AC STEADY-STATE ANALYSIS

Size: px
Start display at page:

Download "AC STEADY-STATE ANALYSIS"

Transcription

1 EANNG GOAS AC STEADY-STATE ANAYSS SNUSODS viw basic facs abou sinusoidal signals SNUSODA AND COPEX FOCNG FUNCTONS Bhavior of circuis wih sinusoidal indpndn sourcs and modling of sinusoids in rms of complx xponnials PHASOS prsnaion of complx xponnials as vcors. facilias sady-sa analysis of circuis. PEDANCE AND ADTANCE Gnralizaion of h familiar concps of rsisanc and conducanc o dscrib AC sady sa circui opraion PHASO DAGAS prsnaion of AC volags and currns as complx vcors BASC AC ANAYSS USNG KCHHOFF AWS ANAYSS TECHNQUES Exnsion of nod, loop, Thvnin and ohr chniqus

2 SNUSODS x X sin Adimnsional plo As funcion of im X ampliud or maximum valu angular frquncy rads/sc argumn radians " lads by θ" π T Priod x x T, f frquncy in Hrz cycl/sc T π π f " lags by θ"

3 BASC TGONOETY cos cos cos cos sin sin cos sin sin sin cos cos cos sin cos cos sin sin β α β α β α β α β α β α β α β α β α β α β α β α DENTTES DEED SOE α α α α β α β α β α β α β α β α cos cos sin sin sin sin cos cos cos sin cos cos sin sin DENTTES ESSENTA sin sin cos cos cos sin sin cos π π π π ± ± APPCATONS 9 sin sin π CONENTON EE ACCEPTED ADANS AND DEGEES dgrs 8 rads 36 dgrs radians θ π θ π

4 EANNG EXAPE cos cos 45 cos avanço 45 graus Ou araso d 35 cos 45 cos 45 ± 8 Avanço d 5 ou araso d 35

5 SNUSODA AND COPEX FOCNG FUNCTONS arning Exampl K : di i v d f h indpndn sourcs ar sinusoids of h sam frquncy hn for any variabl in h linar circui h sady sa rspons will b sinusoidal and of h sam frquncy v Asin θ i Bsin φ To drmin B,φ SS w only nd o drmin h sady sa soluion h paramrs n sady sa i Acos φ, or i di d A cos A A sin A cos A sin A cos sin A A A A A A algbraic problm, A * / * / A cos Drmining h sady sa soluion can b accomplishd wih only algbraic ools!

6 FUTHE ANAYSS OF THE SOUTON Th soluion is i A cos A sin Th applid volag is v cos For comparison purposs on can wri A A i Acos φ Acosφ, A sinφ A A A A, anφ A A, A For A, φ an i cos an h currn AWAYS lags h volag f pur inducor h currn lags h volag by 9

7 SONG A SPE ONE OOP CCUT CAN BE EY ABOOUS F ONE USES SNUSODA EXCTATONS TO AKE ANAYSS SPE ONE EATES SNUSODA SGNAS TO COPEX NUBES. THE ANAYSS OF STEADY STATE W BE CONETED TO SONG SYSTES OF AGEBAC EQUATONS... WTH COPEX AABES ESSENTA DENTTY : θ cosθ sinθ Eulr idniy y v v cos sin A y Acos φ y Asin φ φ A θ * / and add f vrybody knows h frquncy of h sinusoid hn on can skip h rm xpw A θ

8 arning Exampl v φ i Assum v i d di K : φ d di i d di φ φ φ φ φ φ * / φ an φ an φ an, cos } { } { cos φ φ i v θ θ θ θ sin, cos an, r y r x y x y x r r y x P C

9 PHASOS ESSENTA CONDTON A NDEPENDENT SOUCES AE SNUSODS OF THE SAE FEQUENCY BECAUSE OF SOUCE SUPEPOSTON ONE CAN CONSDE A SNGE SOUCE u U cos θ THE STEADY STATE ESPONSE OF ANY CCUT AABE W BE OF THE FO y Y cos φ SHOTCUT u U θ y Y φ { U θ } { Y φ } θ θ θ φ U u U y Y NEW DEA: U SHOTCUT N NOTATON U NSTEAD OF WTNG u U WE WTE u U θ... AND WE ACCEPT ANGES N DEGEES θ S THE PHASO EPESENTATON FO U cos θ u U cos θ U U θ Y Y φ y { Y cos φ} SHOTCUT : DEEOP EFFCENT TOOS TO DETENE THE PHASO OF THE ESPONSE GEN THE NPUT PHASOS θ

