EMU Physics Department

Size: px
Start display at page:

Download "EMU Physics Department"

Transcription

1 Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department

2 Denton o Work W q The work, W, done by a constant orce on an object s dened as the product o the component o the orce along the drecton o dsplacement and the magntude o the dsplacement W º ( F cosq ) Dx n F s the magntude o the orce n Δ x s the magntude o the object s dsplacement!! n q s the angle between F and Dx

3 Work Done by Multple Forces q I more than one orce acts on an object, then the total work s equal to the algebrac sum o the work done by the ndvdual orces W net = åw by ndvdual orces n Remember work s a scalar, so ths s the algebrac sum W net = W + W + W = ( F cosq ) Dr g N F

4 Knetc Energy and Work q Knetc energy assocated wth the moton o an object KE = mv q Scalar quantty wth the same unt as work q Work s related to knetc energy mv - mv0 = ( Fnet cos q ) Dx x = ò F x dr Wnet = KE - KE = DKE Unts: N-m or J

5 Work done by a Gravtatonal Force q Gravtatonal Force n Magntude: mg n Drecton: downwards to the Earth s center q Work done by Gravtatonal Force!! W = FD rcosq = F Dr W net = mv - mv 0 W g = mgdr cosq

6 Potental Energy q Potental energy s assocated wth the poston o the object q Gravtatonal Potental Energy s the energy assocated wth the relatve poston o an object n space near the Earth s surace q The gravtatonal potental energy n n n n PE º mgy m s the mass o an object g s the acceleraton o gravty y s the vertcal poston o the mass relatve the surace o the Earth SI unt: joule (J)

7 Extended Work-Energy Theorem q The work-energy theorem can be extended to nclude potental energy: Wnet = KE - KE = DKE W = PE - PE grav ty q I we only have gravtatonal orce, then KE - KE = PE - KE + PE = PE + q The sum o the knetc energy and the gravtatonal potental energy remans constant at all tme and hence s a conserved quantty PE KE W net = W gravty

8 Extended Work-Energy Theorem q We denote the total mechancal energy by q Snce E = KE + PE KE + PE = PE + KE q The total mechancal energy s conserved and remans the same at all tmes mv + mgy = mv + mgy

9 Sprng Force q Involves the sprng constant, k q Hooke s Law gves the orce! F! = -kd n F s n the opposte drecton o dsplacement d, always back towards the equlbrum pont. n k depends on how the sprng was ormed, the materal t s made rom, thckness o the wre, etc. Unt: N/m.

10 Potental Energy n a Sprng q Elastc Potental Energy: n SI unt: Joule (J) n related to the work requred to compress a sprng rom ts equlbrum poston to some nal, arbtrary, poston x q Work done by the sprng W s = ò x x (-kx) dx = kx - kx W = PE - s s PE s PEs = kx

11 Extended Work-Energy Theorem q The work-energy theorem can be extended to nclude potental energy: W = KE - KE = DKE W = PE - PE grav ty net q I we nclude gravtatonal orce and sprng orce, then W = W + W net gravty ( KE KE ) + ( PE - PE ) + ( PE - PE ) = W = PE - - s s s s s PE s 0 KE + PE + PE = PE + KE + s KE s

12 Extended Work-Energy Theorem q We denote the total mechancal energy by E = KE + PE + PE s q Snce ( KE + PE + PE ) = ( KE + PE + PE ) s s q The total mechancal energy s conserved and remans the same at all tmes mv + mgy + kx = mv + mgy + kx

13 Ex: A block projected up a nclne q A 0.5-kg block rests on a horzontal, rctonless surace. The block s pressed back aganst a sprng havng a constant o k = 65 N/m, compressng the sprng by 0.0 cm to pont A. Then the block s released. q (a) Fnd the maxmum dstance d the block travels up the rctonless nclne θ = 30. q (b) How ast s the block gong when halway to ts maxmum heght?

