Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery

Size: px
Start display at page:

Download "Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery"

Transcription

1 Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan

2 Connection between... Sparse Approximation and Compressed Sensing

3 Encoding schemes Image Linear encoding Φ Matrix image independent Nonlinear decoding Approx. Image Nonlinear encoding Ω Linear decoding Matrix image dependent Approx. Image Sparse Approximation Compressed Sensing

4 Linear encoding, nonlinear decoding Φ x = c highly nonlinear decoding x Φ y = d highly nonlinear decoding y Measure accuracy of decoded signal with respect to x k, best k-term approximation for x (in some orthonormal basis)

5 Problem statement m as small as possible (Design) matrix Φ: R n R m (Design Φ so that) given Φx = y for any signal x R n, there is an algorithm to recover x with x x p C x x k q

6 Parameters Number of measurements m Recovery time Approximation guarantee (p, q norms, mixed) One matrix vs. distribution over matrices Explicit construction Tolerance to measurement noise

7 Comparison with Sparse Approximation Sparse: Given y and Φ, find (sparse) x such that y = Φx. Return x with guarantee Φ x y 2 small compared with y Φx k 2. CS: Given y and Φ, find (sparse) x such that y = Φx. Return x with guarantee x x 2 small compared with 1 k x x k 1.

8 Analogy: root-finding p with p p ɛ p with f( p) 0 ɛ root = p ɛ ɛ Sparse: Given f (and y = 0), find p such that f (p) = 0. Return p with guarantee f ( p) 0 small. CS: Given f (and y = 0), find p such that f (p) = 0. Return p with guarantee p p small.

9 Root-finding analogy? Φx = x x !0.5 2!1 1.5!1.5 1!2!2!1.5!1!

10 Algorithms for CS Convex optimization Greedy iterative methods

11 Algorithms for CS Convex optimization Greedy iterative methods Problem formulations Recover entire signal Recover k significant terms

12 Algorithms for CS Convex optimization Greedy iterative methods Problem formulations Recover entire signal Recover k significant terms Role of probability: Probabilistic method: if choose Φ from distribution, whp it will satisfy certain properties Use randomness in algorithm

13 Algorithms for CS Convex optimization Greedy iterative methods Problem formulations Recover entire signal Recover k significant terms Role of probability: Probabilistic method: if choose Φ from distribution, whp it will satisfy certain properties Use randomness in algorithm Sparse representation is central to successful algorithms

14 CS Geometric methods Suppose Φ satisfies RIP(2, 2k, δ k ) condition: for any 2k-sparse vector x, (1 δ k ) x 2 Φx 2 (1 + δ k ) x 2. Given Φx = y, the solution x to the convex relaxation problem x = argmin z 1 s.t. Φz = Φx satisfies x x 2 C/ k x x k 1.

15 CS Geometric methods Suppose Φ satisfies RIP(2, 2k, δ k ) condition: for any 2k-sparse vector x, (1 δ k ) x 2 Φx 2 (1 + δ k ) x 2. Given Φx = y, the solution x to the convex relaxation problem x = argmin z 1 s.t. Φz = Φx satisfies x x 2 C/ k x x k 1. Dense recovery matrices: if draw Φ from random matrix with iid (sub-)gaussian entries or random rows of Fourier matrix, m = O(k log n/k) rows and n columns, Φ satisfies RIP(2) with high probability Example of probabilistic method to generate matrix not constructive Uniform guarantee: one matrix Φ that works for all x [Donoho 04],[Candes-Tao 04, 06],[Candes-Romberg-Tao 05], [Rudelson-Vershynin 06], [Cohen-Dahmen-DeVore 06], and many others...

16 CS Greedy algorithms Suppose Φ satisfies RIP(2, 2k, δ) condition. Given Φx = y, there are greedy iterative algorithms that produce x with x 0 = k x x 2 C( x x k 2 + 1/ k x x k 1 ). [Tropp-Needell 07],[Blumensath-Davies 08], and others Architecture of algorithms is Greedy Pursuit OMP Maximize: choose λ = set of m columns of Φ with large dot product Φ T r Update: Λ = Λ λ a = linear combination over Φ Λ Iterate: r = y Φa

