Module 1-2: LTI Systems. Prof. Ali M. Niknejad

Size: px
Start display at page:

Download "Module 1-2: LTI Systems. Prof. Ali M. Niknejad"

Transcription

1 Modu -: LTI Sysms Prof. Ai M. Niknad Dparmn of EECS Univrsiy of Caifornia, Brky

2 EE 5 Fa 6 Prof. A. M. Niknad LTI Dfiniion Sysm is inar sudid horoughy in 6AB: Sysm is im invarian: Thr is no cock or im rfrnc Th ransfr funcion is no a funcion of im I dos no mar hn you appy h inpu. Th ransfr funcion is going o b h sam Univrsiy of Caifornia, Brky

3 EE 5 Fa 6 Prof. A. M. Niknad Linar Sysms Coninuous im inar sysms hav a o in common ih fini dimnsiona inar sysms sudid in 6AB: Linariy: Basis cors à basis funcions: Suprposiion: Marix Rprsnaion à Ingra rprsnaion: 3 Univrsiy of Caifornia, Brky

4 EE 5 Fa 6 Linar Sysms con Prof. A. M. Niknad Eignvcors à ignfuncions Orhonorma basis Eignfuncion xpansion Opraors acing on ignfuncion xpansion 4 Univrsiy of Caifornia, Brky

5 EE 5 Fa 6 LTI Sysms Prof. A. M. Niknad Sinc mos priodic non-priodic signas can b dcomposd ino a summaion ingraion of sinusoids via Fourir Sris Transform, h rspons of a LTI sysm o viruay any inpu is characrizd by h frquncy rspons of h sysm: 5 Univrsiy of Caifornia, Brky

6 EE 5 Fa 6 Examp: Lo Pass Fir LPF Prof. A. M. Niknad Inpu signa: W kno ha: v v s cos s K cos f #" o! s Phas shif Amp shif v v s - i R dv i C d dv v vs - RC d dv vs v d 6 Univrsiy of Caifornia, Brky

7 EE 5 Fa 6 LPF h hard ay con. Prof. A. M. Niknad Pug h knon form of h oupu ino h quaion and s if i can saisfy KL and KCL cos cos x sin x s s y y cos cos f - cos x cos y sin x cos y cos xsin sin f coscosf - sinf - - sin xsin y y sin sinf cosf Sinc sin and cosin ar inary indpndn funcions: a sin a cos IFF a º a º 7 Univrsiy of Caifornia, Brky

8 EE 5 Fa 6 LPF: Soving for rspons Prof. A. M. Niknad Appying inar indpndnc - sinf - cosf anf - cosf - sinf - s Phas Rspons: f - an - cosf - sinf s cosf - anf s 8 Ampiud Rspons: s cosf / s s Univrsiy of Caifornia, Brky

9 EE 5 Fa 6 LPF Magniud Rspons Prof. A. M. Niknad 9 Univrsiy of Caifornia, Brky

10 EE 5 Fa 6 LPF Phas Rspons Prof. A. M. Niknad Univrsiy of Caifornia, Brky

11 EE 5 Fa 6 Prof. A. M. Niknad db: Honor h invnor of h phon Th LPF rspons quicky dcays o zro W can xpand rang by aking h og of h magniud rspons db dcib dci Univrsiy of Caifornia, Brky

12 EE 5 Fa 6 Why? Por! Prof. A. M. Niknad Why muipy og by rahr han? Por is proporiona o voag squard: æ ö æ db og ç og ç ès ø è s ö ø A brakpoin: æ ö / ç è s ødb æ ö / ç -4 db ès ø æ / ç è - -6 db 3dB Obsrv: sop of signa anuaion is db/dcad in frquncy s db ö ø db Univrsiy of Caifornia, Brky

13 EE 5 Fa 6 Why inroduc compx numbrs? Prof. A. M. Niknad Thy acuay mak hings asir On insighfu drivaion of Considr a scond ordr homognous DE y y '' y ìsin x í îcos x Sinc sin and cosin ar inary indpndn, any souion is a inar combinaion of h fundamna souions ix 3 Univrsiy of Caifornia, Brky

14 EE 5 Fa 6 Insigh ino Compx Exponnia Prof. A. M. Niknad ix Bu no ha is aso a souion! Tha mans: ix a sin x a cos x To find h consans of prop, ak drivaiv of his quaion: ix i -a sin x a cos x No sov for h consans using boh quaions: 4 æ sin x ç ècos x cos x öæ a sin ç - xøèa æ a A ç èa ö b ø ö ø æ ç èi ix ix ö ø d A - ¹ Univrsiy of Caifornia, Brky

