Bulk Air Flow in a Duct. Hoods and Local Exhaust Ventilation. Inside a ventilation system. System Nomenclature

Size: px
Start display at page:

Download "Bulk Air Flow in a Duct. Hoods and Local Exhaust Ventilation. Inside a ventilation system. System Nomenclature"

Transcription

1 Bulk Ar Flow n a Duct Hoods and Local Exhaust Ventlaton Essental pressure and low relatonshps Ar movement always ollows the pressure gradent Flow goes rom hgher (abs) pressure to lower (abs) pressure regons Ths s the eect o molecular-level collsons More energetc molecules collde wth neghbors, and ncrease the velocty o the surroundng molecules (and pressure) Flowng ar has momentum and vscosty momentum orces t to travel n ~ straght lnes vscosty orces t to low nto and ll the avalable volume the conlct o these orces nduces eddy currents n turbulent low Wth contnued collsons, added energy s gradually transormed rom the energy o low to the heat energy o ncreased veloctes o ndvdual molecules. Any energy nput s transormed rom ts ntal state to low energy and nally to heat. System Nomenclature Insde a ventlaton system Dagram Courtesy o S. Guey S = - V = + T = - Upstream (Exhaust) Sde S = + V = + T = + Downstream (Blowng) Sde

2 Ar as a lud Ar has mass, just lke any other lud Generally have a mxture o water vapor and dry ar Most Vent tables and charts reer to ar at Normal Condtons ressure 9.91 Hg Temp 70ºF Humdty lb HO/ lb dry ar (abs) Humd volume 1.5 t /lb dry ar Densty lb/t Enthalpy 5.54 BTU/lb dry ar Relatve humdty 50% Densty actor = 1 System Desgn Requrements In ventlaton systems, we want to specy: the volume o ar movng n the system branches the pressures that are requred to move ar n the system branches the an capacty needed to operate the system To compute ths n the system we apply: Conservaton o mass Conservaton o energy Conservaton laws Conservaton o Mass Used to compute the volume low rate (Q) and duct veloctes Conservaton o Energy Used to computer the system pressures and an horsepower requrements Conservaton o Mass Mass cannot be created or destroyed; so the total mass low n the system s just gven by the sum o the nputs (or outputs) an = = + + = Mass low rate n lbs/mn (or kg/s) 1

3 Conservaton o mass (Contnuty eqn.) Conservaton o mass means I we know the densty we can wrte eqns n terms o a volume low rate Q (t /mn).e. = ρ Q = ρ V A m n lbs/mn; Q n t /mn; _ n lbs/t so that 4 = + becomes ρ 4Q4 = ρq + ρq Ths general equaton s always true n the system Conservaton o mass- Volume Flow Oten the contnuty equaton uses volume low rate rather than mass low; assumng rho=constant Note that a volume low rate Q (t /mn) Can be wrtten as: Q = V A = ρ V bar represents the average velocty n the duct so that ρ4q4 = ρq + ρq becomes Q4 = Q + Q Ths equaton s approxmately true n most ventlaton systems Volumetrc Flow Rate The volume o ar lowng through a system past a certan cross secton pont Q Gven n Cubc Feet er Mnute (CFM) The amount o ar lowng through any pont has to be the same Volume o ar has to be the same, but the area and the velocty do not reman the same I you ncrease the area you decrease the velocty Q 1 Q Q Constant densty assumpton The constant densty assumpton requres that T, w, and are constant n the system. Ths s never strctly true ( s changes) but densty changes are oten small enough to be a useul approxmaton Example: say S = 10 H 0 n the duct, then densty change ~10/407= 0.05 or.5% Thus constant densty s a good assumpton