10 arning Exampl v di i v d n rms of phasors on has Th phasor can b obaind using only complx algbra i φ W will dvlop a phasor rprsnaion for h circui ha will limina h nd of wriing h diffrnial quaion arning Exnsions is ssnial o b abl o mov from sinusoids o phasor rprsnaion Acos ± θ A ± θ Asin ± θ A ± θ 9 v cos y 8sin Givn f 4Hz v cos8π 6 v cos8π 6 Phasors can b combind using h ruls of complx algbra θ θ θ θ θ θ θ θ

11 PHASO EATONSHPS FO CCUT EEENTS ESSTOS v i θ θ θ θ Phasor rprsnaion for a rsisor Phasors ar complx numbrs. Th rsisor modl has a gomric inrpraion Th volag and currn phasors ar colinal n rms of h sinusoidal signals his gomric rprsnaion implis ha h wo sinusoids ar in phas

12 θ d φ NDUCTOS d φ laionship bwn sinusoids θ φ Th rlaionship bwn phasors is algbraic For h gomric viw us h rsul Th volag lads h currn by 9 dg Th currn lags h volag by 9 dg arning Exampl mh, v cos377. Find i 377 A A i cos

13 φ d θ CAPACTOS C d laionship bwn sinusoids φ C θ C 9 C Th rlaionship bwn phasors is algbraic n a capacior h currn lads h volag by 9 dg Th volag lags h currn by 9 dg C arning Exampl µ F, v cos34 5. Find i 34 5 C 9 5 C A i 3.4cos34 5 A

14 EANNG EXTENSONS.5H, 4 3 A, f 6Hz Find h volag across h inducor π f π π π 6 v 4π cosπ 6 Now an xampl wih capaciors C 5 µ F, , f 6Hz Find h volag across h inducor π f π C C π π v cosπ 35 π

15 PEDANCE AND ADTTANCE For ach of h passiv componns h rlaionship bwn h volag phasor and h currn phasor is algbraic. W now gnraliz for an arbirary -rminal lmn z i v i v θ θ θ θ θ NPUT PEDANCE DNG PONT PEDANCE Th unis of impdanc ar OHS C C C mpdanc Phasor Eq. Elmn mpdanc is NOT a phasor bu a complx numbr ha can b wrin in polar or Carsian form. n gnral is valu dpnds on h frquncy componn aciv componn sisiv X X X X z an θ

16 K AND KC HOD FO PHASO EPESENTATONS v v 3 v i i i i 3 3 v v v K:,,,3, 3 k i i i i i k k k φ KC:,,3, i v i i i θ 3 3 θ θ θ K : 3 3 θ θ θ Phasors! Th componns will b rprsnd by hir impdancs and h rlaionships will b nirly algbraic!! n a similar way, on shows...

17 SPECA APPCATON: PEDANCES CAN BE COBNED USNG THE SAE UES DEEOPED FO ESSTOS s k k EANNG EXAPE C f s Compu quivaln 6 Hz, v 5cos 3 C impdanc π, and currn 5 3, k p k 5Ω p 3 π Ω, C π Ω, 53. 5Ω s C Ω A A s A i.96cosπ 9. A C 6

18 EANNG EXTENSON FND i 377 Ω C Ω 53.5 q C q q A

19 COPEX ADTTANCE Y G B Simns G conducanc B X Elmn C Sucpanc G X X B X X X Phasor Eq. C X X mpdanc C Admianc Y G Y Y Paralll Combinaion of Y p Y k k Sris Y s Y C k Combinaion of k Admiancs Y. S Y C S Y Y Y s s s.s. S Y p. S.5S Admiancs Y s

20 EANNG EXAPE S 6 45 FND Y p, EANNG EXTENSON Y p Y Y p Y.5.5 S 4 p 8 Yp A Y p S Y p S Y p A A A

21 EANNG EXAPE SEES-PAAE EDUCTONS / Y Y S Y Y S Y Ω Ω q Y Y Y

22 EANNG EXTENSON FND THE PEDANCE T P Y P Y.. Y Y Y Y Y Y Y Y Y Y P Y P Y P P Y.5.5 T

23 PHASO DAGAS Display all rlvan phasors on a common rfrnc fram ry usful o visualiz phas rlaionships among variabls. Espcially if som variabl, lik h frquncy, can chang EANNG EXAPE SKETCH THE PHASO DAGA FO THE CCUT Any on variabl can b chosn as rfrnc. For his cas slc h volag KC : S C capaciiv > C < C C C l NDUCTE CASE CAPACTE CASE induciv

24 EANNG EXAPE DO THE PHASO DAGA FO THE CCUT 377 s. PUT KNOWN NUECA AUES C C S C. DAW A THE PHASOS C is convnin o slc h currn as rfrnc DAGA WTH EFEENCE S ad valus from diagram! 3 45 A 45 Pyhagoras > C C 6 45

