Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk

Size: px
Start display at page:

Download "Model-Based Compressive Sensing for Signal Ensembles. Marco F. Duarte Volkan Cevher Richard G. Baraniuk"

Transcription

1 Model-Based Compressive Sensing for Signal Ensembles Marco F. Duarte Volkan Cevher Richard G. Baraniuk

2 Concise Signal Structure Sparse signal: only K out of N coordinates nonzero model: union of K-dimensional subspaces aligned with coordinate axes x(n) x sorted index

3 Compressive Sensing Replace samples by more general encoder based on a few linear projections (inner products) Recover x from y using optimization ( 1 -norm minimization, LPs, QPs) or greedy algorithms (OMP, CoSaMP, SP, etc.), x is sparse y x measurements sparse signal information rate

4 Restricted Isometry Property (RIP) Preserve the structure of sparse signals RIP of order 2K implies: for all K-sparse x 1 and x 2 K-planes [Candès and Tao]

5 Restricted Isometry Property (RIP) Preserve the structure of sparse signals Random (iid Gaussian, Bernoulli) matrix has the RIP with high probability if K-planes [Candès and Tao; Baraniuk, Davenport, DeVore and Wakin]

6 Sensor Networks Networks of many sensor nodes sensor, microprocessor for computation, wireless communication, networking, battery sensors observe single event, acquire correlated signals Must be energy efficient minimize communication at expense of off-site computation motivates distributed compression

7 Distributed Compressive Sensing (DCS) Distributed Sensing y 1 = Φ 1 x 1 y 2 = Φ 2 x 2. y J = Φ J x J [Baron, Duarte, Wakin, Sarvotham, Baraniuk]

8 Distributed Compressive Sensing (DCS) Distributed Sensing Y Joint Recovery X [Baron, Duarte, Wakin, Sarvotham, Baraniuk]

9 JSM-2: Common Sparse Supports Model Measure J signals, each K-sparse Signals share sparse components but with different coefficients Recovery using Simultaneous Orthogonal Matching Pursuit (SOMP) algorithm [Tropp, Gilbert, Strauss] x 1 x 2 x 3 x J-1 x J

10 Beyond Sparse Models Sparse signal model captures only simplistic primary structure For many signal types, location of nonzero coefficients in sparse representation provide additional structure wavelets: natural images pixels: background subtracted images

11 Beyond Sparse Models Sparse signal model captures only simplistic primary structure For many signal types, location of nonzero coefficients in sparse representation provide additional structure wavelets: natural images pixels: background subtracted images

12 Sparse Signals Defn: A K-sparse signal lives on the collection of K-dim subspaces aligned with coord. axes

13 Structured Sparse Signals Defn: A K-structured sparse signal lives on a particular (reduced) collection of K-dim canonical subspaces [Lu and Do] [Blumensath and Davies]

14 Sparse Signal Ensemble Defn: An ensemble of J K-sparse signal lives on a collection of JK-dim subspaces aligned with coord. axes

15 Structured Sparse Signal Ensemble Defn: An structured ensemble of J K-sparse signals with common sparse support lives on a particular (reduced) collection of JK-dim canonical subspaces

16 RIP for Structured Sparsity Model Preserve the structure only of sparse signals that follow the structure Random (i.i.d. Gaussian, Bernoulli) matrix has the JSM-2 RIP with high probability if [Blumensath and Davies] X1 X2 m K JK-dim planes

17 RIP for Structured Sparsity Model Preserve the structure only of sparse signals that follow the structure Random (i.i.d. Gaussian, Bernoulli) matrix has the JSM-2 RIP with high probability if [Blumensath and Davies] X1 X2 m K JK-dim planes

18 RIP for Common Sparse Support Model Random (i.i.d. Gaussian, Bernoulli) matrix has the modelbased RIP with high probability if Distributed settings: measurements from different sensors can be added together to effectively obtain dense measurement matrix. X1 X2 m K JK-dim planes

19 Standard CS Recovery CoSaMP [Needell and Tropp] calculate current residual form residual signal estimate calculate enlarged support estimate signal for enlarged support shrink support

20 Model-Based CS Recovery Model-based CoSaMP : K-term structured sparse approximation algorithm calculate current residual form residual signal estimate calculate enlarged support estimate signal for enlarged support shrink support [Baraniuk, Cevher, Duarte, Hegde 2008]