14 a) A block projected up a q Pont A (ntal state): q Pont B (nal state): nclne v = 0, y = 0, x = -0cm = -0. m v 0, y = h = d snq, x = 0 mv + mgy + kx = mv + mgy + = kx d = = 0.5(65N / m)( -0.m) (0.5kg)(9.8m / s )sn 30 =.8m kx mg snq! kx = mgy = mgd snq

15 b) A block projected up a q Pont A (ntal state): q Pont B (nal state): k v = x - gh m =... =.5m / s nclne v v = 0, y = 0, x = -0cm = -0. m?, y = h / = d snq /, x = = mv + mgy + kx = mv + mgy + kx h k kx = mv + mg( ) x = v + gh m! h = d sn q = (.8m)sn30 = 0. 64m 0

16 Types o Forces q Conservatve orces n Work and energy assocated wth the orce can be recovered n Examples: Gravty, Sprng Force, EM orces q Non conservatve orces n The orces are generally dsspatve and work done aganst t cannot easly be recovered n Examples: Knetc rcton, ar drag orces, normal orces, tenson orces, appled orces

17 Conservatve Forces q A orce s conservatve the work t does on an object movng between two ponts s ndependent o the path the objects take between the ponts n The work depends only upon the ntal and nal postons o the object n Any conservatve orce can have a potental energy uncton assocated wth t n Work done by gravty Wg = PE - PE = mgy - mgy n Work done by sprng orce Ws = PEs - PEs = kx - kx

18 Non conservatve Forces q A orce s non conservatve the work t does on an object depends on the path taken by the object between ts nal and startng ponts. n The work depends upon the movement path n For a non-conservatve orce, potental energy can NOT be dened n Work done by a non conservatve orce!! W F d = - d W nc å +å k = otherorces n It s generally dsspatve. The dspersal o energy takes the orm o heat or sound

19 Extended Work-Energy Theorem q The work-energy theorem can be wrtten as: n n W nc represents the work done by non conservatve orces W c represents the work done by conservatve orces q Any work done by conservatve orces can be accounted or by changes n potental energy W = PE - PE n n Gravty work Sprng orce work Wnet = KE - KE = DKE W = W + W g net nc W = PE - PE = mgy - mgy Ws = PE - PE = kx - c c kx

20 Extended Work-Energy Theorem q Any work done by conservatve orces can be accounted or by changes n potental energy W = PE - PE = -( PE - PE ) = -DPE q Mechancal energy ncludes knetc and potental energy E W nc c = DKE + DPE = KE + PE W nc = ( KE + PE ) - ( KE + PE ) = KE + PE = ( KE - KE ) + ( PE - PE ) PE W = E - nc mv mgy g + s = + + E kx

21 Problem-Solvng Strategy q Dene the system to see t ncludes non-conservatve orces (especally rcton, drag orce ) q Wthout non-conservatve orces q Wth non-conservatve orces q Select the locaton o zero potental energy n Do not change ths locaton whle solvng the problem q Identy two ponts the object o nterest moves between n n mv + mgy + kx = mv + mgy + One pont should be where normaton s gven The other pont should be where you want to nd out somethng kx W nc = ( KE + PE ) - ( KE + PE ) - d + åwotherorce s = ( mv + mgy + kx ) - ( mv + mgy + kx )

22 Ex: Conservaton o Mechancal Energy q A block o mass m = 0.40 kg sldes across a horzontal rctonless counter wth a speed o v = 0.50 m/s. It runs nto and compresses a sprng o sprng constant k = 750 N/m. When the block s momentarly stopped by the sprng, by what dstance d s the sprng compressed? W nc = ( KE + PE ) - ( KE + PE ) mv + mgy + kx = mv + mgy + kx kd = mv kd = mv m d = v =. 5cm k

23 Changes n Mechancal Energy or conservatve orces q A 3-kg crate sldes down a ramp. The ramp s m n length and nclned at an angle o 30 as shown. The crate starts rom rest at the top. The surace rcton can be neglgble. Use energy methods to determne the speed o the crate at the bottom o the ramp. - d + åwotherorce s = ( mv + mgy + kx ) - ( mv + mgy + kx ) ( mv + mgy + kx ) = ( mv + mgy + kx ) d = (! m, y = d sn 30 = 0.5m, v = y 0, v =? = mv ) = (0 + mgy + 0) 0 v = gy = 3.m / s