25 EANNG BY DONG C v FND THE FEQUENCY AT WHCH v AND i AE N PHASE i.., h phasors for i, v ar co - linal C PHASO DAGA C Noic ha was chosn as rfrnc C and ar co - linal iff C C f π Hz rad / s

26 EANNG EXTENSON Draw a phasor diagram illusraing all volags and currns A Currn dividr Simplr han DAW PHASOS. A AE KNOWN. NO NEED TO SEECT A EFEENCE

27 BASC ANAYSS USNG KCHHOFF S AWS POBE SONG STATEGY For rlaivly simpl circuis us Ohm's law for AC analysis; i.., Th ruls for combining and Y KC AND K Currn and volag dividr For mor complx circuis us Nod analysis oop analysis Suprposiion Sourc ransformaion Thvnin' s and Noron's ATAB PSPCE horms

28 EANNG EXAPE COPUTE A THE OTAGES AND CUENTS Compu Us currn dividr for, Ohm's law for, 3 q q 8 8 q Ω S A q A A

29 EANNG EXTENSON F 8 45, COPUTE O S O 3 A 4 45 A A A A S THE PAN... COPUTE COPUTE COPUTE COPUTE 3, S S S

30 ANAYSS TECHNQUES PUPOSE: TO EEW A CCUT ANAYSS TOOS DEEOPED FO ESSTE CCUTS;.E., NODE AND OOP ANAYSS, SOUCE SUPEPOSTON, SOUCE TANSFOATON, THEENN S AND NOTON S THEOES. COPUTE. NODE ANAYSS 6 A NEXT: OOP ANAYSS A

31 . OOP ANAYSS ONE COUD ASO USE THE SUPEESH TECHNQUE SOUCE S NOT SHAED AND o S DEFNED BY ONE OOP CUENT OOP : 3 OOP : OOP 3: UST FND /* A 4 CONSTANT : SUPEESH: ESH 3: /* NEXT: SOUCE SUPEPOSTON 3

32 SOUCE SUPEPOSTON Circui wih volag sourc s o zro SHOT CCUTED Circui wih currn sourc s o zroopen Du o h linariy of h modls w mus hav Principl of Sourc Suprposiion Th approach will b usful if solving h wo circuis is simplr, or mor convnin, han solving a circui wih wo sourcs W can hav any combinaion of sourcs. And w can pariion any way w find convnin

33 3. SOUCE SUPEPOSTON A ' COUD USE SOUCE TANSFOATON TO COPUTE " ' " " " 6 " 6 A " " " " " " 3 6 A " 6 6 A 4 4 ' " 5 3 A NEXT: SOUCE TANSFOATON 6

34 Sourc ransformaion is a good ool o rduc complxiy in a circui... WHEN T CAN BE APPED!! idal sourcs ar no good modls for ral bhavior of sourcs A ral bary dos no produc infini currn whn shor-circuid - S a b S a b THE ODES S S AE EQUAENTS WHEN mprovd modl for volag sourc mprovd modl for currn sourc Sourc Transformaioncan b usd o drmin h Thvnin or Noron Equivaln... BUT THEE AY BE OE EFFCENT TECHNQUES

35 4. SOUCE TANSFOATON 8 S Ω ' 8 Now a volag o currn ransformaion NEXT: THEENN S

36 THEENN S EQUAENCE THEOE NEA CCUT ay conain indpndn and dpndn sourcs wih hir conrolling variabls PAT A i v O _ a b NEA CCUT ay conain indpndn and dpndn sourcs wih hir conrolling variabls PAT B TH TH v TH i v O _ a b NEA CCUT PAT B PAT A Phasor v TH TH Thvnin Equivaln Circui for PAT A Thvnin Equivaln Sourc Thvnin Equivaln sisanc mpdanc

37 5. THEENN ANAYSS olag Dividr 8 OC 6 TH Ω A NEXT: NOTON

38 NOTON S EQUAENCE THEOE NEA CCUT ay conain indpndn and dpndn sourcs wih hir conrolling variabls PAT A i v O _ a b NEA CCUT ay conain indpndn and dpndn sourcs wih hir conrolling variabls PAT B Phasors i N N N i v O _ a b NEA CCUT PAT B PAT A Noron Equivaln Circui i N N N for PAT A Thvnin Equivaln Sourc Thvnin Equivaln sisanc mpdanc

39 6. NOTON ANAYSS TH Ω SC Possibl chniqus: loops, sourc ransformaion, suprposiion BY SUPEPOSTON 6 8 SC A

40 EANNG EXAPE FND USNG NODES, OOPS, THEENN, NOTON WHY SKP SUPEPOSTON AND TANSFOATON? Suprnod consrain : 3 Suprnod NODES Noic choic of ground KC@ 3 x KC@ Conrolling variabl x Adding: 4