17 Computational costs Computational time All dominated by Φ T r, matrix-vector product LP: O(T n), greedy: O(nk log(k/n) log( x 2 )) Storage Have to store Φ k log(n/k) n matrix (unless it has special structure!) Store x as you build it (only non-zero entries or entire vector) Randomness Have to generate Φ Theoretically, all entries are iid, truly random Note: drand48 is pseudo-random

18 Connection between... Sparse Approximation/Compressive Sensing and Streaming/Sublinear Algorithms

19 Data streams Data Streams IP packets header: source/destination address, payload size, protocol, etc. payload: transmitted data IP packets: Backbone link bandwidth = 40 Gbits/sec Over 90% packets are no more than 500 Bytes Monitor 10 million packets/second header: source/destination address, payload size, protocol, etc. payload: transmitted data

20 Heavy hitters ( , 128) ( , 1024) ( , 64) # Bytes IP address

21 Linear measurements ( , 128) =

22 Linear measurements ( , 128) ( , 1024) =

23 Linear measurements ( , 128) ( , 1024) ( , 64) =

24 Streaming algorithms Data (2) Storage space Auxiliary memory (4) what s stored in memory should be composable (1) per-item processing time (3) Time to produce output Resource constraints for (1), (2), and (3) should be poly log(d)

25 Streaming/Sub-linear algorithms There are sub-linear algorithms for CS running time: O(k polylog n) measurements/storage: O(k log(n/k)) error guarantees: match or l 1 /l 1 or l 2 /l 2 (with different probabilistic constructions) quite different geometric restrictions on Φ use and exploit pseudo-randomness to reduce storage space and speed up algorithms all conditions are sufficient, none seem to be necessary [Gilbert-Guha-Indyk-Kotidis-Muthukrishnan-Strauss 02], [Charikar-Chen-FarachColton 02] [Cormode-Muthukrishnan 04], [Gilbert-Strauss-Tropp-Vershynin 06, 07],[Gilbert-Li-Porat-Strauss 10]

26 New algorithms, phase transitions, random models d 1d histogram V-OPT (2,1) bi-criteria sparsity k d/2 d/log(d) 1/3 d random subdictionaries L1 optimization k ⅓μ -1 sufficient conditions for OMP and L1 optimizaiton 1 1/ d 1/3 1/2 1-1/d coherence μ 1

27 Alternative problem formulations + algorithms Dictionary Φ = piecewise constants (in 1 dimension) Extremely high coherence µ 1 1/d

28 Alternative problem formulations + algorithms Dictionary Φ = piecewise constants (in 1 dimension) Extremely high coherence µ 1 1/d Linear combinations of piecewise constants L1 L2 R2 R1

29 Alternative problem formulations + algorithms Dictionary Φ = piecewise constants (in 1 dimension) Extremely high coherence µ 1 1/d Linear combinations of piecewise constants L1 L2 R2 R1 but, more natural to count buckets in histograms L1 R1, L2 R2, L3 R3 Use at most twice as many buckets as piecewise constants in sparse representation

30 V-OPT Theorem There is a dynamic programming algorithm which produces the k-bucket histogram H k that minimizes x H k 2. The algorithm runs in time O(kd 2 ). [Jagadish, et al 98].

31 V-OPT Theorem There is a dynamic programming algorithm which produces the k-bucket histogram H k that minimizes x H k 2. The algorithm runs in time O(kd 2 ). [Jagadish, et al 98]. Dynamic programming is a different algorithmic technique from both greedy iterative algorithms and convex optimization.

32 V-OPT OPT(j,k-1) + cost(j+1,d) Idea: within a bucket, mean of signal values is best approximation 1 j+1 d

33 V-OPT OPT(j,k-1) + cost(j+1,d) Idea: within a bucket, mean of signal values is best approximation Assume last bucket is on [j + 1, d] 1 j+1 d

34 V-OPT OPT(j,k-1) + cost(j+1,d) 1 j+1 d Idea: within a bucket, mean of signal values is best approximation Assume last bucket is on [j + 1, d] What can we say about the remaining k 1 buckets?