21 Model-Based Recovery for JSM-2 Model-based Distributed CoSaMP CoSOMP calculate current residual at each sensor form residual signal estimate at each sensor r j = y j Φ j x j e j = Φ T j r j merge sensor estimates calculate enlarged support estimate signal proxy at each sensor merge sensor estimates shrink estimate support update signal estimates at each sensor e = J j=1 (e j e j ) Ω = supp(x) supp(t(e, 2K)) b j ω = Φ j Ω y j, b j ω C =0 b = J j=1 (b j b j ) Λ = supp(t(b,k)) x j Λ = b j Λ, x j Λ C =0

22 Model-Based CS Recovery Guarantees Theorem: Assume we obtain noisy CS measurements of a signal ensemble. If has the model-based RIP with, then we have CS recovery error signal K-term structured sparse approximation error noise In words, instance optimality based on structured sparse approximation

23 Model-Based CS Recovery Guarantees Theorem: Assume we obtain noisy CS measurements of a signal ensemble. If each Φ j has the RIP with, then we have CS recovery error signal K-term structured sparse approximation error noise In words, instance optimality based on structured sparse approximation

24 Real Data Example Environmental Sensing in Intel Berkeley Lab J = 49 sensors, N =1024 samples each Compare: independent recovery CoSaMP existing joint recovery SOMP model-based joint recovery CoSOMP

25 Experimental Results - Brightness Data (a) Original signal (c) CoSaMP recovery, distortion = db (d) CoSOMP recovery, distortion = db N = 1024, J = 48, M = 400

26 Experimental Results - Humidity Data Average recovery distortion, db CoSaMP 5 CoSOMP SOMP Number of measurements, M N = 1024, J = 48

27 Experimental Results - Network Size Probability of exact recovery CoSaMP CoSOMP Number of measurements, M N = 1024

28 Conclusions Intuitive union-of-subspaces model to encode structure of jointly sparse signal ensembles Structure enables reduction in number of measurements required for recovery Signal recovery algorithms are easily adapted to leverage additional structure New structure-based recovery guarantees such as instance optimality dsp.rice.edu/cs

Recovery of Compressible Signals in Unions of Subspaces

Recovery of Compressible Signals in Unions of Subspaces 1 Recovery of Compressible Signals in Unions of Subspaces Marco F. Duarte, Chinmay Hegde, Volkan Cevher, and Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University Abstract

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

The Fundamentals of Compressive Sensing

The Fundamentals of Compressive Sensing The Fundamentals of Compressive Sensing Mark A. Davenport Georgia Institute of Technology School of Electrical and Computer Engineering Sensor Explosion Data Deluge Digital Revolution If we sample a signal

More information

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles SIAM Student Research Conference Deanna Needell Joint work with Roman Vershynin and Joel Tropp UC Davis, May 2008 CoSaMP: Greedy Signal

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp

CoSaMP. Iterative signal recovery from incomplete and inaccurate samples. Joel A. Tropp CoSaMP Iterative signal recovery from incomplete and inaccurate samples Joel A. Tropp Applied & Computational Mathematics California Institute of Technology jtropp@acm.caltech.edu Joint with D. Needell

More information

Sparse Signal Recovery Using Markov Random Fields

Sparse Signal Recovery Using Markov Random Fields Sparse Signal Recovery Using Markov Random Fields Volkan Cevher Rice University volkan@rice.edu Chinmay Hegde Rice University chinmay@rice.edu Marco F. Duarte Rice University duarte@rice.edu Richard G.

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

GREEDY SIGNAL RECOVERY REVIEW

GREEDY SIGNAL RECOVERY REVIEW GREEDY SIGNAL RECOVERY REVIEW DEANNA NEEDELL, JOEL A. TROPP, ROMAN VERSHYNIN Abstract. The two major approaches to sparse recovery are L 1-minimization and greedy methods. Recently, Needell and Vershynin

More information

Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice

Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice Exact Signal Recovery from Sparsely Corrupted Measurements through the Pursuit of Justice Jason N. Laska, Mark A. Davenport, Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