41 OOP ANAYSS ESH CUENTS AE ACCEPTABE ESH CUENTS DETENED BY SOUCES ESH : 3 x 3 ESH 4 : CONTONG AABE : AABE OF NTEEST : x

42 THEENN Alrnaiv procdur o compu Thvnin impdanc:. S o zro all NDEPENDENT sourcs. Apply an xrnal prob TH s " x FO OPEN CCUT OTAGE " x K s " x " x Ω TH x 8 ' x OC TH 4 8

43 NOTON Suprnod consrain 3 KC@ Suprnod ''' 3 KC@ : X ''' 3 Conrolling ariabl : x / / SC ''' x 3 ''' x SC A SC SC Now w can draw h Noron Equivaln circui USE NODES

44 NOTON S EQUAENT CCUT TH SC 8 4 Currn Dividr EQUAENCE OF SOUTONS Using Noron s mhod Using Thvnin s 4 8 Using Nod and oop mhods 8 4

45 EANNG EXTENSON COPUTE USE NODA ANAYSS 3 / USE THEENN TH OC 3 4 OC 6 3 OC - TH TH Ω OC

46 EANNG EXTENSON COPUTE USNG ESH ANAYSS USNG NODES 4 9 CONSTANT 9 SUPEESH USNG SOUCE SUPEPOSTON 4 9 4

47 EANNG EXTENSON COPUTE " ' ". USNG SUPEPOSTON 4 " ' '

48 . USE SOUCE TANSFOATON Ω Ω Ω Ω 6 9 q q q 6 9 6

49 USE NOTON S THEOE SC TH TH TH TH SC 6 9 SC

50 USNG ATAB ATAB rcognizs complx numbrs in rcangular rprsnaion. dos NOT rcogniz Phasors Unlss prviously r-dfind, ATAB rcognizs i or as imaginary unis» z34 z 3. 4.i» z46i z 4. 6.i n is oupu ATAB always uss i for h imaginary uni Phasors cangula r z 45» a45; % angl in dgrs» ara*pi/8, %convr dgrs o radians ar.7854» m; %dfin magniud» xm*cosar; %ral par x 7.7» ym*sinar; %imaginary par y 7.7» zxi*y z i z i;» mpabsz; %compu magniud mp» arranglz; %compu angl in ADANS arr.7854» adgarr*8/pi; %convr o dgrs adg 45 xralz x 7.7 yimagz y 7.77

51 EANNG EXAPE COPUTE A NODE OTAGES Y Y

52 %xampl7p7 %dfin h HS vcor. irzros5,; %iniializ and dfin non zro valus ir*cos3*pi/8**sin3*pi/8; ir5*cospi/4**sinpi/4, %cho h vcor %now dfin h marix y[,,,,; %firs row -,.5,-,,.5; %scond row,-,.5,,-.5; %hird row -.5,,,.5,-; %fourh row,.5i,-.5,-,.5.5i] %las row and do cho vy\ir %solv quaions and cho h answr Echo of Answr v i i i i i ir i.44.44i y Columns hrough 4 Echo of HS i -.i -.i.5.i i.5i Column 5.5i i Echo of arix

53 AC PSPCE ANAYSS Circui rady o b simulad Slc and plac componns Ground s, mrs spcifid AC C Wir and s corrc aribus

54 **** AC ANAYSS TEPEATUE 7. DEG C ************************************************************************ ****** suls in oupu fil FEQ $N_3 P$N_3 6.E.65E E **** 5// 9:3:4 *********** Evaluaion PSpic Nov 999 ************** * C:\ECEWork\rwinPPT\ACSadySaAnalysis\Sc7p9Dmo.sch **** AC ANAYSS TEPEATUE 7. DEG C ************************************************************************ ****** FEQ _PNTP_PNT 6.E.998E E

AC STEADY-STATE ANALYSIS

AC STEADY-STATE ANALYSIS AC STEADY-STATE ANAYSS SNUSODA AND COPEX FOCNG FUNCTONS Bhavior of circuis wih sinusoidal indpndn sourcs and modling of sinusoids in rms of complx xponnials PHASOS prsnaion of complx xponnials as vcors.

More information

AC STEADY-STATE ANALYSIS

AC STEADY-STATE ANALYSIS EANNG GOAS AC STEAD-STATE ANASS SNUSODS viw basic facs abou sinusoidal signals SNUSODA AND COPEX FOCNG FUNCTONS Bhavior of circuis wih sinusoidal indpndn sourcs and modling of sinusoids in rms of complx

More information

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( ) Rviw Lcur 5 Firs-ordr circui Th sourc-fr R-C/R-L circui Sp rspons of an RC/RL circui v( ) v( ) [ v( 0) v( )] 0 Th i consan = RC Th final capacior volag v() Th iniial capacior volag v( 0 ) Volag/currn-division