4 Densty at normal condtons Densty o standard ar = lb/t Ar densty aected by: mosture, temperature & alttude above sea level Densty correctons needed, when: Mosture exceeds 0.0 lbs water/lb o ar Ar temp outsde o F range ressure 8.4 < < 1.4 Alttude exceeds t relatve to mean sea level At other heghts: alttude bar = ( STD) exp 4,400 s Duct ressures v T = S + V.e. A statement o an energy balance Statc pressure ~ potental energy term Velocty pressure ~ Knetc Energy term Total pressure ~ total energy term Recall KE s _ mv so KE term s proportonal to V Densty eect on v At NT, V = (V/4005) or V n t/mn, V n nches H O V = 4005 OR V At non standard condtons V =1096 V = 4005 ρ actual Where d s the densty correcton actor: ρactual d = ρ NT V d Note that v becomes very small when V s small so the method s lmted to arly hgh veloctes above ~ 1000 FM Q: we can read +/-.005 H0, what s the error at V=600 FM? Densty correcton V Denstyactual lb / t V = Densty 0.075lb 50 F r essure = x x actual t (460 + t) 9.9 Densty actual = ar densty n lb/t t = temperature n o F ressure = pressure n nches o mercury Also gven by : Where _p s n eet o ar Note: 1 HO = 69. t o ar 4005 = V = 4005V = gδp (.17)69. (60 mn/ sec) 4

5 Sgn Conventon or pressure Total pressure ( T ) and Statc ressure ( S ) Mnus sgn upstream o an ostve sgn downstream o an T = S + v Total ressure = Statc ressure + Velocty ressure Velocty ressure ( V ) Always has a postve sgn Seral low n a duct secton We use conservaton o energy to nd pressure + To Fan 1 T = 1 S 1 V 1 T = S + V Energy Balance says: T 1 = T + losses = + losses S + V S V Ideally s and V can be converted back and orth, but losses always occur Conservaton o energy Drecton o entropy Energy s proporton to pressure, so changes n pressure relect changes n energy (or power). On an absolute pressure scale, the ar always lows rom regons o hgher pressure toward lower pressure Ar low begns at 1 atm at potental energy proportonal to 407 w.g. On the upstream sde, the an creates a lower nlet pressure; t dgs a hole n the ar and ar alls nto the an On the downstream sde, the an creates a pressure hgher than 1 atm n the duct; t pushes ar out the exhaust The an energy must overcomng rcton, varous losses and restore the ar to atmospherc pressure at the outlet ower n duct lows Conservaton o energy says that the energy needed s the sum o the energy used to accelerate the low and the energy needed to overcome rcton and system losses Recall: T s proportonal to total energy In act: Q* T = power used n system ower s n Watts s n a and Q n M /s Converson: 1 H O=49 a; 1000 CFM=0.47 M /s Watts = T *Q* or T n H O and Q n CFM (Note: watts / ( H O CFM) = 49*.47/1000) 1 H = 745 Watts, so n prncple we also can estmate an horsepower! 5

6 1,000 cm 0 H ower = Q x T -1.0" +0.5" -0.5".08 H Change n Total ressure or Seral Flow ncreasng dsspated power as ar lows a b c d -1." +0.5" -0.8" 0.1 H -1.6" +0.5" -1.1" 0.17 H Reerenced to atmospherc -1.9" +0.5" -1.4" 0. H 0.06 H e +1." +0.4" +1.6" 0.5 H Types o losses Frcton Losses: Flud n moton encounters drag along the surace Energy s needed to overcome the drag orce The drag orce s due to the lud vscosty Dynamc losses Turbulence and eddes n the low Momentum losses due to change n drecton Found n expansons, contractons, elbows, junctons and hood entres Fan ower= 0. H+ 0.5 H Frcton losses Frcton losses H are proportonal to the knetc energy n the movng lud In general orm: Wesbach-Darcy rcton eqn: H = L D V1 Losses actor s uncton o v, Re, and surace roughness Frcton losses We use a smpled orm where H s proportonal v H = k V1 k s determned rom charts and gures eg vent manual or curve ttng For example n a straght duct: 0 L H =.8 ( ) 1. V D 1 6

7 Frcton losses Frcton losses ncrease lnearly wth duct length ncreasng ar densty Losses depend on the duct materal and wall roughness Losses ncrease wth V (and also Q ) Losses decrease ~ wth square o duct area (proportonal to 1/A.5 but approx 1/A ) Dynamc Losses - entres Hoods are the busness end o the capture system The hood s the only place where you can capture the contamnant urpose: To enclose or contan the source Drect the contamnate nto the system Mnmze the loss o contamnant nto the room Mnmze energy losses nto the system The more abrupt the change n drecton, the greater the separaton Hood Desgn Desgn parameter or hoods = Q Q = volumetrc low rate n cubc eet /mn Q = VA Flow nto a rounded entry Flow nto a plan duct entry ΔT = F x V or most components F depends on smoothness o turns V = ar velocty n pm A = area o duct n square eet low s not measured drectly determned by measurng velocty & knowng cross sectonal area o low 7