15 EE 5 Fa 6 Prof. A. M. Niknad Compx Exponnia Iz y z x y θ z φ φ z z z z m φ φ x Rz 5 Univrsiy of Caifornia, Brky

16 EE 5 Fa 6 Prof. A. M. Niknad Th Roaing Compx Exponnia So h compx xponnia is nohing bu a poin racing ou a uni circ on h compx pan: ix cos x isin x i i -i -i 6 Univrsiy of Caifornia, Brky

17 EE 5 Fa 6 Magic: Turn Diff Eq ino Agbraic Eq Prof. A. M. Niknad Ingraion and diffrniaion ar rivia ih compx numbrs: d d i i i Any ODE is no rivia agbraic manipuaions in fac, sho ha you don vn nd o dircy driv h ODE by using phasors Th ky is o obsrv ha h currn/voag raion for any mn can b drivd for compx xponnia xciaion ò i d i i 7 Univrsiy of Caifornia, Brky

18 EE 5 Fa 6 Compx Exponnia is Porfu Prof. A. M. Niknad To find sady sa rspons can xci h sysm ih a compx xponnia i LTI Sysm i f H H Mag Rspons Phas Rspons A any frquncy, h sysm rspons is characrizd by a sing compx numbr H: 8 This is no surprising sinc a sinusoid is a sum of compx xponnias and bcaus of inariy! sin H f! H i - i -i cos From his prspciv, h compx xponnia is vn mor fundamna i -i Univrsiy of Caifornia, Brky

19 EE 5 Fa 6 LPF Examp: Th sof ay Prof. A. M. Niknad L s xci h sysm ih a compx xp: v v v s s o dv v d s f us o avoid confusion ra compx 9 s s Easy!!! s Univrsiy of Caifornia, Brky

20 EE 5 Fa 6 Magniud and Phas Rspons Prof. A. M. Niknad Th sysm is characrizd by h compx funcion H s Th magniud and phas rspons mach our prvious cacuaion: H s ü! H - an - ü Univrsiy of Caifornia, Brky

21 EE 5 Fa 6 Why did i ork? Prof. A. M. Niknad Again, h sysm is inar: y L x x L x L x To find h rspons o a sinusoid, can find h rspons o i and - i and sum h rsus: i LTI Sysm i f H H i - i -i LTI Sysm H LTI Sysm H H - H i i - f H - -i Univrsiy of Caifornia, Brky

22 EE 5 Fa 6 Prof. A. M. Niknad con. Sinc h inpu is ra, h oupu has o b ra: Tha mans h scond rm is h conuga of h firs: Thrfor h oupu is: Univrsiy of Caifornia, Brky i i H H y - - oddfuncion vn funcion f H H H H!! cos f f f - H H y i i ü

23 EE 5 Fa 6 3 Prof. A. M. Niknad Proof for Linar Sysms For an arbirary inar circui L,C,R,M, and dpndn sourcs, dcompos i ino inar subopraors, ik muipicaion by consans, im drivaivs, or ingras: For a compx xponnia inpu x his simpifis o: Univrsiy of Caifornia, Brky òòò òò ò!! x x x x d d b x d d b ax x y L!! òò ò c c d d b d d b a y L!! c c b b a y ø ö ç è æ!! c c b b a Hx y

24 EE 5 Fa 6 4 Prof. A. M. Niknad Proof con. Noic ha h oupu is aso a compx xp ims a compx numbr: Th ampiud of h oupu is h magniud of h compx numbr and h phas of h oupu is h phas of h compx numbr Univrsiy of Caifornia, Brky ø ö ç è æ!! c c b b a Hx y cos ] R[ H H y H y c c b b a Hx y H! " "! ø ö ç è æ

25 EE 5 Fa 6 Phasors Prof. A. M. Niknad Wih our n confidnc in compx numbrs, go fu sam ahad and ork dircy ih hm i can vn drop h im facor sinc i i canc ou of h quaions. Exci sysm ih a phasor: Rspons i aso b phasor: ~ f ~ f For hos ih a Linar Sysm background, r going o ork in h frquncy domain This is h Lapac domain ih s 5 Univrsiy of Caifornia, Brky

26 EE 5 Fa 6 Capacior I- Phasor Raion Prof. A. M. Niknad Find h Phasor raion for currn and voag in a cap: i c dvc C d i c I c ω v c c ω v C _ i c I c ω C d d [ ω c ] d C c d ω ω C c ω I c ω ω C c ω I c ω C c 6 Univrsiy of Caifornia, Brky

27 EE 5 Fa 6 Prof. A. M. Niknad Inducor I- Phasor Raion Find h Phasor raion for currn and voag in an inducor: v L di d i I ω v ω v i ω L d d [I ω ] _ LI d d ω ω LI ω ω ω LI ω ω L I 7 Univrsiy of Caifornia, Brky