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction. Inducors and Inducanc C For inducors, v() is proporional o h ra of chang of i(). Inducanc (con d) C Th proporionaliy consan is h inducanc, L, wih unis of Hnris. 1 Hnry = 1 Wb / A or 1 V sc / A. C L dpnds

More information

EE 434 Lecture 22. Bipolar Device Models

EE 434 Lecture 22. Bipolar Device Models EE 434 Lcur 22 Bipolar Dvic Modls Quiz 14 Th collcor currn of a BJT was masurd o b 20mA and h bas currn masurd o b 0.1mA. Wha is h fficincy of injcion of lcrons coming from h mir o h collcor? 1 And h numbr

More information

Sinusoidal Response Notes

Sinusoidal Response Notes ECE 30 Sinusoidal Rspons Nots For BIBO Systms AStolp /29/3 Th sinusoidal rspons of a systm is th output whn th input is a sinusoidal (which starts at tim 0) Systm Sinusoidal Rspons stp input H( s) output

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey cur : Growh and dcay of currn in circui Growh of currn in Circui us considr an inducor of slf inducanc is conncd o a DC sourc of.m.f. E hrough a rsisr of rsisanc and a ky K in sris. Whn h ky K is swichd

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

Control System Engineering (EE301T) Assignment: 2

Control System Engineering (EE301T) Assignment: 2 Conrol Sysm Enginring (EE0T) Assignmn: PART-A (Tim Domain Analysis: Transin Rspons Analysis). Oain h rspons of a uniy fdack sysm whos opn-loop ransfr funcion is (s) s ( s 4) for a uni sp inpu and also

More information

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions EE 35 Signals an Sysms Spring 5 Sampl Exam # - Soluions. For h following signal x( cos( sin(3 - cos(5 - T, /T x( j j 3 j 3 j j 5 j 5 j a -, a a -, a a - ½, a 3 /j-j -j/, a -3 -/jj j/, a 5 -½, a -5 -½,

More information

ECE 2210 / 00 Phasor Examples

ECE 2210 / 00 Phasor Examples EE 0 / 00 Phasor Exampls. Add th sinusoidal voltags v ( t ) 4.5. cos( t 30. and v ( t ) 3.. cos( t 5. v ( t) using phasor notation, draw a phasor diagram of th thr phasors, thn convrt back to tim domain

More information

ECE 145A / 218 C, notes set 1: Transmission Line Properties and Analysis

ECE 145A / 218 C, notes set 1: Transmission Line Properties and Analysis class nos, M. Rodwll, copyrighd 9 ECE 145A 18 C, nos s 1: Transmission in Propris and Analysis Mark Rodwll Univrsiy of California, Sana Barbara rodwll@c.ucsb.du 85-893-344, 85-893-36 fax Transmission in

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Circuits and Systems I

Circuits and Systems I Circuis and Sysms I LECTURE #3 Th Spcrum, Priodic Signals, and h Tim-Varying Spcrum lions@pfl Prof. Dr. Volan Cvhr LIONS/Laboraory for Informaion and Infrnc Sysms Licns Info for SPFirs Slids This wor rlasd

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

7.4 QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS *

7.4 QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS * Andri Tokmakoff, MIT Dparmn of Chmisry, 5/19/5 7-11 7.4 QUANTUM MECANICAL TREATMENT OF FLUCTUATIONS * Inroducion and Prviw Now h origin of frquncy flucuaions is inracions of our molcul (or mor approprialy

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits Lecure 13 RC/RL Circuis, Time Dependen Op Amp Circuis RL Circuis The seps involved in solving simple circuis conaining dc sources, resisances, and one energy-sorage elemen (inducance or capaciance) are:

More information

Why Laplace transforms?

Why Laplace transforms? MAE4 Linar ircui Why Lalac ranform? Firordr R cc v v v KVL S R inananou for ach Subiu lmn rlaion v S Ordinary diffrnial quaion in rm of caacior volag Lalac ranform Solv Invr LT V u, v Ri, i A R V A _ v

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

RESONANT CAVITY. Supplementary Instructions

RESONANT CAVITY. Supplementary Instructions UNIEITY OF TOONTO Dparmn of Elcrical and ompur Enginring Filds and Wavs aboraory ourss EE 3F and EE 357 III Yar EONANT AITY upplmnary Insrucions EONANE Pag of 3 Pag 3 of 3. Inroducion, gnral rsonanc A

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

Lagrangian for RLC circuits using analogy with the classical mechanics concepts

Lagrangian for RLC circuits using analogy with the classical mechanics concepts Lagrangian for RLC circuis using analogy wih h classical mchanics concps Albrus Hariwangsa Panuluh and Asan Damanik Dparmn of Physics Educaion, Sanaa Dharma Univrsiy Kampus III USD Paingan, Maguwoharjo,