35 V-OPT OPT(j,k-1) + cost(j+1,d) 1 j+1 d Idea: within a bucket, mean of signal values is best approximation Assume last bucket is on [j + 1, d] What can we say about the remaining k 1 buckets? must be optimal for range [1, j] with k 1 buckets

36 V-OPT OPT(j,k-1) + cost(j+1,d) 1 j+1 d where opt[d, k] = min {opt[j, k 1] + cost[(j + 1), d]} 1 j<d opt[j, k] = minimum cost of representing the set of values on [1, j] by histogram with k buckets and cost[(j + 1), d] = l 2 error on [j + 1, d]

37 V-OPT[Jagadish, et al 98] Input. signal x, buckets k Output. k bucket histogram H k x for i=1 to d for j=1 to k for l=1 to i-1 (split pt of j-1 bucket hist. and last bucket) OPT[i, j] = min OPT[i, j], OPT[l,j-1] + cost[l+1,i] OPT k d

38 Images Signals There is a big difference between 1 and any higher dimension for histograms

39 Images Signals There is a big difference between 1 and any higher dimension for histograms Finding the optimal k-rectangle histogram in 2d is NP-hard

40 Images Signals There is a big difference between 1 and any higher dimension for histograms Finding the optimal k-rectangle histogram in 2d is NP-hard There is an efficient algorithm which achieves minimal error (for k rectangles) with at most 4k rectangles. [Muthukrishnan and Strauss, 2003]

41 Summary Sparse approximation spawned many research directions, activities, applications, in many fields New algorithms, new applications Many new veins to be mined in next lectures

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Combining geometry and combinatorics

Combining geometry and combinatorics Combining geometry and combinatorics A unified approach to sparse signal recovery Anna C. Gilbert University of Michigan joint work with R. Berinde (MIT), P. Indyk (MIT), H. Karloff (AT&T), M. Strauss

More information

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Anna C. Gilbert Department of Mathematics University of Michigan Sparse signal recovery measurements:

More information

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Anna C. Gilbert Department of Mathematics University of Michigan Intuition from ONB Key step in algorithm: r, ϕ j = x c i ϕ i, ϕ j

More information

CS on CS: Computer Science insights into Compresive Sensing (and vice versa) Piotr Indyk MIT

CS on CS: Computer Science insights into Compresive Sensing (and vice versa) Piotr Indyk MIT CS on CS: Computer Science insights into Compresive Sensing (and vice versa) Piotr Indyk MIT Sparse Approximations Goal: approximate a highdimensional vector x by x that is sparse, i.e., has few nonzero

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles SIAM Student Research Conference Deanna Needell Joint work with Roman Vershynin and Joel Tropp UC Davis, May 2008 CoSaMP: Greedy Signal

More information

Tutorial: Sparse Signal Recovery

Tutorial: Sparse Signal Recovery Tutorial: Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan (Sparse) Signal recovery problem signal or population length N k important Φ x = y measurements or tests:

More information

Linear Sketches A Useful Tool in Streaming and Compressive Sensing

Linear Sketches A Useful Tool in Streaming and Compressive Sensing Linear Sketches A Useful Tool in Streaming and Compressive Sensing Qin Zhang 1-1 Linear sketch Random linear projection M : R n R k that preserves properties of any v R n with high prob. where k n. M =

More information

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp CoSaMP Iterative signal recovery from incomplete and inaccurate samples Joel A. Tropp Applied & Computational Mathematics California Institute of Technology jtropp@acm.caltech.edu Joint with D. Needell

More information

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk

Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk Model-Based Compressive Sensing for Signal Ensembles Marco F. Duarte Volkan Cevher Richard G. Baraniuk Concise Signal Structure Sparse signal: only K out of N coordinates nonzero model: union of K-dimensional

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

Simultaneous Sparsity

Simultaneous Sparsity Simultaneous Sparsity Joel A. Tropp Anna C. Gilbert Martin J. Strauss {jtropp annacg martinjs}@umich.edu Department of Mathematics The University of Michigan 1 Simple Sparse Approximation Work in the d-dimensional,

More information

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit Claremont Colleges Scholarship @ Claremont CMC Faculty Publications and Research CMC Faculty Scholarship 6-5-2008 Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Solution Recovery via L1 minimization: What are possible and Why?