28 EE 5 Fa 6 8 Prof. A. M. Niknad Compx Transfr Funcion Exci a sysm ih an inpu voag currn x Dfin h oupu voag y currn o b any nod voag branch currn For a compx xponnia inpu, h ransfr funcion from inpu o oupu: W can ri his in canonica form as a raiona funcion: Univrsiy of Caifornia, Brky ø ö ç è æ º!! c c b b a x y H!! 3 3 d d d n n n H

29 EE 5 Fa 6 Impd h Currns! Prof. A. M. Niknad Suppos ha h inpu is dfind as h currn of a rmina pair por and h oupu is dfind as h voag ino h por: v i Arbirary LTI Circui v i f Th impdanc Z is dfind as h raio of h phasor voag o phasor currn sf ransfr funcion v i Z H I I f -f I I f i v 9 Univrsiy of Caifornia, Brky

30 EE 5 Fa 6 Admi h Currns! Prof. A. M. Niknad Suppos ha h inpu is dfind as h currn of a rmina pair por and h oupu is dfind as h voag ino h por: v i Arbirary LTI Circui v i f f Th admmianc Z is dfind as h raio of h phasor currn o phasor voag sf ransfr funcion I I i v Y H f -f I I i v 3 Univrsiy of Caifornia, Brky

31 EE 5 Fa 6 oag and Currn Gain Prof. A. M. Niknad 3 Th voag currn gain is us h voag currn ransfr funcion from on por o anohr por: v i Gv G i Arbirary LTI Circui I I f -f If G >, h circui has voag currn gain If G <, h circui has oss or anuaion I I f -f i v Univrsiy of Caifornia, Brky

32 EE 5 Fa 6 3 Prof. A. M. Niknad Transimpdanc/admianc Currn/voag gain ar uniss quaniis Somims ar inrsd in h ransfr of voag o currn or vic vrsa Univrsiy of Caifornia, Brky Arbirary LTI Circui v i v i ] [ ] [ S I I K I I J f f f f - - W

33 EE 5 Fa 6 Prof. A. M. Niknad Dirc Cacuaion of H no DEs To dircy cacua h ransfr funcion impdanc, rans-impdanc, c can gnraiz h circui anaysis concp from h ra domain o h phasor domain Wih h concp of impdanc admianc, can no dircy anayz a circui ihou xpiciy riing don any diffrnia quaions Us KL, KCL, msh anaysis, oop anaysis, or nod anaysis hr inducors and capaciors ar rad as compx rsisors 33 Univrsiy of Caifornia, Brky

34 EE 5 Fa 6 LPF Examp: Again! Prof. A. M. Niknad Insad of sing up h DE in h im-domain, s do i dircy in h frquncy domain Tra h capacior as an imaginary rsisanc or impdanc: im domain ra circui frquncy domain phasor circui 34 W kno h impdancs: Z R R Z C C Univrsiy of Caifornia, Brky

35 EE 5 Fa 6 LPF oag Dividr Prof. A. M. Niknad Fas ay o sov probm is o say ha h LPF is ray a voag dividr 35 Z C H o C s ZC Z R R RC ü C Univrsiy of Caifornia, Brky

36 EE 5 Fa 6 36 Prof. A. M. Niknad Biggr Examp no probm! Considr a mor compicad xamp: Univrsiy of Caifornia, Brky C C C C C C C s ff C ff s ff C ff C s o Z R Z Z Z R R Z H Z R Z Z R R Z Z Z Z H ff ff Z,

37 EE 5 Fa 6 Scond Ordr Transfr Funcion Prof. A. M. Niknad Sris RLC circui 37 Univrsiy of Caifornia, Brky

38 EE 5 Fa 6 Pos/Zros of Shun RLC Circui Prof. A. M. Niknad 38 Univrsiy of Caifornia, Brky

39 EE 5 Fa 6 Prof. A. M. Niknad Dos i sound br? Appicaion of LPF: Nois Fir Lisn o h fooing sound fi corrupd ih nois Sinc h nois has a fa frquncy spcrum, if LPF h signa shoud g rid of h high-frquncy componns of nois Th fir cuoff frquncy shoud b abov h highs frquncy producd by h human voic ~ 5 khz. A high-pass fir HPF has h opposi ffc, i ampifis h nois and anuas h signa. Tons Tons Nois LPF BPF on s on 39 BPF boh ons Univrsiy of Caifornia, Brky

40 EE 5 Fa 6 4 Prof. A. M. Niknad Buiding Tns: Pos and Zros For mos circuis ha da ih, h ransfr funcion can b shon o b a raiona funcion Th bhavior of h circui can b xracd by finding h roos of h numraor and dnominaor Or anohr form DC gain xpici Univrsiy of Caifornia, Brky!! 3 3 d d d n n n H Õ Õ p z p p z z H i i!! Õ Õ ,, i p i z K p p z z K G G H!!