Compressive Sensing Recovery of Spike Trains Using A Structured Sparsity Model

Compressive Sensing Recovery of Spike Trains Using A Structured Sparsity Model Compressive Sensing Recovery of Spike Trains Using A Structured Sparsity Model Chinmay Hegde, Marco F. Duarte, Volkan Cevher To cite this version: Chinmay Hegde, Marco F. Duarte, Volkan Cevher. Compressive

More information

The Analysis Cosparse Model for Signals and Images

The Analysis Cosparse Model for Signals and Images The Analysis Cosparse Model for Signals and Images Raja Giryes Computer Science Department, Technion. The research leading to these results has received funding from the European Research Council under

More information

Multipath Matching Pursuit

Multipath Matching Pursuit Multipath Matching Pursuit Submitted to IEEE trans. on Information theory Authors: S. Kwon, J. Wang, and B. Shim Presenter: Hwanchol Jang Multipath is investigated rather than a single path for a greedy

More information

ORTHOGONAL matching pursuit (OMP) is the canonical

ORTHOGONAL matching pursuit (OMP) is the canonical IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 9, SEPTEMBER 2010 4395 Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property Mark A. Davenport, Member, IEEE, and Michael

More information

Compressive Sensing of Streams of Pulses

Compressive Sensing of Streams of Pulses Compressive Sensing of Streams of Pulses Chinmay Hegde and Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University Abstract Compressive Sensing (CS) has developed as an enticing

More information

of Orthogonal Matching Pursuit

of Orthogonal Matching Pursuit A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit Qun Mo arxiv:50.0708v [cs.it] 8 Jan 205 Abstract We shall show that if the restricted isometry constant (RIC) δ s+ (A) of the measurement

More information

Compressed Sensing: Extending CLEAN and NNLS

Compressed Sensing: Extending CLEAN and NNLS Compressed Sensing: Extending CLEAN and NNLS Ludwig Schwardt SKA South Africa (KAT Project) Calibration & Imaging Workshop Socorro, NM, USA 31 March 2009 Outline 1 Compressed Sensing (CS) Introduction

More information

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery

Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Sparse analysis Lecture V: From Sparse Approximation to Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan Connection between... Sparse Approximation and Compressed

More information

Exponential decay of reconstruction error from binary measurements of sparse signals

Exponential decay of reconstruction error from binary measurements of sparse signals Exponential decay of reconstruction error from binary measurements of sparse signals Deanna Needell Joint work with R. Baraniuk, S. Foucart, Y. Plan, and M. Wootters Outline Introduction Mathematical Formulation

More information

A new method on deterministic construction of the measurement matrix in compressed sensing

A new method on deterministic construction of the measurement matrix in compressed sensing A new method on deterministic construction of the measurement matrix in compressed sensing Qun Mo 1 arxiv:1503.01250v1 [cs.it] 4 Mar 2015 Abstract Construction on the measurement matrix A is a central

More information

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information

BARANIUK et al.: MODEL-BASED COMPRESSIVE SENSING 1. Model-Based Compressive Sensing

BARANIUK et al.: MODEL-BASED COMPRESSIVE SENSING 1. Model-Based Compressive Sensing BARANIU et al.: MODEL-BASED COMPRESSIVE SENSING Model-Based Compressive Sensing Richard G. Baraniuk, Fellow, IEEE, Volkan Cevher, Member, IEEE, Marco F. Duarte, Member, IEEE, and Chinmay Hegde, Student

More information

Compressive sensing in the analog world

Compressive sensing in the analog world Compressive sensing in the analog world Mark A. Davenport Georgia Institute of Technology School of Electrical and Computer Engineering Compressive Sensing A D -sparse Can we really acquire analog signals

More information

Exact Topology Identification of Large-Scale Interconnected Dynamical Systems from Compressive Observations

Exact Topology Identification of Large-Scale Interconnected Dynamical Systems from Compressive Observations Exact Topology Identification of arge-scale Interconnected Dynamical Systems from Compressive Observations Borhan M Sanandaji, Tyrone Vincent, and Michael B Wakin Abstract In this paper, we consider the

More information

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Journal of Information & Computational Science 11:9 (214) 2933 2939 June 1, 214 Available at http://www.joics.com Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Jingfei He, Guiling Sun, Jie

More information

Stochastic geometry and random matrix theory in CS

Stochastic geometry and random matrix theory in CS Stochastic geometry and random matrix theory in CS IPAM: numerical methods for continuous optimization University of Edinburgh Joint with Bah, Blanchard, Cartis, and Donoho Encoder Decoder pair - Encoder/Decoder

More information

Noisy Signal Recovery via Iterative Reweighted L1-Minimization

Noisy Signal Recovery via Iterative Reweighted L1-Minimization Noisy Signal Recovery via Iterative Reweighted L1-Minimization Deanna Needell UC Davis / Stanford University Asilomar SSC, November 2009 Problem Background Setup 1 Suppose x is an unknown signal in R d.