More information

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution:

(b) (a) (d) (c) (e) Figure 10-N1. (f) Solution: Example: The inpu o each of he circuis shown in Figure 10-N1 is he volage source volage. The oupu of each circui is he curren i( ). Deermine he oupu of each of he circuis. (a) (b) (c) (d) (e) Figure 10-N1

More information

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t AP CALCULUS FINAL UNIT WORKSHEETS ACCELERATION, VELOCTIY AND POSITION In problms -, drmin h posiion funcion, (), from h givn informaion.. v (), () = 5. v ()5, () = b g. a (), v() =, () = -. a (), v() =

More information

( ) C R. υ in RC 1. cos. ,sin. ω ω υ + +

( ) C R. υ in RC 1. cos. ,sin. ω ω υ + + Oscillaors. Thory of Oscillaions. Th lad circui, h lag circui and h lad-lag circui. Th Win Bridg oscillaor. Ohr usful oscillaors. Th 555 Timr. Basic Dscripion. Th S flip flop. Monosabl opraion of h 555

More information

4. AC Circuit Analysis

4. AC Circuit Analysis 4. A icui Analysis J B A Signals sofquncy Quaniis Sinusoidal quaniy A " # a() A cos (# + " ) ampliud : maximal valu of a() and is a al posiiv numb; adian [/s]: al posiiv numb; phas []: fquncy al numb;

More information

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to:

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to: Rfrncs Brnank, B. and I. Mihov (1998). Masuring monary policy, Quarrly Journal of Economics CXIII, 315-34. Blanchard, O. R. Proi (00). An mpirical characrizaion of h dynamic ffcs of changs in govrnmn spnding

More information

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5

Homework-8(1) P8.3-1, 3, 8, 10, 17, 21, 24, 28,29 P8.4-1, 2, 5 Homework-8() P8.3-, 3, 8, 0, 7, 2, 24, 28,29 P8.4-, 2, 5 Secion 8.3: The Response of a Firs Order Circui o a Consan Inpu P 8.3- The circui shown in Figure P 8.3- is a seady sae before he swich closes a

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers A ircuis A ircui wih only A circui wih only A circui wih only A circui wih phasors esonance Transformers Phys 435: hap 31, Pg 1 A ircuis New Topic Phys : hap. 6, Pg Physics Moivaion as ime we discovered

More information

MATH 308: Diff Eqs, BDP10 EXAMPLES [Belmonte, 2019] 1 Introduction 1.1 Basic Mathematical Models; Direction Fields

MATH 308: Diff Eqs, BDP10 EXAMPLES [Belmonte, 2019] 1 Introduction 1.1 Basic Mathematical Models; Direction Fields MATH 308: Diff Eqs, BDP0 EXAMPLES Blmon, 09 Mos problms ar from NSS9 Inroducion Basic Mahmaical Modls; Dircion Filds / Plo a dircion fild for dy/dx = 4x/y (a) Vrify ha h sraigh lins y = ±x ar soluions

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers Universiy of Cyprus Biomedical Imaging and Applied Opics Appendix DC Circuis Capaciors and Inducors AC Circuis Operaional Amplifiers Circui Elemens An elecrical circui consiss of circui elemens such as

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013 Fourir Sris nd Prsvl s Rlion Çğy Cndn Dc., 3 W sudy h m problm EE 3 M, Fll3- in som dil o illusr som conncions bwn Fourir sris, Prsvl s rlion nd RMS vlus. Q. ps h signl sin is h inpu o hlf-wv rcifir circui

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

symmetric/hermitian matrices, and similarity transformations

symmetric/hermitian matrices, and similarity transformations Linar lgbra for Wirlss Communicaions Lcur: 6 Diffrnial quaions, Grschgorin's s circl horm, symmric/hrmiian marics, and similariy ransformaions Ov Edfors Dparmn of Elcrical and Informaion Tchnology Lund

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Introduction and Linear Systems FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS I: Inroducion and Linar Sysms David Lvrmor Dparmn of Mahmaics Univrsiy of Maryland 9 Dcmbr 0 Bcaus h prsnaion of his marial in lcur will diffr from

More information

ES 250 Practice Final Exam

ES 250 Practice Final Exam ES 50 Pracice Final Exam. Given ha v 8 V, a Deermine he values of v o : 0 Ω, v o. V 0 Firs, v o 8. V 0 + 0 Nex, 8 40 40 0 40 0 400 400 ib i 0 40 + 40 + 40 40 40 + + ( ) 480 + 5 + 40 + 8 400 400( 0) 000

More information

Logistic equation of Human population growth (generalization to the case of reactive environment).