41 EE 5 Fa 6 Pos and Zros con Prof. A. M. Niknad Th roos of h numraor ar cad h zros sinc a hs frquncis, h ransfr funcion is zro pos Th roos of h dnominaor ar cad h pos, sinc a hs frquncis h ransfr funcion paks ik a po in a n H z p - - z p - -!! 4 Univrsiy of Caifornia, Brky

42 EE 5 Fa 6 Finding h Magniud quicky Prof. A. M. Niknad Th magniud of h rspons can b cacuad quicky by using h propry of h mag opraor: H G G K K z p z p z p z p!!!! 4 Th magniud a DC dpnds on G and h numbr of pos/zros a DC. If K >, gain is zro. If K <, DC gain is infini. Ohris if K, hn gain is simpy G Univrsiy of Caifornia, Brky

43 EE 5 Fa 6 Finding h Phas quicky Prof. A. M. Niknad Th phas can b compud quicky ih h fooing formua: " H " G " G - " - " K p - - K - " -! No h scond rm is simp o cacua for posiiv frquncis: " !! K K Inrpr his as saying ha muipicaion by is quivan o roaion by 9 dgrs z p p p z z p "!! - z 43 Univrsiy of Caifornia, Brky

44 EE 5 Fa 6 Bod Pos Prof. A. M. Niknad Simpy h og-og po of h magniud and phas rspons of a circui impdanc, ransimpdanc, gain, Givs insigh ino h bhavior of a circui as a funcion of frquncy Th og xpands h sca so ha brakpoins in h ransfr funcion ar cary dinad In EECS 4, Bod pos ar usd o compnsa circuis in fdback oops 44 Univrsiy of Caifornia, Brky

45 EE 5 Fa 6 45 Prof. A. M. Niknad Examp: High-Pass Fir Using h voag dividr ru: Univrsiy of Caifornia, Brky H H H H R L R L L R L H

46 EE 5 Fa 6 HPF Magniud Bod Po Prof. A. M. Niknad Rca ha og of produc is h sum of og H db db db db db db Þ db Incras by db/dcad Equas uniy a brakpoin 4 db db db 46 db. - db Univrsiy of Caifornia, Brky

47 EE 5 Fa 6 HPF Bod Po disscion Prof. A. M. Niknad Th scond rm can b furhr disscd: db db./ / / db - db -4 db -6 db db - db << >> db - db/dc ~ -3dB 47-3dB Univrsiy of Caifornia, Brky

48 EE 5 Fa 6 Composi Po Prof. A. M. Niknad Composi is simpy h sum of ach componn: db db db High frquncy ~ db Gain Lo frquncy anuaion db./ / / - db -4 db db 48 Univrsiy of Caifornia, Brky

49 EE 5 Fa 6 Prof. A. M. Niknad Approxima vrsus Acua Po 49 Approxima curv accura aay from brakpoin A brakpoin hr is a 3 db rror Univrsiy of Caifornia, Brky

50 EE 5 Fa 6 HPF Phas Po Prof. A. M. Niknad Phas can b nauray dcomposd as : 5 p -! H!!! - an Firs rm is simpy a consan phas of 9 dgrs Th scond rm is h arcan funcion Esima arcan funcion: << 45 Acua curv >> Univrsiy of Caifornia, Brky

51 EE 5 Fa 6 s Compx Pan Prof. A. M. Niknad 5 You may s pop aking abou ransfr funcions as a funcion of compx s rahr han frquncy H s z sz s! p sp s! This is a gnraizaion Lapac Domain of frquncy ha you i arn abou ar. For no, us vaua h funcion as foos H s ω z ω z ω! p ω p ω! This is hy you may s pop dfining a funcion ik: H ω Univrsiy of Caifornia, Brky

52 EE 5 Fa 6 Por Fo Prof. A. M. Niknad 5 P av Th insananous por fo ino any mn is h produc of h voag and currn: P i For a priodic xciaion, h avrag por is: ò T In rms of sinusoids hav T P av i v d I cosω ϕ i cosω ϕ v dτ v I cosω cosϕ i sinω sinϕ i cosω cosϕ v sinω sinϕ v dτ T I dτ cos ω cosϕ i cosϕ v sin ω sinϕ i sinϕ v csinω cosω I T cosϕ i cosϕ v sinϕ i sinϕ v I cosϕ i ϕ v Univrsiy of Caifornia, Brky