8 Hood Types Hood Types Enclosng Hood contamnant source contaned wthn hood examples: lab ume hood glove box, pant booth good or: contamnants wth hgh toxcty areas where there s a hgh cross drat potental Arlow requrements determned by the product o velocty x area o enclosure The more complete the enclosure the less arlow requrement needed Less susceptble to outsde ar currents Hnges to mprove overhead and sdes access Lght xture d h turntable Sde Vew (Enclosure transparent) Capture Hood creates exhaust arlow n ront o openng to capture & remove contamnant capture velocty or V c a actor o how the contamnant s dspersed room ar currents how ar the source s rom the hood openng Dsadvantages May requre large arlow requrements Subject to crossdrats The eectve reach s lmted to ~ 1 dameter or less dt ws wt hs Lx Lx = greatest dstance rom hood ace to source Hood Types Recevng or Capture Hoods: utlze natural movement o contamnant toward hood openng good or: canopy over hot process (range hood) radal arm saw hood not good or: ne partcles hgh toxcty contamnants cold processes Hood Selecton Factors otental or outsde ar currents nature o the process whch generates the contamnant otental or contamnatng the breathng zone (canopy hoods) Source: Dnard SR. The Occupatonal Envronment Its evaluaton & Control (1998) 8

9 END here Crtcal low condtons Increasng pressure upstream, e.g. 1.6 atmospheres Velocty not lmted atmospherc pressure atmospherc pressure Velocty lmted Decreasng pressure downstream, e.g. 0.4 atmospheres Crtcal Orces and ressures Upstream and Downstream 9

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy? Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76 PHYS 1101 Practce problem set 1, Chapter 3: 1,, 4, 57, 61, 83 Chapter 33: 7, 1, 3, 38, 44, 49, 76 3.1. Vsualze: Please reer to Fgure Ex3.1. Solve: Because B s n the same drecton as the ntegraton path s

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

EMU Physics Department

EMU Physics Department Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

ONE-DIMENSIONAL COLLISIONS

ONE-DIMENSIONAL COLLISIONS Purpose Theory ONE-DIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n one-dmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

PHYS 1441 Section 002 Lecture #16

PHYS 1441 Section 002 Lecture #16 PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Non-conservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!

More information

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved. Physcs 3: Lecture 5 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

Chapter 7. Potential Energy and Conservation of Energy

Chapter 7. Potential Energy and Conservation of Energy Chapter 7 Potental Energy and Conservaton o Energy 1 Forms o Energy There are many orms o energy, but they can all be put nto two categores Knetc Knetc energy s energy o moton Potental Potental energy

More information

CHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy. - Kinetic energy (KE) - Potential energy (PE) PE = mgz

CHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy. - Kinetic energy (KE) - Potential energy (PE) PE = mgz SYSTM CHAPTR 7 NRGY BALANCS 1 7.1-7. SYSTM nergy & 1st Law of Thermodynamcs * What s energy? * Forms of nergy - Knetc energy (K) K 1 mv - Potental energy (P) P mgz - Internal energy (U) * Total nergy,

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

Airflow and Contaminant Simulation with CONTAM

Airflow and Contaminant Simulation with CONTAM Arflow and Contamnant Smulaton wth CONTAM George Walton, NIST CHAMPS Developers Workshop Syracuse Unversty June 19, 2006 Network Analogy Electrc Ppe, Duct & Ar Wre Ppe, Duct, or Openng Juncton Juncton

More information

The Governing Equations

The Governing Equations The Governng Equatons L. Goodman General Physcal Oceanography MAR 555 School for Marne Scences and Technology Umass-Dartmouth Dynamcs of Oceanography The Governng Equatons- (IPO-7) Mass Conservaton and