Logistic equation of Human population growth (generalization to the case of reactive environment). Logisic quaion of Human populaion growh gnralizaion o h cas of raciv nvironmn. Srg V. Ershkov Insiu for Tim aur Exploraions M.V. Lomonosov's Moscow Sa Univrsi Lninski gor - Moscow 999 ussia -mail: srgj-rshkov@andx.ru

More information

The transition:transversion rate ratio vs. the T-ratio.

The transition:transversion rate ratio vs. the T-ratio. PhyloMah Lcur 8 by Dan Vandrpool March, 00 opics of Discussion ransiion:ransvrsion ra raio Kappa vs. ransiion:ransvrsion raio raio alculaing h xpcd numbr of subsiuions using marix algbra Why h nral im

More information

DSP-First, 2/e. This Lecture: LECTURE #3 Complex Exponentials & Complex Numbers. Introduce more tools for manipulating complex numbers

DSP-First, 2/e. This Lecture: LECTURE #3 Complex Exponentials & Complex Numbers. Introduce more tools for manipulating complex numbers DSP-Fis, / LECTURE #3 Compl Eponnials & Compl umbs READIG ASSIGMETS This Lcu: Chap, Scs. -3 o -5 Appndi A: Compl umbs Appndi B: MATLAB Lcu: Compl Eponnials Aug 016 003-016, JH McClllan & RW Schaf 3 LECTURE

More information

DSP-First, 2/e. LECTURE # CH2-3 Complex Exponentials & Complex Numbers TLH MODIFIED. Aug , JH McClellan & RW Schafer

DSP-First, 2/e. LECTURE # CH2-3 Complex Exponentials & Complex Numbers TLH MODIFIED. Aug , JH McClellan & RW Schafer DSP-First, / TLH MODIFIED LECTURE # CH-3 Complx Exponntials & Complx Numbrs Aug 016 1 READING ASSIGNMENTS This Lctur: Chaptr, Scts. -3 to -5 Appndix A: Complx Numbrs Complx Exponntials Aug 016 LECTURE

More information

Laplace Transforms recap for ccts

Laplace Transforms recap for ccts Lalac Tranform rca for cc Wha h big ida?. Loo a iniial condiion ron of cc du o caacior volag and inducor currn a im Mh or nodal analyi wih -domain imdanc rianc or admianc conducanc Soluion of ODE drivn

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Module 1-2: LTI Systems. Prof. Ali M. Niknejad

Module 1-2: LTI Systems. Prof. Ali M. Niknejad Modu -: LTI Sysms Prof. Ai M. Niknad Dparmn of EECS Univrsiy of Caifornia, Brky EE 5 Fa 6 Prof. A. M. Niknad LTI Dfiniion Sysm is inar sudid horoughy in 6AB: Sysm is im invarian: Thr is no cock or im rfrnc

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK EE202 Circui Theory II 2018 2019, Spring Dr. Yılmaz KALKAN & Dr. Ailla DÖNÜK 1. Basic Conceps (Chaper 1 of Nilsson - 3 Hrs.) Inroducion, Curren and Volage, Power and Energy 2. Basic Laws (Chaper 2&3 of

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Double Slits in Space and Time

Double Slits in Space and Time Doubl Slis in Sac an Tim Gorg Jons As has bn ror rcnly in h mia, a am l by Grhar Paulus has monsra an inrsing chniqu for ionizing argon aoms by using ulra-shor lasr ulss. Each lasr uls is ffcivly on an

More information

Chapter 9 Sinusoidal Steady State Analysis

Chapter 9 Sinusoidal Steady State Analysis Chaper 9 Sinusoidal Seady Sae Analysis 9.-9. The Sinusoidal Source and Response 9.3 The Phasor 9.4 pedances of Passive Eleens 9.5-9.9 Circui Analysis Techniques in he Frequency Doain 9.0-9. The Transforer

More information

EE 529 Remote Sensing Techniques. Review

EE 529 Remote Sensing Techniques. Review 59 Rmo Snsing Tchniqus Rviw Oulin Annna array Annna paramrs RCS Polariaion Signals CFT DFT Array Annna Shor Dipol l λ r, R[ r ω ] r H φ ηk Ilsin 4πr η µ - Prmiiviy ε - Prmabiliy

More information

8.022 (E&M) Lecture 16

8.022 (E&M) Lecture 16 8. (E&M) ecure 16 Topics: Inducors in circuis circuis circuis circuis as ime Our second lecure on elecromagneic inducance 3 ways of creaing emf using Faraday s law: hange area of circui S() hange angle

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Introduction to Fourier Transform

Introduction to Fourier Transform EE354 Signals and Sysms Inroducion o Fourir ransform Yao Wang Polychnic Univrsiy Som slids includd ar xracd from lcur prsnaions prpard y McClllan and Schafr Licns Info for SPFirs Slids his work rlasd undr

More information

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system: Undrdamd Sysms Undrdamd Sysms nd Ordr Sysms Ouu modld wih a nd ordr ODE: d y dy a a1 a0 y b f If a 0 0, hn: whr: a d y a1 dy b d y dy y f y f a a a 0 0 0 is h naural riod of oscillaion. is h daming facor.