Solution Recovery via L1 minimization: What are possible and Why? Solution Recovery via L1 minimization: What are possible and Why? Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Eighth US-Mexico Workshop on Optimization

More information

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit arxiv:0707.4203v2 [math.na] 14 Aug 2007 Deanna Needell Department of Mathematics University of California,

More information

An Adaptive Sublinear Time Block Sparse Fourier Transform

An Adaptive Sublinear Time Block Sparse Fourier Transform An Adaptive Sublinear Time Block Sparse Fourier Transform Volkan Cevher Michael Kapralov Jonathan Scarlett Amir Zandieh EPFL February 8th 217 Given x C N, compute the Discrete Fourier Transform (DFT) of

More information

Sparse recovery using sparse random matrices

Sparse recovery using sparse random matrices Sparse recovery using sparse random matrices Radu Berinde MIT texel@mit.edu Piotr Indyk MIT indyk@mit.edu April 26, 2008 Abstract We consider the approximate sparse recovery problem, where the goal is

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

Algorithms for sparse analysis Lecture I: Background on sparse approximation

Algorithms for sparse analysis Lecture I: Background on sparse approximation Algorithms for sparse analysis Lecture I: Background on sparse approximation Anna C. Gilbert Department of Mathematics University of Michigan Tutorial on sparse approximations and algorithms Compress data

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

Recent Developments in Compressed Sensing

Recent Developments in Compressed Sensing Recent Developments in Compressed Sensing M. Vidyasagar Distinguished Professor, IIT Hyderabad m.vidyasagar@iith.ac.in, www.iith.ac.in/ m vidyasagar/ ISL Seminar, Stanford University, 19 April 2018 Outline

More information

Sample Optimal Fourier Sampling in Any Constant Dimension

Sample Optimal Fourier Sampling in Any Constant Dimension 1 / 26 Sample Optimal Fourier Sampling in Any Constant Dimension Piotr Indyk Michael Kapralov MIT IBM Watson October 21, 2014 Fourier Transform and Sparsity Discrete Fourier Transform Given x C n, compute

More information

Exponential decay of reconstruction error from binary measurements of sparse signals

Exponential decay of reconstruction error from binary measurements of sparse signals Exponential decay of reconstruction error from binary measurements of sparse signals Deanna Needell Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters Outline Introduction Mathematical Formulation

More information

Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements

Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements Compressed Sensing - Near Optimal Recovery of Signals from Highly Incomplete Measurements Wolfgang Dahmen Institut für Geometrie und Praktische Mathematik RWTH Aachen and IMI, University of Columbia, SC

More information

Explicit Constructions for Compressed Sensing of Sparse Signals

Explicit Constructions for Compressed Sensing of Sparse Signals Explicit Constructions for Compressed Sensing of Sparse Signals Piotr Indyk MIT July 12, 2007 1 Introduction Over the recent years, a new approach for obtaining a succinct approximate representation of

More information

Multipath Matching Pursuit

Multipath Matching Pursuit Multipath Matching Pursuit Submitted to IEEE trans. on Information theory Authors: S. Kwon, J. Wang, and B. Shim Presenter: Hwanchol Jang Multipath is investigated rather than a single path for a greedy

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

Tutorial: Sparse Recovery Using Sparse Matrices. Piotr Indyk MIT

Tutorial: Sparse Recovery Using Sparse Matrices. Piotr Indyk MIT Tutorial: Sparse Recovery Using Sparse Matrices Piotr Indyk MIT Problem Formulation (approximation theory, learning Fourier coeffs, linear sketching, finite rate of innovation, compressed sensing...) Setup:

More information

Near Optimal Signal Recovery from Random Projections

Near Optimal Signal Recovery from Random Projections 1 Near Optimal Signal Recovery from Random Projections Emmanuel Candès, California Institute of Technology Multiscale Geometric Analysis in High Dimensions: Workshop # 2 IPAM, UCLA, October 2004 Collaborators:

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

Thresholds for the Recovery of Sparse Solutions via L1 Minimization

Thresholds for the Recovery of Sparse Solutions via L1 Minimization Thresholds for the Recovery of Sparse Solutions via L Minimization David L. Donoho Department of Statistics Stanford University 39 Serra Mall, Sequoia Hall Stanford, CA 9435-465 Email: donoho@stanford.edu

More information

Sparse Recovery Using Sparse (Random) Matrices

Sparse Recovery Using Sparse (Random) Matrices Sparse Recovery Using Sparse (Random) Matrices Piotr Indyk MIT Joint work with: Radu Berinde, Anna Gilbert, Howard Karloff, Martin Strauss and Milan Ruzic Linear Compression (learning Fourier coeffs, linear