More information

Chapter 21 - The Kinetic Theory of Gases

Chapter 21 - The Kinetic Theory of Gases hapter 1 - he Knetc heory o Gases 1. Δv 8.sn 4. 8.sn 4. m s F Nm. 1 kg.94 N Δ t. s F A 1.7 N m 1.7 a N mv 1.6 Use the equaton descrbng the knetc-theory account or pressure:. hen mv Kav where N nna NA N

More information

Conservation of Energy

Conservation of Energy Lecture 3 Chapter 8 Physcs I 0.3.03 Conservaton o Energy Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcsall.html 95.4, Fall 03,

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Physics 2A Chapter 9 HW Solutions

Physics 2A Chapter 9 HW Solutions Phscs A Chapter 9 HW Solutons Chapter 9 Conceptual Queston:, 4, 8, 13 Problems: 3, 8, 1, 15, 3, 40, 51, 6 Q9.. Reason: We can nd the change n momentum o the objects b computng the mpulse on them and usng

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

Chapter 8: Potential Energy and The Conservation of Total Energy

Chapter 8: Potential Energy and The Conservation of Total Energy Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. -Dmenson F x d U( x) dx

More information

PHYSICS 203-NYA-05 MECHANICS

PHYSICS 203-NYA-05 MECHANICS PHYSICS 03-NYA-05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN - ST. LAWRENCE 790 NÉRÉE-TREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/

More information

1. Int In e t rnal Losses: tak ta e k place plac in the inner passages adding heat to the flow medium 2. External losses:

1. Int In e t rnal Losses: tak ta e k place plac in the inner passages adding heat to the flow medium 2. External losses: he Losses of urbomachnes 1. Internal Losses: Losses whch take place n the nner passages of the machne and drectly connected wth rotor or flow of the medum and whch are addng heat to the flow medum 2. External

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 12 7/25/14 ERD: 7.1-7.5 Devoe: 8.1.1-8.1.2, 8.2.1-8.2.3, 8.4.1-8.4.3 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 2014 A. Free Energy and Changes n Composton: The

More information

Physics 3 (PHYF144) Chap 2: Heat and the First Law of Thermodynamics System. Quantity Positive Negative

Physics 3 (PHYF144) Chap 2: Heat and the First Law of Thermodynamics System. Quantity Positive Negative Physcs (PHYF hap : Heat and the Frst aw of hermodynamcs -. Work and Heat n hermodynamc Processes A thermodynamc system s a system that may exchange energy wth ts surroundngs by means of heat and work.

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total).

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total). CHEMISTRY 123-07 Mdterm #2 answer key November 04, 2010 Statstcs: Average: 68 p (68%); Hghest: 91 p (91%); Lowest: 37 p (37%) Number of students performng at or above average: 58 (53%) Number of students

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

You will analyze the motion of the block at different moments using the law of conservation of energy.

You will analyze the motion of the block at different moments using the law of conservation of energy. Physcs 00A Homework 7 Chapter 8 Where s the Energy? In ths problem, we wll consder the ollowng stuaton as depcted n the dagram: A block o mass m sldes at a speed v along a horzontal smooth table. It next

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

ME 440 Aerospace Engineering Fundamentals

ME 440 Aerospace Engineering Fundamentals Fall 006 ME 440 Aerosace Engneerng Fundamentals roulson hrust Jet Engne F m( & Rocket Engne F m & F ρ A - n ) ρ A he basc rncle nsde the engne s to convert the ressure and thermal energy of the workng

More information

Experiment 5 Elastic and Inelastic Collisions

Experiment 5 Elastic and Inelastic Collisions PHY191 Experment 5: Elastc and Inelastc Collsons 7/1/011 Page 1 Experment 5 Elastc and Inelastc Collsons Readng: Bauer&Westall: Chapter 7 (and 8, or center o mass deas) as needed Homework 5: turn n the

More information

Physics 2A Chapters 6 - Work & Energy Fall 2017

Physics 2A Chapters 6 - Work & Energy Fall 2017 Physcs A Chapters 6 - Work & Energy Fall 017 These notes are eght pages. A quck summary: The work-energy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

Physics 240: Worksheet 30 Name:

Physics 240: Worksheet 30 Name: (1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy

More information

Chapter Seven - Potential Energy and Conservation of Energy

Chapter Seven - Potential Energy and Conservation of Energy Chapter Seven - Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members

More information

Conservation of Energy

Conservation of Energy Conservaton o nergy The total energy o a system can change only by amounts o energy that are transerred nto or out o the system W mec th nt Ths s one o the great conservaton laws n nature! Other conservaton

More information

Homework Chapter 21 Solutions!!