24 Changes n Mechancal Energy or Nonconservatve orces q A 3-kg crate sldes down a ramp. The ramp s m n length and nclned at an angle o 30 as shown. The crate starts rom rest at the top. The surace n contact have a coecent o knetc rcton o 0.5. Use energy methods to determne the speed o the crate at the bottom o the ramp. - d + åwotherorce s = ( mv + mgy + kx ) - ( mv + mgy + - µ k Nd + 0 = ( mv ) - (0 + mgy + 0)! k µ = 0.5, d = m, y = d sn 30 = 0.5m, N =? k N - mg cos q = 0 - µ kdmg cosq = mv - mgy v = g( y - µ kd cosq ) =.7m / s kx ) N

25 Changes n Mechancal Energy or Nonconservatve orces q A 3-kg crate sldes down a ramp. The ramp s m n length and nclned at an angle o 30 as shown. The crate starts rom rest at the top. The surace n contact have a coecent o knetc rcton o 0.5. How ar does the crate slde on the horzontal loor t contnues to experence a rcton orce. - d + åwotherorce s = ( mv + mgy + kx ) - ( mv + mgy + - µ k Nx + 0 = ( ) - ( mv ) µ k = 0.5, =.7m / s, N =? v N - mg - µ mgx = - = 0 k mv v x = µ g =. 5 k m kx )

26 Ex 3: Block-Sprng Collson q A block havng a mass o 0.8 kg s gven an ntal velocty v A =. m/s to the rght and colldes wth a sprng whose mass s neglgble and whose orce constant s k = 50 N/m as shown n gure. Assumng the surace to be rctonless, calculate the maxmum compresson o the sprng ater the collson. mv + mgy + kx = mv + mgy + mv 0 0 max + + = mva m 0.8kg xmax = va = (.m / s) = 0. 5m k 50N / m kx

27 Block-Sprng Collson q A block havng a mass o 0.8 kg s gven an ntal velocty v A =. m/s to the rght and colldes wth a sprng whose mass s neglgble and whose orce constant s k = 50 N/m as shown n gure. Suppose a constant orce o knetc rcton acts between the block and the surace, wth µ k = 0.5, what s the maxmum compresson x c n the sprng. - d + åwotherorce s = ( mv + mgy + kx ) - ( mv + mgy + - µ k Nd + 0 = ( kxc ) - ( mva N = mg and d = kx c - mva = -µ kmgx 5x 3.9x = 0 c + c c x c x c = m ) kx )

28 Conservaton o Energy q Energy s conserved n Ths means that energy cannot be created nor destroyed n I the total amount o energy n a system changes, t can only be due to the act that energy has crossed the boundary o the system by some method o energy transer

29 Ways to Transer Energy Into or Out o A System q Work transers by applyng a orce and causng a dsplacement o the pont o applcaton o the orce q Mechancal Waves allow a dsturbance to propagate through a medum q Heat s drven by a temperature derence between two regons n space q Matter Transer matter physcally crosses the boundary o the system, carryng energy wth t q Electrcal Transmsson transer s by electrc current q Electromagnetc Radaton energy s transerred by electromagnetc waves

30 Ex 4: Connected Blocks n q Moton Two blocks are connected by a lght strng that passes over a rctonless pulley. The block o mass m les on a horzontal surace and s connected to a sprng o orce constant k. The system s released rom rest when the sprng s unstretched. I the hangng block o mass m alls a dstance h beore comng to rest, calculate the coecent o knetc rcton between the block o mass m and the surace. - d + åwotherorces = DKE + DPE DPE = DPE - µ g + DPE s = (0 - m 0 kx k Nx + = -mgh + N = mg and x = gh) + ( kx - h - µ k m gh = - m gh + kh µ k = m g 0) m g - kh