More information

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Jorge F. Silva and Eduardo Pavez Department of Electrical Engineering Information and Decision Systems Group Universidad

More information

Sparse Optimization Lecture: Sparse Recovery Guarantees

Sparse Optimization Lecture: Sparse Recovery Guarantees Those who complete this lecture will know Sparse Optimization Lecture: Sparse Recovery Guarantees Sparse Optimization Lecture: Sparse Recovery Guarantees Instructor: Wotao Yin Department of Mathematics,

More information

Rapidly Computing Sparse Chebyshev and Legendre Coefficient Expansions via SFTs

Rapidly Computing Sparse Chebyshev and Legendre Coefficient Expansions via SFTs Rapidly Computing Sparse Chebyshev and Legendre Coefficient Expansions via SFTs Mark Iwen Michigan State University October 18, 2014 Work with Janice (Xianfeng) Hu Graduating in May! M.A. Iwen (MSU) Fast

More information

Heavy Hitters. Piotr Indyk MIT. Lecture 4

Heavy Hitters. Piotr Indyk MIT. Lecture 4 Heavy Hitters Piotr Indyk MIT Last Few Lectures Recap (last few lectures) Update a vector x Maintain a linear sketch Can compute L p norm of x (in zillion different ways) Questions: Can we do anything

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 3: Sparse signal recovery: A RIPless analysis of l 1 minimization Yuejie Chi The Ohio State University Page 1 Outline

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Journal of Information & Computational Science 11:9 (214) 2933 2939 June 1, 214 Available at http://www.joics.com Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Jingfei He, Guiling Sun, Jie

More information

Sparse Solutions of an Undetermined Linear System

Sparse Solutions of an Undetermined Linear System 1 Sparse Solutions of an Undetermined Linear System Maddullah Almerdasy New York University Tandon School of Engineering arxiv:1702.07096v1 [math.oc] 23 Feb 2017 Abstract This work proposes a research

More information

Tutorial: Sparse Recovery Using Sparse Matrices. Piotr Indyk MIT

Tutorial: Sparse Recovery Using Sparse Matrices. Piotr Indyk MIT Tutorial: Sparse Recovery Using Sparse Matrices Piotr Indyk MIT Problem Formulation (approximation theory, learning Fourier coeffs, linear sketching, finite rate of innovation, compressed sensing...) Setup:

More information

Lecture 16: Compressed Sensing

Lecture 16: Compressed Sensing Lecture 16: Compressed Sensing Introduction to Learning and Analysis of Big Data Kontorovich and Sabato (BGU) Lecture 16 1 / 12 Review of Johnson-Lindenstrauss Unsupervised learning technique key insight:

More information

Near-Optimal Sparse Recovery in the L 1 norm

Near-Optimal Sparse Recovery in the L 1 norm Near-Optimal Sparse Recovery in the L 1 norm Piotr Indyk MIT indyk@mit.edu Milan Ružić ITU Copenhagen milan@itu.dk Abstract We consider the approximate sparse recovery problem, where the goal is to (approximately)

More information

Compressed Sensing: Lecture I. Ronald DeVore

Compressed Sensing: Lecture I. Ronald DeVore Compressed Sensing: Lecture I Ronald DeVore Motivation Compressed Sensing is a new paradigm for signal/image/function acquisition Motivation Compressed Sensing is a new paradigm for signal/image/function

More information

ORTHOGONAL matching pursuit (OMP) is the canonical

ORTHOGONAL matching pursuit (OMP) is the canonical IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 9, SEPTEMBER 2010 4395 Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property Mark A. Davenport, Member, IEEE, and Michael

More information

Algorithmic linear dimension reduction in the l 1 norm for sparse vectors

Algorithmic linear dimension reduction in the l 1 norm for sparse vectors Algorithmic linear dimension reduction in the l norm for sparse vectors A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin Abstract Using a number of different algorithms, we can recover approximately

More information

Towards an Algorithmic Theory of Compressed Sensing

Towards an Algorithmic Theory of Compressed Sensing DIMACS Technical Report 2005-25 September 2005 Towards an Algorithmic Theory of Compressed Sensing by Graham Cormode 1 Bell Labs cormode@bell-labs.com S. Muthukrishnan 2,3 Rutgers University muthu@cs.rutgers.edu