More information

The Pros and Cons of Compressive Sensing

The Pros and Cons of Compressive Sensing The Pros and Cons of Compressive Sensing Mark A. Davenport Stanford University Department of Statistics Compressive Sensing Replace samples with general linear measurements measurements sampled signal

More information

DISTRIBUTED TARGET LOCALIZATION VIA SPATIAL SPARSITY

DISTRIBUTED TARGET LOCALIZATION VIA SPATIAL SPARSITY First published in the Proceedings of the 16th European Signal Processing Conference (EUSIPCO-2008) in 2008, published by EURASIP DISTRIBUTED TARGET LOCALIZATION VIA SPATIAL SPARSITY Volkan Cevher, Marco

More information

arxiv: v2 [cs.lg] 6 May 2017

arxiv: v2 [cs.lg] 6 May 2017 arxiv:170107895v [cslg] 6 May 017 Information Theoretic Limits for Linear Prediction with Graph-Structured Sparsity Abstract Adarsh Barik Krannert School of Management Purdue University West Lafayette,

More information

Stopping Condition for Greedy Block Sparse Signal Recovery

Stopping Condition for Greedy Block Sparse Signal Recovery Stopping Condition for Greedy Block Sparse Signal Recovery Yu Luo, Ronggui Xie, Huarui Yin, and Weidong Wang Department of Electronics Engineering and Information Science, University of Science and Technology

More information

Compressed Sensing and Related Learning Problems

Compressed Sensing and Related Learning Problems Compressed Sensing and Related Learning Problems Yingzhen Li Dept. of Mathematics, Sun Yat-sen University Advisor: Prof. Haizhang Zhang Advisor: Prof. Haizhang Zhang 1 / Overview Overview Background Compressed

More information

SCRIBERS: SOROOSH SHAFIEEZADEH-ABADEH, MICHAËL DEFFERRARD

SCRIBERS: SOROOSH SHAFIEEZADEH-ABADEH, MICHAËL DEFFERRARD EE-731: ADVANCED TOPICS IN DATA SCIENCES LABORATORY FOR INFORMATION AND INFERENCE SYSTEMS SPRING 2016 INSTRUCTOR: VOLKAN CEVHER SCRIBERS: SOROOSH SHAFIEEZADEH-ABADEH, MICHAËL DEFFERRARD STRUCTURED SPARSITY

More information

Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective

Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective Low-Dimensional Models for Dimensionality Reduction and Signal Recovery: A Geometric Perspective 1 Richard G. Baraniuk, Volkan Cevher, Michael B. Wakin Abstract We compare and contrast from a geometric

More information

Simultaneous Sparsity

Simultaneous Sparsity Simultaneous Sparsity Joel A. Tropp Anna C. Gilbert Martin J. Strauss {jtropp annacg martinjs}@umich.edu Department of Mathematics The University of Michigan 1 Simple Sparse Approximation Work in the d-dimensional,

More information

SUBSPACE CLUSTERING WITH DENSE REPRESENTATIONS. Eva L. Dyer, Christoph Studer, Richard G. Baraniuk

SUBSPACE CLUSTERING WITH DENSE REPRESENTATIONS. Eva L. Dyer, Christoph Studer, Richard G. Baraniuk SUBSPACE CLUSTERING WITH DENSE REPRESENTATIONS Eva L. Dyer, Christoph Studer, Richard G. Baraniuk Rice University; e-mail: {e.dyer, studer, richb@rice.edu} ABSTRACT Unions of subspaces have recently been

More information

SUBSPACE CLUSTERING WITH DENSE REPRESENTATIONS. Eva L. Dyer, Christoph Studer, Richard G. Baraniuk. ECE Department, Rice University, Houston, TX