Homework Chapter 21 Solutions!! Homework Chapter 1 Solutons 1.7 1.13 1.17 1.19 1.6 1.33 1.45 1.51 1.71 page 1 Problem 1.7 A mole sample of oxygen gas s confned to a 5 lter vessel at a pressure of 8 atm. Fnd the average translatonal knetc

More information

Chapter 5 rd Law of Thermodynamics

Chapter 5 rd Law of Thermodynamics Entropy and the nd and 3 rd Chapter 5 rd Law o hermodynamcs homas Engel, hlp Red Objectves Introduce entropy. Derve the condtons or spontanety. Show how S vares wth the macroscopc varables,, and. Chapter

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6.

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6. r. 6.5-.7 (.) Rest Mass,ork by Changng orces Columba Rep 3pm, here RE 6.b (last day to drop) ed. 6.8-.9(.8,.9) Introducng Potental Energy RE 6.c Tues. H6: Ch 6 Pr s 58,59, 99(a-c), 05(a-c) moton s nether

More information

and Statistical Mechanics Material Properties

and Statistical Mechanics Material Properties Statstcal Mechancs and Materal Propertes By Kuno TAKAHASHI Tokyo Insttute of Technology, Tokyo 15-855, JAPA Phone/Fax +81-3-5734-3915 takahak@de.ttech.ac.jp http://www.de.ttech.ac.jp/~kt-lab/ Only for

More information

Turbulent Flow. Turbulent Flow

Turbulent Flow. Turbulent Flow http://www.youtube.com/watch?v=xoll2kedog&feature=related http://br.youtube.com/watch?v=7kkftgx2any http://br.youtube.com/watch?v=vqhxihpvcvu 1. Caothc fluctuatons wth a wde range of frequences and

More information

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics ART II Some applications of fluid mechanics Fluid Mechanics ressure ressure = F/A Units: Newton's per square meter, Nm -, kgm - s - The same unit is also known as a ascal, a, i.e. a = Nm - ) English units:

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Axial Turbine Analysis

Axial Turbine Analysis Axal Turbne Analyss From Euler turbomachnery (conservaton) equatons need to Nole understand change n tangental velocty to relate to forces on blades and power m W m rc e rc uc uc e Analye flow n a plane

More information

Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2

Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2 Lnear omentum Week 8: Chapter 9 Lnear omentum and Collsons The lnear momentum of a partcle, or an object that can be modeled as a partcle, of mass m movng wth a velocty v s defned to be the product of

More information

Page 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Non-constant forces

Page 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Non-constant forces Physcs 131: Lecture 14 Today s Agenda Imulse and Momentum Non-constant forces Imulse-momentum momentum thm Conservaton of Lnear momentum Eternal/Internal forces Eamles Physcs 201: Lecture 1, Pg 1 Physcs

More information

= r. / cisely It was not isothermal, nor exactly adia- ! If / l/l /! i i \ i LjSj?

= r. / cisely It was not isothermal, nor exactly adia- ! If / l/l /! i i \ i LjSj? 376 Lea & Burke Physcs; The Nature of Thngs 19.44 J»(Pa) At constant V A \ LjSj?! '/! If / l/l /!! j j J [ ^ 1 I X j j> 1 ' : / J! 60 100 T('K) 200 Constant V lnes are mapped onto straght lnes on the P-T

More information

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 ) Angular momentum Instructor: Dr. Ho Lam TAM ( 譚海嵐 ) Physcs Enhancement Programme or Gted Students The Hong Kong Academy or Gted Educaton and Department o Physcs, HKBU Department o Physcs Hong Kong Baptst

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

Estimation of Natural Frequency of the Bearing System under Periodic Force Based on Principal of Hydrodynamic Mass of Fluid