More information

IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER

IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 9, SEPTEMBER 2015 1239 Preconditioning for Underdetermined Linear Systems with Sparse Solutions Evaggelia Tsiligianni, StudentMember,IEEE, Lisimachos P. Kondi,

More information

Three Generalizations of Compressed Sensing

Three Generalizations of Compressed Sensing Thomas Blumensath School of Mathematics The University of Southampton June, 2010 home prev next page Compressed Sensing and beyond y = Φx + e x R N or x C N x K is K-sparse and x x K 2 is small y R M or

More information

Sparse Fourier Transform (lecture 4)

Sparse Fourier Transform (lecture 4) 1 / 5 Sparse Fourier Transform (lecture 4) Michael Kapralov 1 1 IBM Watson EPFL St. Petersburg CS Club November 215 2 / 5 Given x C n, compute the Discrete Fourier Transform of x: x i = 1 n x j ω ij, j

More information

Compressed Sensing and Linear Codes over Real Numbers

Compressed Sensing and Linear Codes over Real Numbers Compressed Sensing and Linear Codes over Real Numbers Henry D. Pfister (joint with Fan Zhang) Texas A&M University College Station Information Theory and Applications Workshop UC San Diego January 31st,

More information

EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall Lecture 24 April 11 EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method

Lecture 13 October 6, Covering Numbers and Maurey s Empirical Method CS 395T: Sublinear Algorithms Fall 2016 Prof. Eric Price Lecture 13 October 6, 2016 Scribe: Kiyeon Jeon and Loc Hoang 1 Overview In the last lecture we covered the lower bound for p th moment (p > 2) and

More information

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar

More information

Noisy Signal Recovery via Iterative Reweighted L1-Minimization

Noisy Signal Recovery via Iterative Reweighted L1-Minimization Noisy Signal Recovery via Iterative Reweighted L1-Minimization Deanna Needell UC Davis / Stanford University Asilomar SSC, November 2009 Problem Background Setup 1 Suppose x is an unknown signal in R d.

More information

Compressed Sensing with Very Sparse Gaussian Random Projections

Compressed Sensing with Very Sparse Gaussian Random Projections Compressed Sensing with Very Sparse Gaussian Random Projections arxiv:408.504v stat.me] Aug 04 Ping Li Department of Statistics and Biostatistics Department of Computer Science Rutgers University Piscataway,

More information

The Analysis Cosparse Model for Signals and Images

The Analysis Cosparse Model for Signals and Images The Analysis Cosparse Model for Signals and Images Raja Giryes Computer Science Department, Technion. The research leading to these results has received funding from the European Research Council under

More information

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France

Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France Inverse problems and sparse models (1/2) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Structure of the tutorial Session 1: Introduction to inverse problems & sparse

More information

Combining geometry and combinatorics: a unified approach to sparse signal recovery

Combining geometry and combinatorics: a unified approach to sparse signal recovery Combining geometry and combinatorics: a unified approach to sparse signal recovery R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, and M. J. Strauss Abstract There are two main algorithmic approaches

More information

Elaine T. Hale, Wotao Yin, Yin Zhang

Elaine T. Hale, Wotao Yin, Yin Zhang , Wotao Yin, Yin Zhang Department of Computational and Applied Mathematics Rice University McMaster University, ICCOPT II-MOPTA 2007 August 13, 2007 1 with Noise 2 3 4 1 with Noise 2 3 4 1 with Noise 2

More information

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5

CS 229r: Algorithms for Big Data Fall Lecture 19 Nov 5 CS 229r: Algorithms for Big Data Fall 215 Prof. Jelani Nelson Lecture 19 Nov 5 Scribe: Abdul Wasay 1 Overview In the last lecture, we started discussing the problem of compressed sensing where we are given

More information

Compressed Sensing: Extending CLEAN and NNLS

Compressed Sensing: Extending CLEAN and NNLS Compressed Sensing: Extending CLEAN and NNLS Ludwig Schwardt SKA South Africa (KAT Project) Calibration & Imaging Workshop Socorro, NM, USA 31 March 2009 Outline 1 Compressed Sensing (CS) Introduction

More information

A tutorial on sparse modeling. Outline:

A tutorial on sparse modeling. Outline: A tutorial on sparse modeling. Outline: 1. Why? 2. What? 3. How. 4. no really, why? Sparse modeling is a component in many state of the art signal processing and machine learning tasks. image processing