31 Power q Work does not depend on tme nterval q The rate at whch energy s transerred s mportant n the desgn and use o practcal devce q The tme rate o energy transer s called power q The average power s gven by W P = Dt n when the method o energy transer s work

32 Instantaneous Power q Power s the tme rate o energy transer. Power s vald or any means o energy transer q Other expresson W FDx P = = = Dt Dt q A more general denton o nstantaneous power W dw!! dr!! P = lm = = F = F v D t 0 Dt dt dt!! P = F v = Fvcosq Fv

33 Unts o Power qthe SI unt o power s called the watt n watt = joule / second = kg. m / s 3 qa unt o power n the US Customary system s horsepower n hp = 550 t. lb/s = 746 W qunts o power can also be used to express unts o work or energy n kwh = (000 W)(3600 s) = 3.6 x0 6 J

34 Power Delvered by an Elevator Motor q A 000-kg elevator carres a maxmum load o 800 kg. A constant rctonal orce o 4000 N retards ts moton upward. What mnmum power must the motor delver to lt the ully loaded elevator at a constant speed o 3 m/s? F = net, y ma y T - - Mg = 0 T = + Mg = N P = Fv = ( = W P = 64.8kW = 86. 9hp 4 N)(3m / s)

35 P: December 8, 08

36 P: P3: December 8, 08

37 P4: P5: December 8, 08

38 P6: P7: December 8, 08

39 P8: December 8, 08

40 P9: December 8, 08

41

42

43

44

45

46

47

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy? Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

Chapter Seven - Potential Energy and Conservation of Energy

Chapter Seven - Potential Energy and Conservation of Energy Chapter Seven - Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members

More information

Conservation of Energy

Conservation of Energy Lecture 3 Chapter 8 Physcs I 0.3.03 Conservaton o Energy Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcsall.html 95.4, Fall 03,

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

PHYS 1441 Section 002 Lecture #16

PHYS 1441 Section 002 Lecture #16 PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Non-conservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

Chapter 8: Potential Energy and The Conservation of Total Energy

Chapter 8: Potential Energy and The Conservation of Total Energy Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. -Dmenson F x d U( x) dx

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

You will analyze the motion of the block at different moments using the law of conservation of energy.

You will analyze the motion of the block at different moments using the law of conservation of energy. Physcs 00A Homework 7 Chapter 8 Where s the Energy? In ths problem, we wll consder the ollowng stuaton as depcted n the dagram: A block o mass m sldes at a speed v along a horzontal smooth table. It next

More information

Chapter 7. Potential Energy and Conservation of Energy

Chapter 7. Potential Energy and Conservation of Energy Chapter 7 Potental Energy and Conservaton o Energy 1 Forms o Energy There are many orms o energy, but they can all be put nto two categores Knetc Knetc energy s energy o moton Potental Potental energy

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

Chapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8)

Chapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8) Pro. Dr. I. Nasser Chapter8_I November 3, 07 Chapter 8 Potental Energy and Conservaton o Energy Important Terms (For chapters 7 and 8) conservatve orce: a orce whch does wor on an object whch s ndependent

More information

Energy and Energy Transfer

Energy and Energy Transfer Energy and Energy Transer Chapter 7 Scalar Product (Dot) Work Done by a Constant Force F s constant over the dsplacement r 1 Denton o the scalar (dot) product o vectors Scalar product o unt vectors = 1

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

Physics 2A Chapters 6 - Work & Energy Fall 2017

Physics 2A Chapters 6 - Work & Energy Fall 2017 Physcs A Chapters 6 - Work & Energy Fall 017 These notes are eght pages. A quck summary: The work-energy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on

More information

Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force?

Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force? Problem 07-50 A 0.25 kg block s dropped on a relaed sprng that has a sprng constant o k 250.0 N/m (2.5 N/cm). The block becomes attached to the sprng and compresses t 0.12 m beore momentarl stoppng. Whle

More information

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.

Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved. Physcs 3: Lecture 5 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

in state i at t i, Initial State E = E i

in state i at t i, Initial State E = E i Physcs 01, Lecture 1 Today s Topcs n More Energy and Work (chapters 7 & 8) n Conservatve Work and Potental Energy n Sprng Force and Sprng (Elastc) Potental Energy n Conservaton of Mechanc Energy n Exercse

More information

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16 0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

Physics 207, Lecture 13, Oct. 15. Energy

Physics 207, Lecture 13, Oct. 15. Energy Physcs 07 Lecture 3 Physcs 07, Lecture 3, Oct. 5 Goals: Chapter 0 Understand the relatonshp between moton and energy Dene Potental Energy n a Hooke s Law sprng Deelop and explot conseraton o energy prncple

More information

Physics 207 Lecture 13. Lecture 13

Physics 207 Lecture 13. Lecture 13 Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

EMU Physics Department.

EMU Physics Department. Physcs 0 Lecture 9 Lnear Momentum and Collsons Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum q Conseraton o Energy q Momentum q Impulse q Conseraton o Momentum q -D Collsons

More information

Physics 131: Lecture 16. Today s Agenda

Physics 131: Lecture 16. Today s Agenda Physcs 131: Lecture 16 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton t o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

9/19/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

9/19/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101 PHY 3 C General Physcs I AM-:5 PM MF Oln 0 Plan or Lecture 8: Chapter 8 -- Conservaton o energy. Potental and knetc energy or conservatve orces. Energy and non-conservatve orces 3. Power PHY 3 C Fall 03--

More information

K = 100 J. [kg (m/s) ] K = mv = (0.15)(36.5) !!! Lethal energies. m [kg ] J s (Joule) Kinetic Energy (energy of motion) E or KE.

K = 100 J. [kg (m/s) ] K = mv = (0.15)(36.5) !!! Lethal energies. m [kg ] J s (Joule) Kinetic Energy (energy of motion) E or KE. Knetc Energy (energy of moton) E or KE K = m v = m(v + v y + v z ) eample baseball m=0.5 kg ptche at v = 69 mph = 36.5 m/s K = mv = (0.5)(36.5) [kg (m/s) ] Unts m [kg ] J s (Joule) v = 69 mph K = 00 J

More information

ONE-DIMENSIONAL COLLISIONS

ONE-DIMENSIONAL COLLISIONS Purpose Theory ONE-DIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n one-dmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

Force = F Piston area = A

Force = F Piston area = A CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,

More information

Week 6, Chapter 7 Sect 1-5

Week 6, Chapter 7 Sect 1-5 Week 6, Chapter 7 Sect 1-5 Work and Knetc Energy Lecture Quz The frctonal force of the floor on a large sutcase s least when the sutcase s A.pushed by a force parallel to the floor. B.dragged by a force

More information

PHYSICS 203-NYA-05 MECHANICS

PHYSICS 203-NYA-05 MECHANICS PHYSICS 03-NYA-05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN - ST. LAWRENCE 790 NÉRÉE-TREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/

More information

Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10.

Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10. Answers to Even Numbered Problems Chapter 5. 3.6 m 4..6 J 6. (a) 9 J (b).383 8. (a) 3.9 J (b) (c) (d) 3.9 J. 6 m s. (a) 68 J (b) 84 J (c) 5 J (d) 48 J (e) 5.64 m s 4. 9. J 6. (a). J (b) 5. m s (c) 6.3

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

AP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power

AP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power AP Physcs Enosburg Falls Hgh School Mr. Bushey ee 6: or, Energy, Power Homewor! Read Gancol Chapter 6.1 6.10 AND/OR Read Saxon Lessons 1, 16, 9, 48! Read Topc Summary Handout! Answer Gancol p.174 Problems

More information

Physics 105: Mechanics Lecture 13

Physics 105: Mechanics Lecture 13 Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6.