SUBSPACE CLUSTERING WITH DENSE REPRESENTATIONS. Eva L. Dyer, Christoph Studer, Richard G. Baraniuk. ECE Department, Rice University, Houston, TX SUBSPACE CLUSTERING WITH DENSE REPRESENTATIONS Eva L. Dyer, Christoph Studer, Richard G. Baraniuk ECE Department, Rice University, Houston, TX ABSTRACT Unions of subspaces have recently been shown to provide

More information

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Jorge F. Silva and Eduardo Pavez Department of Electrical Engineering Information and Decision Systems Group Universidad

More information

arxiv: v1 [math.na] 26 Nov 2009

arxiv: v1 [math.na] 26 Nov 2009 Non-convexly constrained linear inverse problems arxiv:0911.5098v1 [math.na] 26 Nov 2009 Thomas Blumensath Applied Mathematics, School of Mathematics, University of Southampton, University Road, Southampton,

More information

Collaborative Compressive Spectrum Sensing Using Kronecker Sparsifying Basis

Collaborative Compressive Spectrum Sensing Using Kronecker Sparsifying Basis Collaborative Compressive Spectrum Sensing Using Kronecker Sparsifying Basis Ahmed M Elzanati, Mohamed F Abdelkader, Karim G Seddik and Atef M Ghuniem Department of Communication and Electronics, Sinai

More information

On Rank Awareness, Thresholding, and MUSIC for Joint Sparse Recovery

On Rank Awareness, Thresholding, and MUSIC for Joint Sparse Recovery On Rank Awareness, Thresholding, and MUSIC for Joint Sparse Recovery Jeffrey D. Blanchard a,1,, Caleb Leedy a,2, Yimin Wu a,2 a Department of Mathematics and Statistics, Grinnell College, Grinnell, IA

More information

Fast Hard Thresholding with Nesterov s Gradient Method

Fast Hard Thresholding with Nesterov s Gradient Method Fast Hard Thresholding with Nesterov s Gradient Method Volkan Cevher Idiap Research Institute Ecole Polytechnique Federale de ausanne volkan.cevher@epfl.ch Sina Jafarpour Department of Computer Science

More information

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Deanna Needell and Roman Vershynin Abstract We demonstrate a simple greedy algorithm that can reliably

More information

Interpolation via weighted l 1 minimization

Interpolation via weighted l 1 minimization Interpolation via weighted l 1 minimization Rachel Ward University of Texas at Austin December 12, 2014 Joint work with Holger Rauhut (Aachen University) Function interpolation Given a function f : D C

More information

CS on CS: Computer Science insights into Compresive Sensing (and vice versa) Piotr Indyk MIT

CS on CS: Computer Science insights into Compresive Sensing (and vice versa) Piotr Indyk MIT CS on CS: Computer Science insights into Compresive Sensing (and vice versa) Piotr Indyk MIT Sparse Approximations Goal: approximate a highdimensional vector x by x that is sparse, i.e., has few nonzero

More information

Compressed Sensing: Lecture I. Ronald DeVore

Compressed Sensing: Lecture I. Ronald DeVore Compressed Sensing: Lecture I Ronald DeVore Motivation Compressed Sensing is a new paradigm for signal/image/function acquisition Motivation Compressed Sensing is a new paradigm for signal/image/function

More information

SPARSE signal processing has recently been exploited in

SPARSE signal processing has recently been exploited in JOURNA OF A TEX CASS FIES, VO. 14, NO. 8, AUGUST 2015 1 Simultaneous Sparse Approximation Using an Iterative Method with Adaptive Thresholding Shahrzad Kiani, Sahar Sadrizadeh, Mahdi Boloursaz, Student

More information

Sparse recovery using sparse random matrices

Sparse recovery using sparse random matrices Sparse recovery using sparse random matrices Radu Berinde MIT texel@mit.edu Piotr Indyk MIT indyk@mit.edu April 26, 2008 Abstract We consider the approximate sparse recovery problem, where the goal is

More information

Compressive Sensing Theory and L1-Related Optimization Algorithms

Compressive Sensing Theory and L1-Related Optimization Algorithms Compressive Sensing Theory and L1-Related Optimization Algorithms Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, USA CAAM Colloquium January 26, 2009 Outline:

More information

Signal Sparsity Models: Theory and Applications

Signal Sparsity Models: Theory and Applications Signal Sparsity Models: Theory and Applications Raja Giryes Computer Science Department, Technion Michael Elad, Technion, Haifa Israel Sangnam Nam, CMI, Marseille France Remi Gribonval, INRIA, Rennes France

More information

AN OVERVIEW OF ROBUST COMPRESSIVE SENSING OF SPARSE SIGNALS IN IMPULSIVE NOISE

AN OVERVIEW OF ROBUST COMPRESSIVE SENSING OF SPARSE SIGNALS IN IMPULSIVE NOISE AN OVERVIEW OF ROBUST COMPRESSIVE SENSING OF SPARSE SIGNALS IN IMPULSIVE NOISE Ana B. Ramirez, Rafael E. Carrillo, Gonzalo Arce, Kenneth E. Barner and Brian Sadler Universidad Industrial de Santander,

More information

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit arxiv:0707.4203v2 [math.na] 14 Aug 2007 Deanna Needell Department of Mathematics University of California,

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

AN INTRODUCTION TO COMPRESSIVE SENSING

AN INTRODUCTION TO COMPRESSIVE SENSING AN INTRODUCTION TO COMPRESSIVE SENSING Rodrigo B. Platte School of Mathematical and Statistical Sciences APM/EEE598 Reverse Engineering of Complex Dynamical Networks OUTLINE 1 INTRODUCTION 2 INCOHERENCE

More information

An Overview of Compressed Sensing

An Overview of Compressed Sensing An Overview of Compressed Sensing Nathan Schneider November 18, 2009 Abstract In a large number of applications, the system will be designed to sample at a rate equal to at least the frequency bandwidth

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms

Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Sparse analysis Lecture III: Dictionary geometry and greedy algorithms Anna C. Gilbert Department of Mathematics University of Michigan Intuition from ONB Key step in algorithm: r, ϕ j = x c i ϕ i, ϕ j

More information

Gradient Descent with Sparsification: An iterative algorithm for sparse recovery with restricted isometry property

Gradient Descent with Sparsification: An iterative algorithm for sparse recovery with restricted isometry property : An iterative algorithm for sparse recovery with restricted isometry property Rahul Garg grahul@us.ibm.com Rohit Khandekar rohitk@us.ibm.com IBM T. J. Watson Research Center, 0 Kitchawan Road, Route 34,

More information

Lecture Notes 9: Constrained Optimization

Lecture Notes 9: Constrained Optimization Optimization-based data analysis Fall 017 Lecture Notes 9: Constrained Optimization 1 Compressed sensing 1.1 Underdetermined linear inverse problems Linear inverse problems model measurements of the form

More information

Z Algorithmic Superpower Randomization October 15th, Lecture 12

Z Algorithmic Superpower Randomization October 15th, Lecture 12 15.859-Z Algorithmic Superpower Randomization October 15th, 014 Lecture 1 Lecturer: Bernhard Haeupler Scribe: Goran Žužić Today s lecture is about finding sparse solutions to linear systems. The problem

More information

Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces

Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces Aalborg Universitet Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces Christensen, Mads Græsbøll; Nielsen, Jesper Kjær Published in: I E E E / S P Workshop

More information

Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes

Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes Compressed Sensing Using Reed- Solomon and Q-Ary LDPC Codes Item Type text; Proceedings Authors Jagiello, Kristin M. Publisher International Foundation for Telemetering Journal International Telemetering

More information

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Block-sparse Solutions using Kernel Block RIP and its Application to Group Lasso

Block-sparse Solutions using Kernel Block RIP and its Application to Group Lasso Block-sparse Solutions using Kernel Block RIP and its Application to Group Lasso Rahul Garg IBM T.J. Watson research center grahul@us.ibm.com Rohit Khandekar IBM T.J. Watson research center rohitk@us.ibm.com

More information

Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity

Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity Subspace Pursuit for Compressive Sensing: Closing the Gap Between Performance and Complexity Wei Dai and Olgica Milenkovic Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

More information

Sparse Recovery Using Sparse (Random) Matrices

Sparse Recovery Using Sparse (Random) Matrices Sparse Recovery Using Sparse (Random) Matrices Piotr Indyk MIT Joint work with: Radu Berinde, Anna Gilbert, Howard Karloff, Martin Strauss and Milan Ruzic Linear Compression (learning Fourier coeffs, linear