Estimation of Natural Frequency of the Bearing System under Periodic Force Based on Principal of Hydrodynamic Mass of Fluid Internatonal Journal o Mechancal and Mechatroncs Engneerng Vol:, No:7, 009 Estmaton o Natural Frequency o the Bearng System under Perodc Force Based on Prncpal o Hydrodynamc Mass o Flud M. H. Pol, A. Bd,

More information

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model Lecture 4. Thermodynamcs [Ch. 2] Energy, Entropy, and Avalablty Balances Phase Equlbra - Fugactes and actvty coeffcents -K-values Nondeal Thermodynamc Property Models - P-v-T equaton-of-state models -

More information

MODULE 6 HUMIDIFICATION AND AIR CONDITIONING

MODULE 6 HUMIDIFICATION AND AIR CONDITIONING MODULE 6 UMIDIFICATION AND AIR CONDITIONING LECTURE NO. 7 6.7 Evaporaton loss of water n coolng tower: Blowdown: Durng the coolng process of hot water n coolng tower, around % water evaporates [-3]. In

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

Conservation Laws (Collisions) Phys101 Lab - 04

Conservation Laws (Collisions) Phys101 Lab - 04 Conservaton Laws (Collsons) Phys101 Lab - 04 1.Objectves The objectves o ths experment are to expermentally test the valdty o the laws o conservaton o momentum and knetc energy n elastc collsons. 2. Theory

More information

PHYS 1443 Section 002

PHYS 1443 Section 002 PHYS 443 Secton 00 Lecture #6 Wednesday, Nov. 5, 008 Dr. Jae Yu Collsons Elastc and Inelastc Collsons Two Dmensonal Collsons Center o ass Fundamentals o Rotatonal otons Wednesday, Nov. 5, 008 PHYS PHYS

More information

Gasometric Determination of NaHCO 3 in a Mixture

Gasometric Determination of NaHCO 3 in a Mixture 60 50 40 0 0 5 15 25 35 40 Temperature ( o C) 9/28/16 Gasometrc Determnaton of NaHCO 3 n a Mxture apor Pressure (mm Hg) apor Pressure of Water 1 NaHCO 3 (s) + H + (aq) Na + (aq) + H 2 O (l) + CO 2 (g)

More information

Chapter 11 Structure of Matter 133 Answers to the Conceptual Questions

Chapter 11 Structure of Matter 133 Answers to the Conceptual Questions hapter 11 Structure of Matter 1 Answers to the onceptual Questons 1. These models gave detaled explanatons for events that had already occurred but lacked any predctve power.. Many examples apply.. Although

More information

Physics 207, Lecture 13, Oct. 15. Energy

Physics 207, Lecture 13, Oct. 15. Energy Physcs 07 Lecture 3 Physcs 07, Lecture 3, Oct. 5 Goals: Chapter 0 Understand the relatonshp between moton and energy Dene Potental Energy n a Hooke s Law sprng Deelop and explot conseraton o energy prncple

More information

Lecture 22: Potential Energy

Lecture 22: Potential Energy Lecture : Potental Energy We have already studed the work-energy theorem, whch relates the total work done on an object to the change n knetc energy: Wtot = KE For a conservatve orce, the work done by

More information

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays

More information

Physics 114 Exam 3 Spring Name:

Physics 114 Exam 3 Spring Name: Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse

More information

11. TRADITIONAL MEASUREMENT OF VOLUME FLOW RATE Volume flow rate deduced from velocity measurement data Application example

11. TRADITIONAL MEASUREMENT OF VOLUME FLOW RATE Volume flow rate deduced from velocity measurement data Application example 11. TRADITIONAL MEASUREMENT OF VOLUME FLOW RATE 11.1. Volume flow rate deduced from velocty measurement data 11.1.1. Applcaton example 11.1.. Prncple and layouts = ' ' A V da v q = A da v = A da v A A

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulic Head and Fluid Potential. p o. p o + p

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulic Head and Fluid Potential. p o. p o + p 1.7, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #3: Hydraulc Head and Flud Potental What makes water flow? Consder ressure Water Level o A Water Level C o o + B Pressure at A atmosherc (