v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6. r. 6.5-.7 (.) Rest Mass,ork by Changng orces Columba Rep 3pm, here RE 6.b (last day to drop) ed. 6.8-.9(.8,.9) Introducng Potental Energy RE 6.c Tues. H6: Ch 6 Pr s 58,59, 99(a-c), 05(a-c) moton s nether

More information

Physics 101 Lecture 9 Linear Momentum and Collisions

Physics 101 Lecture 9 Linear Momentum and Collisions Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum -D Collsons

More information

Lecture 22: Potential Energy

Lecture 22: Potential Energy Lecture : Potental Energy We have already studed the work-energy theorem, whch relates the total work done on an object to the change n knetc energy: Wtot = KE For a conservatve orce, the work done by

More information

PHYSICS 231 Review problems for midterm 2

PHYSICS 231 Review problems for midterm 2 PHYSICS 31 Revew problems for mdterm Topc 5: Energy and Work and Power Topc 6: Momentum and Collsons Topc 7: Oscllatons (sprng and pendulum) Topc 8: Rotatonal Moton The nd exam wll be Wednesday October

More information

Ch04 Work, Energy and Power What is work in physics?

Ch04 Work, Energy and Power What is work in physics? Eunl Won Dept o Physcs, Korea Unversty 1 Ch04 Work, Energy and Power What s work n physcs? Eunl Won Dept o Physcs, Korea Unversty Eunl Won Dept o Physcs, Korea Unversty 3 Work W F d W Fd cosφ W Fd ο cos

More information

a) No books or notes are permitted. b) You may use a calculator.

a) No books or notes are permitted. b) You may use a calculator. PHYS 050 Sprng 06 Name: Test 3 Aprl 7, 06 INSTRUCTIONS: a) No books or notes are permtted. b) You may use a calculator. c) You must solve all problems begnnng wth the equatons on the Inormaton Sheet provded

More information

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1 A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor

More information

Linear Momentum and Collisions

Linear Momentum and Collisions Lnear Momentum and Collsons Chater 9 Lnear Momentum [kg m/s] x y mv x mv y Newton s nd Law n terms o momentum: Imulse I - [kg m/s] I t t Fdt I = area under curve bounded by t axs Imulse-Momentum Theorem

More information

Conservation of Energy

Conservation of Energy Conservaton o nergy The total energy o a system can change only by amounts o energy that are transerred nto or out o the system W mec th nt Ths s one o the great conservaton laws n nature! Other conservaton

More information

RETURN ONLY THE SCANTRON SHEET!

RETURN ONLY THE SCANTRON SHEET! Andrzej Czajkowsk PHY/ exam Page out o Prncples o Physcs I PHY PHY Instructor: Dr. Andrzej Czajkowsk Fnal Exam December Closed book exam pages questons o equal value 5 correct answers pass the test! Duraton:

More information

PHYSICS 231 Lecture 18: equilibrium & revision

PHYSICS 231 Lecture 18: equilibrium & revision PHYSICS 231 Lecture 18: equlbrum & revson Remco Zegers Walk-n hour: Thursday 11:30-13:30 am Helproom 1 gravtaton Only f an object s near the surface of earth one can use: F gravty =mg wth g=9.81 m/s 2

More information

Physics 106 Lecture 6 Conservation of Angular Momentum SJ 7 th Ed.: Chap 11.4

Physics 106 Lecture 6 Conservation of Angular Momentum SJ 7 th Ed.: Chap 11.4 Physcs 6 ecture 6 Conservaton o Angular Momentum SJ 7 th Ed.: Chap.4 Comparson: dentons o sngle partcle torque and angular momentum Angular momentum o a system o partcles o a rgd body rotatng about a xed

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )

Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 ) Angular momentum Instructor: Dr. Ho Lam TAM ( 譚海嵐 ) Physcs Enhancement Programme or Gted Students The Hong Kong Academy or Gted Educaton and Department o Physcs, HKBU Department o Physcs Hong Kong Baptst