53 EE 5 Fa 6 Por Fo ih Phasors Prof. A. M. Niknad P av I cos f -f i v p No ha if f f, hn Imporan: Por is a non-inar funcion so can simpy ak h ra par of h produc of h phasors: P ¹ R[ I ] Por Facor i - v P av cos p / I 53 From our prvious cacuaion: I * * P cos fi -fv R[ I ] R[ I ] Univrsiy of Caifornia, Brky

54 EE 5 Fa 6 54 Prof. A. M. Niknad Mor Por o You! In rms of h circui impdanc hav: Chck h rsu for a ra impdanc rsisor Aso, in rms of currn: Univrsiy of Caifornia, Brky ] R[ ] R[ ] R[ ] R[ ] R[ ] R[ * * * * Z Z Z Z Z Z Z Z I P - ] R[ ] R[ ] R[ * * Z I Z I I I P

55 EE 5 Fa 6 Prof. A. M. Niknad Summary 55 Compx xponnias ar ign-funcions of LTI sysms Sady-sa rspons of LCR circuis ar LTI sysms Phasor anaysis aos us o ra a LCR circuis as simp rsisiv circuis by using h concp of impdanc admianc Frquncy rspons aos us o compy characriz a sysm Any inpu can b dcomposd ino ihr a coninuum or discr sum of frquncy componns Th ransfr funcion is usuay pod in h og-og domain Bod po magniud and phas Locaion of pos/zros is ky Univrsiy of Caifornia, Brky

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( ) Rviw Lcur 5 Firs-ordr circui Th sourc-fr R-C/R-L circui Sp rspons of an RC/RL circui v( ) v( ) [ v( 0) v( )] 0 Th i consan = RC Th final capacior volag v() Th iniial capacior volag v( 0 ) Volag/currn-division

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

Physics 160 Lecture 3. R. Johnson April 6, 2015

Physics 160 Lecture 3. R. Johnson April 6, 2015 Physics 6 Lcur 3 R. Johnson April 6, 5 RC Circui (Low-Pass Filr This is h sam RC circui w lookd a arlir h im doma, bu hr w ar rsd h frquncy rspons. So w pu a s wav sad of a sp funcion. whr R C RC Complx

More information

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu Chapr 3: Fourir Rprsnaion of Signals and LTI Sysms Chih-Wi Liu Oulin Inroducion Complx Sinusoids and Frquncy Rspons Fourir Rprsnaions for Four Classs of Signals Discr-im Priodic Signals Fourir Sris Coninuous-im

More information

Transfer function and the Laplace transformation

Transfer function and the Laplace transformation Lab No PH-35 Porland Sa Univriy A. La Roa Tranfr funcion and h Laplac ranformaion. INTRODUTION. THE LAPLAE TRANSFORMATION L 3. TRANSFER FUNTIONS 4. ELETRIAL SYSTEMS Analyi of h hr baic paiv lmn R, and

More information

Wave Equation (2 Week)

Wave Equation (2 Week) Rfrnc Wav quaion ( Wk 6.5 Tim-armonic filds 7. Ovrviw 7. Plan Wavs in Losslss Mdia 7.3 Plan Wavs in Loss Mdia 7.5 Flow of lcromagnic Powr and h Poning Vcor 7.6 Normal Incidnc of Plan Wavs a Plan Boundaris

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review Spring 6 Procss Dynamics, Opraions, and Conrol.45 Lsson : Mahmaics Rviw. conx and dircion Imagin a sysm ha varis in im; w migh plo is oupu vs. im. A plo migh imply an quaion, and h quaion is usually an

More information

H is equal to the surface current J S

H is equal to the surface current J S Chapr 6 Rflcion and Transmission of Wavs 6.1 Boundary Condiions A h boundary of wo diffrn mdium, lcromagnic fild hav o saisfy physical condiion, which is drmind by Maxwll s quaion. This is h boundary condiion

More information

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8 CIVL 8/7111 -D Boundar Vau Prom - Quadriara Emn (Q) 1/8 ISOPARAMERIC ELEMENS h inar rianguar mn and h iinar rcanguar mn hav vra imporan diadvanag. 1. Boh mn ar una o accura rprn curvd oundari, and. h provid

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Aoc. Prof. Dr. Burak Kllci Spring 08 OUTLINE Th Laplac Tranform Rgion of convrgnc for Laplac ranform Invr Laplac ranform Gomric valuaion

More information

Control System Engineering (EE301T) Assignment: 2

Control System Engineering (EE301T) Assignment: 2 Conrol Sysm Enginring (EE0T) Assignmn: PART-A (Tim Domain Analysis: Transin Rspons Analysis). Oain h rspons of a uniy fdack sysm whos opn-loop ransfr funcion is (s) s ( s 4) for a uni sp inpu and also

