Dept. of Elec. and Computer Engg. Iowa State

More information

Mining Data Streams. The Stream Model Sliding Windows Counting 1 s

Mining Data Streams. The Stream Model Sliding Windows Counting 1 s Mining Data Streams The Stream Model Sliding Windows Counting 1 s 1 The Stream Model Data enters at a rapid rate from one or more input ports. The system cannot store the entire stream. How do you make

More information

Two heads better than one: Pattern Discovery in Time-evolving Multi-Aspect Data

Two heads better than one: Pattern Discovery in Time-evolving Multi-Aspect Data Two heads better than one: Pattern Discovery in Time-evolving Multi-Aspect Data Jimeng Sun 1, Charalampos E. Tsourakakis 2, Evan Hoke 4, Christos Faloutsos 2, and Tina Eliassi-Rad 3 1 IBM T.J. Watson Research

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

Lecture 10. Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1

Lecture 10. Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1 Lecture 10 Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1 Recap Sublinear time algorithms Deterministic + exact: binary search Deterministic + inexact: estimating diameter in a

More information

Random Sampling on Big Data: Techniques and Applications Ke Yi

Random Sampling on Big Data: Techniques and Applications Ke Yi : Techniques and Applications Ke Yi Hong Kong University of Science and Technology yike@ust.hk Big Data in one slide The 3 V s: Volume Velocity Variety Integers, real numbers Points in a multi-dimensional

More information

Nonconvex penalties: Signal-to-noise ratio and algorithms

Nonconvex penalties: Signal-to-noise ratio and algorithms Nonconvex penalties: Signal-to-noise ratio and algorithms Patrick Breheny March 21 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/22 Introduction In today s lecture, we will return to nonconvex

More information

Online Learning, Mistake Bounds, Perceptron Algorithm

Online Learning, Mistake Bounds, Perceptron Algorithm Online Learning, Mistake Bounds, Perceptron Algorithm 1 Online Learning So far the focus of the course has been on batch learning, where algorithms are presented with a sample of training data, from which

More information

Algorithms for Nearest Neighbors

Algorithms for Nearest Neighbors Algorithms for Nearest Neighbors Background and Two Challenges Yury Lifshits Steklov Institute of Mathematics at St.Petersburg http://logic.pdmi.ras.ru/~yura McGill University, July 2007 1 / 29 Outline

More information

6. Iterative Methods for Linear Systems. The stepwise approach to the solution...

6. Iterative Methods for Linear Systems. The stepwise approach to the solution... 6 Iterative Methods for Linear Systems The stepwise approach to the solution Miriam Mehl: 6 Iterative Methods for Linear Systems The stepwise approach to the solution, January 18, 2013 1 61 Large Sparse

More information

Quicksort. Where Average and Worst Case Differ. S.V. N. (vishy) Vishwanathan. University of California, Santa Cruz

Quicksort. Where Average and Worst Case Differ. S.V. N. (vishy) Vishwanathan. University of California, Santa Cruz Quicksort Where Average and Worst Case Differ S.V. N. (vishy) Vishwanathan University of California, Santa Cruz vishy@ucsc.edu February 1, 2016 S.V. N. Vishwanathan (UCSC) CMPS101 1 / 28 Basic Idea Outline

More information

Beyond Distinct Counting: LogLog Composable Sketches of frequency statistics

Beyond Distinct Counting: LogLog Composable Sketches of frequency statistics Beyond Distinct Counting: LogLog Composable Sketches of frequency statistics Edith Cohen Google Research Tel Aviv University TOCA-SV 5/12/2017 8 Un-aggregated data 3 Data element e D has key and value

More information

Wavelet Footprints: Theory, Algorithms, and Applications

Wavelet Footprints: Theory, Algorithms, and Applications 1306 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 5, MAY 2003 Wavelet Footprints: Theory, Algorithms, and Applications Pier Luigi Dragotti, Member, IEEE, and Martin Vetterli, Fellow, IEEE Abstract

More information

CS 598CSC: Algorithms for Big Data Lecture date: Sept 11, 2014

CS 598CSC: Algorithms for Big Data Lecture date: Sept 11, 2014 CS 598CSC: Algorithms for Big Data Lecture date: Sept 11, 2014 Instructor: Chandra Cheuri Scribe: Chandra Cheuri The Misra-Greis deterministic counting guarantees that all items with frequency > F 1 /

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

An Algorithmist s Toolkit Nov. 10, Lecture 17

An Algorithmist s Toolkit Nov. 10, Lecture 17 8.409 An Algorithmist s Toolkit Nov. 0, 009 Lecturer: Jonathan Kelner Lecture 7 Johnson-Lindenstrauss Theorem. Recap We first recap a theorem (isoperimetric inequality) and a lemma (concentration) from

More information

Sieving for Shortest Vectors in Ideal Lattices:

Sieving for Shortest Vectors in Ideal Lattices: Sieving for Shortest Vectors in Ideal Lattices: a Practical Perspective Joppe W. Bos Microsoft Research LACAL@RISC Seminar on Cryptologic Algorithms CWI, Amsterdam, Netherlands Joint work with Michael

More information

Reducing Computation Time for the Analysis of Large Social Science Datasets

Reducing Computation Time for the Analysis of Large Social Science Datasets Reducing Computation Time for the Analysis of Large Social Science Datasets Douglas G. Bonett Center for Statistical Analysis in the Social Sciences University of California, Santa Cruz Jan 28, 2014 Overview

More information