More information

Momentum. Momentum. Impulse. Momentum and Collisions

Momentum. Momentum. Impulse. Momentum and Collisions Momentum Momentum and Collsons From Newton s laws: orce must be present to change an object s elocty (speed and/or drecton) Wsh to consder eects o collsons and correspondng change n elocty Gol ball ntally

More information

PHYS 1443 Section 002

PHYS 1443 Section 002 PHYS 443 Secton 00 Lecture #6 Wednesday, Nov. 5, 008 Dr. Jae Yu Collsons Elastc and Inelastc Collsons Two Dmensonal Collsons Center o ass Fundamentals o Rotatonal otons Wednesday, Nov. 5, 008 PHYS PHYS

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Rotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles

Rotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles Conservaton o Angular Momentum 8.0 WD Rotatonal and Translatonal Comparson Quantty Momentum Ang Momentum Force Torque Knetc Energy Work Power Rotaton L cm = I cm ω = dl / cm cm K = (/ ) rot P rot θ W =

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76 PHYS 1101 Practce problem set 1, Chapter 3: 1,, 4, 57, 61, 83 Chapter 33: 7, 1, 3, 38, 44, 49, 76 3.1. Vsualze: Please reer to Fgure Ex3.1. Solve: Because B s n the same drecton as the ntegraton path s

More information

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3. r r. Position, Velocity, and Acceleration Revisited Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement.

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement. Name: PHYS 110 Dr. McGoern Sprng 018 Exam 1 Multple Choce: Crcle the answer that best ealuates the statement or completes the statement. #1 - I the acceleraton o an object s negate, the object must be

More information

Recitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk.

Recitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk. Rectaton: Energy, Phys 207. Energy. Energes. An acorn fallng from an oak tree onto the sdewalk. The acorn ntal has gravtatonal potental energy. As t falls, t converts ths energy to knetc. When t hts the

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Like other undamental concepts, energy is harder to deine in words than in equations. It is closely linked to the concept o orce. Conservation o Energy is one o Nature

More information

10/23/2003 PHY Lecture 14R 1

10/23/2003 PHY Lecture 14R 1 Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

More information

Physics 201 Lecture 9

Physics 201 Lecture 9 Physcs 20 Lecture 9 l Goals: Lecture 8 ewton s Laws v Solve D & 2D probles ntroducng forces wth/wthout frcton v Utlze ewton s st & 2 nd Laws v Begn to use ewton s 3 rd Law n proble solvng Law : An obect

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

CHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy. - Kinetic energy (KE) - Potential energy (PE) PE = mgz

CHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy. - Kinetic energy (KE) - Potential energy (PE) PE = mgz SYSTM CHAPTR 7 NRGY BALANCS 1 7.1-7. SYSTM nergy & 1st Law of Thermodynamcs * What s energy? * Forms of nergy - Knetc energy (K) K 1 mv - Potental energy (P) P mgz - Internal energy (U) * Total nergy,

More information

Mechanics Cycle 3 Chapter 9++ Chapter 9++

Mechanics Cycle 3 Chapter 9++ Chapter 9++ Chapter 9++ More on Knetc Energy and Potental Energy BACK TO THE FUTURE I++ More Predctons wth Energy Conservaton Revst: Knetc energy for rotaton Potental energy M total g y CM for a body n constant gravty

More information

Chapter 11 Angular Momentum

Chapter 11 Angular Momentum Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ s SCHOOL OF COMPUTING, ENGINEERING ND MTHEMTICS SEMESTER EXMINTIONS 011/01 DYNMICS ME47 DR. N.D.D. MICHÉ Tme allowed: THREE hours nswer: ny FOUR from SIX questons Each queston carres 5 marks Ths s a CLOSED-BOOK

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN

Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN EMU Physics Department www.aovgun.com Why Energy? q Why do we need a concept o energy? q The energy approach to describing motion is particularly useul

More information

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation! Important Dates: Post Test: Dec. 8 0 durng rectatons. If you have taken the post test, don t come to rectaton! Post Test Make-Up Sessons n ARC 03: Sat Dec. 6, 0 AM noon, and Sun Dec. 7, 8 PM 0 PM. Post

More information

Chapter 11: Angular Momentum

Chapter 11: Angular Momentum Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For

More information

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force.