More information

Performance Analysis for Sparse Support Recovery

Performance Analysis for Sparse Support Recovery Performance Analysis for Sparse Support Recovery Gongguo Tang and Arye Nehorai ESE, Washington University April 21st 2009 Gongguo Tang and Arye Nehorai (Institute) Performance Analysis for Sparse Support

More information

Bhaskar Rao Department of Electrical and Computer Engineering University of California, San Diego

Bhaskar Rao Department of Electrical and Computer Engineering University of California, San Diego Bhaskar Rao Department of Electrical and Computer Engineering University of California, San Diego 1 Outline Course Outline Motivation for Course Sparse Signal Recovery Problem Applications Computational

More information

Tree-Structured Compressive Sensing with Variational Bayesian Analysis

Tree-Structured Compressive Sensing with Variational Bayesian Analysis 1 Tree-Structured Compressive Sensing with Variational Bayesian Analysis Lihan He, Haojun Chen and Lawrence Carin Department of Electrical and Computer Engineering Duke University Durham, NC 27708-0291

More information

Compressed Sensing Using Bernoulli Measurement Matrices

Compressed Sensing Using Bernoulli Measurement Matrices ITSchool 11, Austin Compressed Sensing Using Bernoulli Measurement Matrices Yuhan Zhou Advisor: Wei Yu Department of Electrical and Computer Engineering University of Toronto, Canada Motivation Motivation

More information

Estimating Unknown Sparsity in Compressed Sensing

Estimating Unknown Sparsity in Compressed Sensing Estimating Unknown Sparsity in Compressed Sensing Miles Lopes UC Berkeley Department of Statistics CSGF Program Review July 16, 2014 early version published at ICML 2013 Miles Lopes ( UC Berkeley ) estimating

More information

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond

Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Large-Scale L1-Related Minimization in Compressive Sensing and Beyond Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Arizona State University March

More information

Designing Information Devices and Systems I Discussion 13B

Designing Information Devices and Systems I Discussion 13B EECS 6A Fall 7 Designing Information Devices and Systems I Discussion 3B. Orthogonal Matching Pursuit Lecture Orthogonal Matching Pursuit (OMP) algorithm: Inputs: A set of m songs, each of length n: S

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Combining geometry and combinatorics

Combining geometry and combinatorics Combining geometry and combinatorics A unified approach to sparse signal recovery Anna C. Gilbert University of Michigan joint work with R. Berinde (MIT), P. Indyk (MIT), H. Karloff (AT&T), M. Strauss

More information

Near-Optimal Sparse Recovery in the L 1 norm

Near-Optimal Sparse Recovery in the L 1 norm Near-Optimal Sparse Recovery in the L 1 norm Piotr Indyk MIT indyk@mit.edu Milan Ružić ITU Copenhagen milan@itu.dk Abstract We consider the approximate sparse recovery problem, where the goal is to (approximately)

More information

Robust multichannel sparse recovery

Robust multichannel sparse recovery Robust multichannel sparse recovery Esa Ollila Department of Signal Processing and Acoustics Aalto University, Finland SUPELEC, Feb 4th, 2015 1 Introduction 2 Nonparametric sparse recovery 3 Simulation

More information

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit Claremont Colleges Scholarship @ Claremont CMC Faculty Publications and Research CMC Faculty Scholarship 6-5-2008 Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit

More information

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016 Lecture notes 5 February 9, 016 1 Introduction Random projections Random projections are a useful tool in the analysis and processing of high-dimensional data. We will analyze two applications that use

More information

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Anna C. Gilbert Department of Mathematics University of Michigan Sparse signal recovery measurements:

More information

Generalized Orthogonal Matching Pursuit

Generalized Orthogonal Matching Pursuit Generalized Orthogonal Matching Pursuit Jian Wang, Seokbeop Kwon and Byonghyo Shim Information System Laboratory School of Information and Communication arxiv:1111.6664v1 [cs.it] 29 ov 2011 Korea University,

More information

Compressed sensing techniques for hyperspectral image recovery

Compressed sensing techniques for hyperspectral image recovery Compressed sensing techniques for hyperspectral image recovery A. Abrardo, M. Barni, C. M. Carretti, E. Magli, S. Kuiteing Kamdem, R. Vitulli ABSTRACT Compressed Sensing (CS) theory is progressively gaining