More information

MATCHING PURSUIT WITH STOCHASTIC SELECTION

MATCHING PURSUIT WITH STOCHASTIC SELECTION 2th European Signal Processing Conference (EUSIPCO 22) Bucharest, Romania, August 27-3, 22 MATCHING PURSUIT WITH STOCHASTIC SELECTION Thomas Peel, Valentin Emiya, Liva Ralaivola Aix-Marseille Université

More information

AN INTRODUCTION TO COMPRESSIVE SENSING

AN INTRODUCTION TO COMPRESSIVE SENSING AN INTRODUCTION TO COMPRESSIVE SENSING Rodrigo B. Platte School of Mathematical and Statistical Sciences APM/EEE598 Reverse Engineering of Complex Dynamical Networks OUTLINE 1 INTRODUCTION 2 INCOHERENCE

More information

COMPRESSED SENSING IN PYTHON

COMPRESSED SENSING IN PYTHON COMPRESSED SENSING IN PYTHON Sercan Yıldız syildiz@samsi.info February 27, 2017 OUTLINE A BRIEF INTRODUCTION TO COMPRESSED SENSING A BRIEF INTRODUCTION TO CVXOPT EXAMPLES A Brief Introduction to Compressed

More information

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Deanna Needell and Roman Vershynin Abstract We demonstrate a simple greedy algorithm that can reliably

More information

COMPRESSED SENSING AND BEST k-term APPROXIMATION

COMPRESSED SENSING AND BEST k-term APPROXIMATION JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 22, Number 1, January 2009, Pages 211 231 S 0894-0347(08)00610-3 Article electronically published on July 31, 2008 COMPRESSED SENSING AND BEST k-term

More information

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Recovery Guarantees for Rank Aware Pursuits

Recovery Guarantees for Rank Aware Pursuits BLANCHARD AND DAVIES: RECOVERY GUARANTEES FOR RANK AWARE PURSUITS 1 Recovery Guarantees for Rank Aware Pursuits Jeffrey D. Blanchard and Mike E. Davies Abstract This paper considers sufficient conditions

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

Optimization for Compressed Sensing

Optimization for Compressed Sensing Optimization for Compressed Sensing Robert J. Vanderbei 2014 March 21 Dept. of Industrial & Systems Engineering University of Florida http://www.princeton.edu/ rvdb Lasso Regression The problem is to solve

More information

Compressive Sensing Theory and L1-Related Optimization Algorithms

Compressive Sensing Theory and L1-Related Optimization Algorithms Compressive Sensing Theory and L1-Related Optimization Algorithms Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, USA CAAM Colloquium January 26, 2009 Outline:

More information

Sparse analysis Lecture II: Hardness results for sparse approximation problems

Sparse analysis Lecture II: Hardness results for sparse approximation problems Sparse analysis Lecture II: Hardness results for sparse approximation problems Anna C. Gilbert Department of Mathematics University of Michigan Sparse Problems Exact. Given a vector x R d and a complete

More information

Gradient Descent with Sparsification: An iterative algorithm for sparse recovery with restricted isometry property

Gradient Descent with Sparsification: An iterative algorithm for sparse recovery with restricted isometry property : An iterative algorithm for sparse recovery with restricted isometry property Rahul Garg grahul@us.ibm.com Rohit Khandekar rohitk@us.ibm.com IBM T. J. Watson Research Center, 0 Kitchawan Road, Route 34,

More information

Lecture 16 Oct. 26, 2017

Lecture 16 Oct. 26, 2017 Sketching Algorithms for Big Data Fall 2017 Prof. Piotr Indyk Lecture 16 Oct. 26, 2017 Scribe: Chi-Ning Chou 1 Overview In the last lecture we constructed sparse RIP 1 matrix via expander and showed that

More information

Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice

Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice Jason N. Laska, Mark A. Davenport, Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University

More information

Recovering overcomplete sparse representations from structured sensing

Recovering overcomplete sparse representations from structured sensing Recovering overcomplete sparse representations from structured sensing Deanna Needell Claremont McKenna College Feb. 2015 Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix

More information

Compressive Sensing of Streams of Pulses

Compressive Sensing of Streams of Pulses Compressive Sensing of Streams of Pulses Chinmay Hegde and Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University Abstract Compressive Sensing (CS) has developed as an enticing