More information

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016

Applied Statistics and Probability for Engineers, 6 th edition October 17, 2016 Applid Saisics and robabiliy for Enginrs, 6 h diion Ocobr 7, 6 CHATER Scion - -. a d. 679.. b. d. 88 c d d d. 987 d. 98 f d.. Thn, = ln. =. g d.. Thn, = ln.9 =.. -7. a., by symmry. b.. d...6. 7.. c...

More information

EHBSIM: MATLAB-BASED NONLINEAR CIRCUIT SIMULATION PROGRAM (HARMONIC BALANCE AND NONLINEAR ENVELOPE METHODS)

EHBSIM: MATLAB-BASED NONLINEAR CIRCUIT SIMULATION PROGRAM (HARMONIC BALANCE AND NONLINEAR ENVELOPE METHODS) EHBSIM: MATLAB-BASED OLIEAR CIRCUIT SIMULATIO PROGRAM (HARMOIC BALACE AD OLIEAR EVELOPE METHODS) Lonardo da C. Brio and Paulo H. P. d Carvalho LEMOM Univrsiy of Brasilia Brazil paulo@n.unb.br Absrac This

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mar Fowler Noe Se #1 C-T Signals: Circuis wih Periodic Sources 1/1 Solving Circuis wih Periodic Sources FS maes i easy o find he response of an RLC circui o a periodic source!

More information

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions.

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions. Signals And Sysems Exam#. Given x() and y() below: x() y() 4 4 (A) Give he expression of x() in erms of sep funcions. (%) x () = q() q( ) + q( 4) (B) Plo x(.5). (%) x() g() = x( ) h() = g(. 5) = x(. 5)

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

READING ASSIGNMENTS. Signal Processing First. Problem Solving Skills LECTURE OBJECTIVES. x(t) = cos(αt 2 ) Fourier Series ANALYSIS.

READING ASSIGNMENTS. Signal Processing First. Problem Solving Skills LECTURE OBJECTIVES. x(t) = cos(αt 2 ) Fourier Series ANALYSIS. Signal Procssing First Lctur 5 Priodic Signals, Harmonics & im-varying Sinusoids READING ASSIGNMENS his Lctur: Chaptr 3, Sctions 3- and 3-3 Chaptr 3, Sctions 3-7 and 3-8 Nxt Lctur: Fourir Sris ANALYSIS

More information

The Science of Monetary Policy

The Science of Monetary Policy Th Scinc of Monary Policy. Inroducion o Topics of Sminar. Rviw: IS-LM, AD-AS wih an applicaion o currn monary policy in Japan 3. Monary Policy Sragy: Inrs Ra Ruls and Inflaion Targing (Svnsson EER) 4.

More information

Coherence and interactions in diffusive systems. Lecture 4. Diffusion + e-e interations

Coherence and interactions in diffusive systems. Lecture 4. Diffusion + e-e interations Cohrnc and inracions in diffusiv sysms G. Monambaux cur 4 iffusion + - inraions nsiy of sas anomaly phasing du o lcron-lcron inracions - inracion andau Frmi liquid picur iffusion slows down lcrons ( )

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

UNSTEADY FLOW OF A FLUID PARTICLE SUSPENSION BETWEEN TWO PARALLEL PLATES SUDDENLY SET IN MOTION WITH SAME SPEED

UNSTEADY FLOW OF A FLUID PARTICLE SUSPENSION BETWEEN TWO PARALLEL PLATES SUDDENLY SET IN MOTION WITH SAME SPEED 006-0 Asian Rsarch Publishing work (ARP). All righs rsrvd. USTEADY FLOW OF A FLUID PARTICLE SUSPESIO BETWEE TWO PARALLEL PLATES SUDDELY SET I MOTIO WITH SAME SPEED M. suniha, B. Shankr and G. Shanha 3

More information

t=0 t>0: + vr - i dvc Continuation

t=0 t>0: + vr - i dvc Continuation hapr Ga Dlay and rcus onnuaon s rcu Equaon >: S S Ths dffrnal quaon, oghr wh h nal condon, fully spcfs bhaor of crcu afr swch closs Our n challng: larn how o sol such quaons TUE/EE 57 nwrk analys 4/5 NdM

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser Frquncy Rspns Lcur # Chapr BME 3 Bimdical Cmpuing - J.Schssr 99 Idal Filrs W wan sudy Hω funcins which prvid frquncy slciviy such as: Lw Pass High Pass Band Pass Hwvr, w will lk a idal filring, ha is,

More information