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

LaPlace Transform in Circuit Analysis

LaPlace Transform in Circuit Analysis LaPlac Tranform in Circui Analyi Obciv: Calcula h Laplac ranform of common funcion uing h dfiniion and h Laplac ranform abl Laplac-ranform a circui, including componn wih non-zro iniial condiion. Analyz

More information

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control MEM 355 Prformanc Enhancmn of Dynamical Sysms A Firs Conrol Problm - Cruis Conrol Harry G. Kwany Darmn of Mchanical Enginring & Mchanics Drxl Univrsiy Cruis Conrol ( ) mv = F mg sinθ cv v +.2v= u 9.8θ

More information

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey cur : Growh and dcay of currn in circui Growh of currn in Circui us considr an inducor of slf inducanc is conncd o a DC sourc of.m.f. E hrough a rsisr of rsisanc and a ky K in sris. Whn h ky K is swichd

More information

Lecture 2: Current in RC circuit D.K.Pandey

Lecture 2: Current in RC circuit D.K.Pandey Lcur 2: urrn in circui harging of apacior hrough Rsisr L us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R and a ky K in sris. Whn h ky K is swichd on, h charging

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction.

C From Faraday's Law, the induced voltage is, C The effect of electromagnetic induction in the coil itself is called selfinduction. Inducors and Inducanc C For inducors, v() is proporional o h ra of chang of i(). Inducanc (con d) C Th proporionaliy consan is h inducanc, L, wih unis of Hnris. 1 Hnry = 1 Wb / A or 1 V sc / A. C L dpnds

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Why Laplace transforms?

Why Laplace transforms? MAE4 Linar ircui Why Lalac ranform? Firordr R cc v v v KVL S R inananou for ach Subiu lmn rlaion v S Ordinary diffrnial quaion in rm of caacior volag Lalac ranform Solv Invr LT V u, v Ri, i A R V A _ v

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

On the Speed of Heat Wave. Mihály Makai

On the Speed of Heat Wave. Mihály Makai On h Spd of Ha Wa Mihály Maai maai@ra.bm.hu Conns Formulaion of h problm: infini spd? Local hrmal qulibrium (LTE hypohsis Balanc quaion Phnomnological balanc Spd of ha wa Applicaion in plasma ranspor 1.

More information

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa . ransfr funion Kanazawa Univrsiy Mirolronis Rsarh Lab. Akio Kiagawa . Wavforms in mix-signal iruis Configuraion of mix-signal sysm x Digial o Analog Analog o Digial Anialiasing Digial moohing Filr Prossor

More information

Chapter 12 Introduction To The Laplace Transform

Chapter 12 Introduction To The Laplace Transform Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and

More information

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system: Undrdamd Sysms Undrdamd Sysms nd Ordr Sysms Ouu modld wih a nd ordr ODE: d y dy a a1 a0 y b f If a 0 0, hn: whr: a d y a1 dy b d y dy y f y f a a a 0 0 0 is h naural riod of oscillaion. is h daming facor.

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Circuits and Systems I

Circuits and Systems I Circuis and Sysms I LECTURE #3 Th Spcrum, Priodic Signals, and h Tim-Varying Spcrum lions@pfl Prof. Dr. Volan Cvhr LIONS/Laboraory for Informaion and Infrnc Sysms Licns Info for SPFirs Slids This wor rlasd

More information

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions EE 35 Signals an Sysms Spring 5 Sampl Exam # - Soluions. For h following signal x( cos( sin(3 - cos(5 - T, /T x( j j 3 j 3 j j 5 j 5 j a -, a a -, a a - ½, a 3 /j-j -j/, a -3 -/jj j/, a 5 -½, a -5 -½,

More information

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is 39 Anohr quival dfiniion of h Fri vlociy is pf vf (6.4) If h rgy is a quadraic funcion of k H k L, hs wo dfiniions ar idical. If is NOT a quadraic funcion of k (which could happ as will b discussd in h

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields! Considr a pair of wirs idal wirs ngh >, say, infinily long olag along a cabl can vary! D olag v( E(D W can acually g o his wav bhavior by using circui hory, w/o going ino dails of h EM filds! Thr

More information

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract Applicaion of Diffrnial... Gnral Aricl Applicaion of diffrnial uaion in - and C- circui analysis by classical mhod. ajndra Prasad gmi curr, Dparmn of Mahmaics, P.N. Campus, Pokhara Email: rajndraprasadrgmi@yahoo.com

More information

CHAPTER 2 Signals And Spectra

CHAPTER 2 Signals And Spectra CHAPER Signals And Specra Properies of Signals and Noise In communicaion sysems he received waveform is usually caegorized ino he desired par conaining he informaion, and he undesired par. he desired par