More information

Sparse Solutions of Systems of Equations and Sparse Modelling of Signals and Images

Sparse Solutions of Systems of Equations and Sparse Modelling of Signals and Images Sparse Solutions of Systems of Equations and Sparse Modelling of Signals and Images Alfredo Nava-Tudela ant@umd.edu John J. Benedetto Department of Mathematics jjb@umd.edu Abstract In this project we are

More information

Optimal Deterministic Compressed Sensing Matrices

Optimal Deterministic Compressed Sensing Matrices Optimal Deterministic Compressed Sensing Matrices Arash Saber Tehrani email: saberteh@usc.edu Alexandros G. Dimakis email: dimakis@usc.edu Giuseppe Caire email: caire@usc.edu Abstract We present the first

More information

Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-like Matrices in OMP

Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-like Matrices in OMP Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-like Matrices in OMP Hufei Zhu, Ganghua Yang Communications Technology Laboratory Huawei Technologies Co Ltd, P R China

More information

Sparse Legendre expansions via l 1 minimization

Sparse Legendre expansions via l 1 minimization Sparse Legendre expansions via l 1 minimization Rachel Ward, Courant Institute, NYU Joint work with Holger Rauhut, Hausdorff Center for Mathematics, Bonn, Germany. June 8, 2010 Outline Sparse recovery

More information

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina INDUSTRIAL MATHEMATICS INSTITUTE 2007:08 A remark on compressed sensing B.S. Kashin and V.N. Temlyakov IMI Preprint Series Department of Mathematics University of South Carolina A remark on compressed

More information

Compressed sensing and best k-term approximation

Compressed sensing and best k-term approximation Compressed sensing and best k-term approximation Albert Cohen, Wolfgang Dahmen, and Ronald DeVore July 19, 2006 Abstract Compressed sensing is a new concept in signal processing where one seeks to minimize

More information

The Fundamentals of Compressive Sensing

The Fundamentals of Compressive Sensing The Fundamentals of Compressive Sensing Mark A. Davenport Georgia Institute of Technology School of Electrical and Computer Engineering Sensor Explosion Data Deluge Digital Revolution If we sample a signal

More information

of Orthogonal Matching Pursuit

of Orthogonal Matching Pursuit A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit Qun Mo arxiv:50.0708v [cs.it] 8 Jan 205 Abstract We shall show that if the restricted isometry constant (RIC) δ s+ (A) of the measurement

More information

Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach

Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach Detecting Sparse Structures in Data in Sub-Linear Time: A group testing approach Boaz Nadler The Weizmann Institute of Science Israel Joint works with Inbal Horev, Ronen Basri, Meirav Galun and Ery Arias-Castro

More information

Sparse Expander-like Real-valued Projection (SERP) matrices for compressed sensing

Sparse Expander-like Real-valued Projection (SERP) matrices for compressed sensing Sparse Expander-like Real-valued Projection (SERP) matrices for compressed sensing Abdolreza Abdolhosseini Moghadam and Hayder Radha Department of Electrical and Computer Engineering, Michigan State University,

More information

Instance Optimal Decoding by Thresholding in Compressed Sensing

Instance Optimal Decoding by Thresholding in Compressed Sensing Instance Optimal Decoding by Thresholding in Compressed Sensing Albert Cohen, Wolfgang Dahmen, and Ronald DeVore November 1, 2008 Abstract Compressed Sensing sees to capture a discrete signal x IR N with

More information

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011 Compressed Sensing Huichao Xue CS3750 Fall 2011 Table of Contents Introduction From News Reports Abstract Definition How it works A review of L 1 norm The Algorithm Backgrounds for underdetermined linear

More information

Wavelet decomposition of data streams. by Dragana Veljkovic

Wavelet decomposition of data streams. by Dragana Veljkovic Wavelet decomposition of data streams by Dragana Veljkovic Motivation Continuous data streams arise naturally in: telecommunication and internet traffic retail and banking transactions web server log records

More information

Lecture 22: More On Compressed Sensing

Lecture 22: More On Compressed Sensing Lecture 22: More On Compressed Sensing Scribed by Eric Lee, Chengrun Yang, and Sebastian Ament Nov. 2, 207 Recap and Introduction Basis pursuit was the method of recovering the sparsest solution to an

More information