More information

Fast Reconstruction Algorithms for Deterministic Sensing Matrices and Applications

Fast Reconstruction Algorithms for Deterministic Sensing Matrices and Applications Fast Reconstruction Algorithms for Deterministic Sensing Matrices and Applications Program in Applied and Computational Mathematics Princeton University NJ 08544, USA. Introduction What is Compressive

More information

THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS

THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS THEORY OF COMPRESSIVE SENSING VIA l 1 -MINIMIZATION: A NON-RIP ANALYSIS AND EXTENSIONS YIN ZHANG Abstract. Compressive sensing (CS) is an emerging methodology in computational signal processing that has

More information

Compressive Sensing for Signal Ensembles

Compressive Sensing for Signal Ensembles RICE UNIVERSITY Compressive Sensing for Signal Ensembles by Marco F. Duarte A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE:

More information

Introduction to compressive sampling

Introduction to compressive sampling Introduction to compressive sampling Sparsity and the equation Ax = y Emanuele Grossi DAEIMI, Università degli Studi di Cassino e-mail: e.grossi@unicas.it Gorini 2010, Pistoia Outline 1 Introduction Traditional

More information

Analog-to-Information Conversion

Analog-to-Information Conversion Analog-to-Information Conversion Sergiy A. Vorobyov Dept. Signal Processing and Acoustics, Aalto University February 2013 Winter School on Compressed Sensing, Ruka 1/55 Outline 1 Compressed Sampling (CS)

More information

Tutorial: Sparse Recovery Using Sparse Matrices. Piotr Indyk MIT

Tutorial: Sparse Recovery Using Sparse Matrices. Piotr Indyk MIT Tutorial: Sparse Recovery Using Sparse Matrices Piotr Indyk MIT Problem Formulation (approximation theory, learning Fourier coeffs, linear sketching, finite rate of innovation, compressed sensing...) Setup:

More information

Iterative Hard Thresholding for Compressed Sensing

Iterative Hard Thresholding for Compressed Sensing Iterative Hard Thresholding for Compressed Sensing Thomas lumensath and Mike E. Davies 1 Abstract arxiv:0805.0510v1 [cs.it] 5 May 2008 Compressed sensing is a technique to sample compressible signals below

More information

Sparse Expander-like Real-valued Projection (SERP) matrices for compressed sensing

Sparse Expander-like Real-valued Projection (SERP) matrices for compressed sensing Sparse Expander-like Real-valued Projection (SERP) matrices for compressed sensing Abdolreza Abdolhosseini Moghadam and Hayder Radha Department of Electrical and Computer Engineering, Michigan State University,

More information

Stability and Robustness of Weak Orthogonal Matching Pursuits

Stability and Robustness of Weak Orthogonal Matching Pursuits Stability and Robustness of Weak Orthogonal Matching Pursuits Simon Foucart, Drexel University Abstract A recent result establishing, under restricted isometry conditions, the success of sparse recovery

More information

Enhanced Compressive Sensing and More

Enhanced Compressive Sensing and More Enhanced Compressive Sensing and More Yin Zhang Department of Computational and Applied Mathematics Rice University, Houston, Texas, U.S.A. Nonlinear Approximation Techniques Using L1 Texas A & M University

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

Sampling and Recovery of Pulse Streams

Sampling and Recovery of Pulse Streams Sampling and Recovery of Pulse Streams Chinmay Hegde and Richard G. Baraniuk Department of Electrical and Computer Engineering Rice University Abstract Compressive Sensing (CS) is a new technique for the

More information

Compressed Spectrum Sensing for Whitespace Networking

Compressed Spectrum Sensing for Whitespace Networking Compressed Spectrum Sensing for Whitespace Networking Vishnu Katreddy Masters Project Report Abstract We study the problem of wideband compressed spectrum sensing for detection of whitespaces when some

More information

Compressed Sensing. 1 Introduction. 2 Design of Measurement Matrices

Compressed Sensing. 1 Introduction. 2 Design of Measurement Matrices Compressed Sensing Yonina C. Eldar Electrical Engineering Department, Technion-Israel Institute of Technology, Haifa, Israel, 32000 1 Introduction Compressed sensing (CS) is an exciting, rapidly growing

More information