More information

Revisiting what you have learned in Advanced Mathematical Analysis

Revisiting what you have learned in Advanced Mathematical Analysis Fourir sris Rvisiing wh you hv lrnd in Advncd Mhmicl Anlysis L f x b priodic funcion of priod nd is ingrbl ovr priod. f x cn b rprsnd by rigonomric sris, f x n cos nx bn sin nx n cos x b sin x cosx b whr

More information

2. The Laplace Transform

2. The Laplace Transform Th aac Tranorm Inroucion Th aac ranorm i a unamna an vry uu oo or uying many nginring robm To in h aac ranorm w conir a comx variab σ, whr σ i h ra ar an i h imaginary ar or ix vau o σ an w viw a a oin

More information

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response Review Capaciors/Inducors Volage/curren relaionship Sored Energy s Order Circuis RL / RC circuis Seady Sae / Transien response Naural / Sep response EE4 Summer 5: Lecure 5 Insrucor: Ocavian Florescu Lecure

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues Boy/DiPrima 9 h d Ch 7.8: Rpad Eignvalus Elmnary Diffrnial Equaions and Boundary Valu Problms 9 h diion by William E. Boy and Rihard C. DiPrima 9 by John Wily & Sons In. W onsidr again a homognous sysm

More information

Natural Resource Economics

Natural Resource Economics Naura Rsourc Economics Acamic ar: 2018-2019 Prof. Luca Savaici uca.savaici@uniroma3.i Lsson 14: Opima conro sufficin coniions Naura Rsourc Economics - Luca Savaici 2018-19 1 FOCs Saic probm: Dnamic probm:

More information

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15] S.Y. B.Sc. (IT) : Sm. III Applid Mahmaics Tim : ½ Hrs.] Prlim Qusion Papr Soluion [Marks : 75 Q. Amp h following (an THREE) 3 6 Q.(a) Rduc h mari o normal form and find is rank whr A 3 3 5 3 3 3 6 Ans.:

More information

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition EE 224 Signals and Sysems I Complex numbers sinusodal signals Complex exponenials e jω phasor addiion 1/28 Complex Numbers Recangular Polar y z r z θ x Good for addiion/subracion Good for muliplicaion/division

More information

Introduction to Fourier Transform

Introduction to Fourier Transform EE354 Signals and Sysms Inroducion o Fourir ransform Yao Wang Polychnic Univrsiy Som slids includd ar xracd from lcur prsnaions prpard y McClllan and Schafr Licns Info for SPFirs Slids his work rlasd undr

More information

ECE 2210 / 00 Phasor Examples

ECE 2210 / 00 Phasor Examples EE 0 / 00 Phasor Exampls. Add th sinusoidal voltags v ( t ) 4.5. cos( t 30. and v ( t ) 3.. cos( t 5. v ( t) using phasor notation, draw a phasor diagram of th thr phasors, thn convrt back to tim domain

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Sysems Prof. Mar Fowler Noe Se #1 C-T Signals: Circuis wih Periodic Sources 1/1 Solving Circuis wih Periodic Sources FS maes i easy o find he response of an RLC circui o a periodic source!

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information

( ) ( ) + = ( ) + ( )

( ) ( ) + = ( ) + ( ) Mah 0 Homwork S 6 Soluions 0 oins. ( ps I ll lav i o you vrify ha h omplimnary soluion is : y ( os( sin ( Th guss for h pariular soluion and is drivaivs ar, +. ( os( sin ( ( os( ( sin ( Y ( D 6B os( +

More information

where: u: input y: output x: state vector A, B, C, D are const matrices

where: u: input y: output x: state vector A, B, C, D are const matrices Sa pac modl: linar: y or in om : Sa q : f, u Oupu q : y h, u u Du F Gu y H Ju whr: u: inpu y: oupu : a vcor,,, D ar con maric Eampl " $ & ' " $ & 'u y " & * * * * [ ],, D H D I " $ " & $ ' " & $ ' " &

More information

AC STEADY-STATE ANALYSIS

AC STEADY-STATE ANALYSIS AC STEADY-STATE ANAYSS SNUSODA AND COPEX FOCNG FUNCTONS Bhavior of circuis wih sinusoidal indpndn sourcs and modling of sinusoids in rms of complx xponnials PHASOS prsnaion of complx xponnials as vcors.