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force. Unt 5 Work and Energy 5. Work and knetc energy 5. Work - energy theore 5.3 Potenta energy 5.4 Tota energy 5.5 Energy dagra o a ass-sprng syste 5.6 A genera study o the potenta energy curve 5. Work and

More information

Physics 2A Chapter 9 HW Solutions

Physics 2A Chapter 9 HW Solutions Phscs A Chapter 9 HW Solutons Chapter 9 Conceptual Queston:, 4, 8, 13 Problems: 3, 8, 1, 15, 3, 40, 51, 6 Q9.. Reason: We can nd the change n momentum o the objects b computng the mpulse on them and usng

More information

Chapter 20 The First Law of Thermodynamics

Chapter 20 The First Law of Thermodynamics Chapter he Frst aw o hermodynamcs. developng the concept o heat. etendng our concept o work to thermal processes 3. ntroducng the rst law o thermodynamcs. Heat and Internal Energy Internal energy: s the

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2

Week 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2 Lnear omentum Week 8: Chapter 9 Lnear omentum and Collsons The lnear momentum of a partcle, or an object that can be modeled as a partcle, of mass m movng wth a velocty v s defned to be the product of

More information

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta

More information

SUMMARY Phys 2113 (General Physics I) Compiled by Prof. Erickson. v = r t. v = lim t 0. p = mv. a = v. a = lim

SUMMARY Phys 2113 (General Physics I) Compiled by Prof. Erickson. v = r t. v = lim t 0. p = mv. a = v. a = lim SUMMARY Phys 2113 (General Physcs I) Compled by Prof. Erckson Poston Vector (m): r = xˆx + yŷ + zẑ Average Velocty (m/s): v = r Instantaneous Velocty (m/s): v = lm 0 r = ṙ Lnear Momentum (kg m/s): p =

More information

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision?

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision? Experent 9 Conseraton o Lnear Moentu - Collsons In ths experent you wll be ntroduced to the denton o lnear oentu. You wll learn the derence between an elastc and an nelastc collson. You wll explore how

More information

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013 Lagrange Multplers Monday, 5 September 013 Sometmes t s convenent to use redundant coordnates, and to effect the varaton of the acton consstent wth the constrants va the method of Lagrange undetermned

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Linear Momentum. Equation 1

Linear Momentum. Equation 1 Lnear Momentum OBJECTIVE Obsere collsons between two carts, testng or the conseraton o momentum. Measure energy changes durng derent types o collsons. Classy collsons as elastc, nelastc, or completely

More information

Momentum and Collisions. Rosendo Physics 12-B

Momentum and Collisions. Rosendo Physics 12-B Moentu and Collsons Rosendo Physcs -B Conseraton o Energy Moentu Ipulse Conseraton o Moentu -D Collsons -D Collsons The Center o Mass Lnear Moentu and Collsons February 7, 08 Conseraton o Energy D E =

More information

Physics 111 Final Exam, Fall 2013, Version A

Physics 111 Final Exam, Fall 2013, Version A Physcs 111 Fnal Exam, Fall 013, Verson A Name (Prnt): 4 Dgt ID: Secton: Honors Code Pledge: For ethcal and farness reasons all students are pledged to comply wth the provsons of the NJIT Academc Honor

More information

Phys102 General Physics II

Phys102 General Physics II Electrc Potental/Energy Phys0 General Physcs II Electrc Potental Topcs Electrc potental energy and electrc potental Equpotental Surace Calculaton o potental rom eld Potental rom a pont charge Potental

More information

Page 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Non-constant forces

Page 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Non-constant forces Physcs 131: Lecture 14 Today s Agenda Imulse and Momentum Non-constant forces Imulse-momentum momentum thm Conservaton of Lnear momentum Eternal/Internal forces Eamles Physcs 201: Lecture 1, Pg 1 Physcs

More information