More information

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit Problem Set #6 soluton, Chem 340, Fall 2013 Due Frday, Oct 11, 2013 Please show all work for credt To hand n: Atkns Chap 3 Exercses: 3.3(b), 3.8(b), 3.13(b), 3.15(b) Problems: 3.1, 3.12, 3.36, 3.43 Engel

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

Ionization fronts in HII regions

Ionization fronts in HII regions Ionzaton fronts n HII regons Intal expanson of HII onzaton front s supersonc, creatng a shock front. Statonary frame: front advances nto neutral materal In frame where shock front s statonary, neutral

More information

Rotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles

Rotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles Conservaton o Angular Momentum 8.0 WD Rotatonal and Translatonal Comparson Quantty Momentum Ang Momentum Force Torque Knetc Energy Work Power Rotaton L cm = I cm ω = dl / cm cm K = (/ ) rot P rot θ W =

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

Please initial the statement below to show that you have read it

Please initial the statement below to show that you have read it EN40: Dynamcs and Vbratons Mdterm Examnaton Thursday March 5 009 Dvson of Engneerng rown Unversty NME: Isaac Newton General Instructons No collaboraton of any knd s permtted on ths examnaton. You may brng

More information

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2. Chemstry 360 Dr. Jean M. Standard Problem Set 9 Solutons. The followng chemcal reacton converts sulfur doxde to sulfur troxde. SO ( g) + O ( g) SO 3 ( l). (a.) Wrte the expresson for K eq for ths reacton.

More information

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3. r r. Position, Velocity, and Acceleration Revisited Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

Chemical Engineering Department University of Washington

Chemical Engineering Department University of Washington Chemcal Engneerng Department Unversty of Washngton ChemE 60 - Exam I July 4, 003 - Mass Flow Rate of Steam Through a Turbne (5 onts) Steam enters a turbne at 70 o C and.8 Ma and leaves at 00 ka wth a qualty

More information

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure nhe roblem-solvng Strategy hapter 4 Transformaton rocess onceptual Model formulaton procedure Mathematcal Model The mathematcal model s an abstracton that represents the engneerng phenomena occurrng n

More information

Physics 131: Lecture 16. Today s Agenda

Physics 131: Lecture 16. Today s Agenda Physcs 131: Lecture 16 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton t o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004 Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Numercal models for unsteady flow n ppe dvdng systems R. Klasnc," H. Knoblauch," R. Mader* ^ Department of Hydraulc Structures and Water Resources Management, Graz Unversty of Technology, A-8010, Graz,

More information

Prof. Dr. I. Nasser T /16/2017

Prof. Dr. I. Nasser T /16/2017 Pro. Dr. I. Nasser T-171 10/16/017 Chapter Part 1 Moton n one dmenson Sectons -,, 3, 4, 5 - Moton n 1 dmenson We le n a 3-dmensonal world, so why bother analyzng 1-dmensonal stuatons? Bascally, because

More information

CONTROLLING GALLING IN SHEET METAL FORMING OF HIGH STRENGTH STEELS: A NUMERICAL APPROACH

CONTROLLING GALLING IN SHEET METAL FORMING OF HIGH STRENGTH STEELS: A NUMERICAL APPROACH CONTROLLING GALLING IN SHEET METAL FORMING OF HIGH STRENGTH STEELS: A NUMERICAL APPROACH Edwn Gelnck TNO, Endhoven, The Netherlands Emle van der Hede TNO, Endhoven, The Netherlands Matthjn de Rooj Unversty

More information

Week 6, Chapter 7 Sect 1-5

Week 6, Chapter 7 Sect 1-5 Week 6, Chapter 7 Sect 1-5 Work and Knetc Energy Lecture Quz The frctonal force of the floor on a large sutcase s least when the sutcase s A.pushed by a force parallel to the floor. B.dragged by a force

More information

Air Age Equation Parameterized by Ventilation Grouped Time WU Wen-zhong

Air Age Equation Parameterized by Ventilation Grouped Time WU Wen-zhong Appled Mechancs and Materals Submtted: 2014-05-07 ISSN: 1662-7482, Vols. 587-589, pp 449-452 Accepted: 2014-05-10 do:10.4028/www.scentfc.net/amm.587-589.449 Onlne: 2014-07-04 2014 Trans Tech Publcatons,

More information