More information

e 2t u(t) e 2t u(t) =?

e 2t u(t) e 2t u(t) =? EE : Signals, Sysems, and Transforms Fall 7. Skech he convoluion of he following wo signals. Tes No noes, closed book. f() Show your work. Simplify your answers. g(). Using he convoluion inegral, find

More information

Transmission Line Theory

Transmission Line Theory Tranmiion in Thory Dr. M.A.Moawa nroducion: n an cronic ym h divry of powr rquir h conncion of wo wir bwn h ourc and h oad. A ow frqunci powr i conidrd o b divrd o h oad hrough h wir. n h microwav frquncy

More information

Notes 04 largely plagiarized by %khc

Notes 04 largely plagiarized by %khc Noes 04 largely plagiarized by %khc Convoluion Recap Some ricks: x() () =x() x() (, 0 )=x(, 0 ) R ț x() u() = x( )d x() () =ẋ() This hen ells us ha an inegraor has impulse response h() =u(), and ha a differeniaor

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 1 Solutions 8-90 Signals and Sysems Profs. Byron Yu and Pulki Grover Fall 07 Miderm Soluions Name: Andrew ID: Problem Score Max 0 8 4 6 5 0 6 0 7 8 9 0 6 Toal 00 Miderm Soluions. (0 poins) Deermine wheher he following

More information

Lecture 4: Laplace Transforms

Lecture 4: Laplace Transforms Lur 4: Lapla Transforms Lapla and rlad ransformaions an b usd o solv diffrnial quaion and o rdu priodi nois in signals and imags. Basially, hy onvr h drivaiv opraions ino mulipliaion, diffrnial quaions

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

EE 434 Lecture 22. Bipolar Device Models

EE 434 Lecture 22. Bipolar Device Models EE 434 Lcur 22 Bipolar Dvic Modls Quiz 14 Th collcor currn of a BJT was masurd o b 20mA and h bas currn masurd o b 0.1mA. Wha is h fficincy of injcion of lcrons coming from h mir o h collcor? 1 And h numbr

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se # Wha are Coninuous-Time Signals??? /6 Coninuous-Time Signal Coninuous Time (C-T) Signal: A C-T signal is defined on he coninuum of ime values. Tha is:

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are MTEMTICL PHYSICS SOLUTIONS GTE- Q. Considr an ani-symmric nsor P ij wih indics i and j running from o 5. Th numbr of indpndn componns of h nsor is 9 6 ns: Soluion: Th numbr of indpndn componns of h nsor

More information

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT [Typ x] [Typ x] [Typ x] ISSN : 974-7435 Volum 1 Issu 24 BioTchnology 214 An Indian Journal FULL PAPE BTAIJ, 1(24), 214 [15197-1521] A sag-srucurd modl of a singl-spcis wih dnsiy-dpndn and birh pulss LI

More information

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj Guss.? ourir Analysis an Synhsis Tool Qusion??? niksh.473@lpu.co.in Digial Signal Procssing School of Elcronics an Communicaion Lovly Profssional Univrsiy Wha o you man by Transform? Wha is /Transform?

More information

Gaussian minimum shift keying systems with additive white Gaussian noise

Gaussian minimum shift keying systems with additive white Gaussian noise Indian Journal of ur & Applid hysics Vol. 46, January 8, pp. 65-7 Gaussian minimum shif kying sysms wih addiiv whi Gaussian nois A K Saraf & M Tiwari Dparmn of hysics and Elcronics, Dr Harisingh Gour Vishwavidyalaya,

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers A ircuis A ircui wih only A circui wih only A circui wih only A circui wih phasors esonance Transformers Phys 435: hap 31, Pg 1 A ircuis New Topic Phys : hap. 6, Pg Physics Moivaion as ime we discovered

More information

3. Alternating Current

3. Alternating Current 3. Alernaing Curren TOPCS Definiion and nroducion AC Generaor Componens of AC Circuis Series LRC Circuis Power in AC Circuis Transformers & AC Transmission nroducion o AC The elecric power ou of a home

More information

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser Frquncy Rspns Lcur # Chapr BME 3 Bimdical Cmpuing - J.Schssr 99 Idal Filrs W wan sudy Hω funcins which prvid frquncy slciviy such as: Lw Pass High Pass Band Pass Hwvr, w will lk a idal filring, ha is,

More information

ECE 145A / 218 C, notes set 1: Transmission Line Properties and Analysis

ECE 145A / 218 C, notes set 1: Transmission Line Properties and Analysis class nos, M. Rodwll, copyrighd 9 ECE 145A 18 C, nos s 1: Transmission in Propris and Analysis Mark Rodwll Univrsiy of California, Sana Barbara rodwll@c.ucsb.du 85-893-344, 85-893-36 fax Transmission in

More information

DSP-First, 2/e. This Lecture: LECTURE #3 Complex Exponentials & Complex Numbers. Introduce more tools for manipulating complex numbers

DSP-First, 2/e. This Lecture: LECTURE #3 Complex Exponentials & Complex Numbers. Introduce more tools for manipulating complex numbers DSP-Fis, / LECTURE #3 Compl Eponnials & Compl umbs READIG ASSIGMETS This Lcu: Chap, Scs. -3 o -5 Appndi A: Compl umbs Appndi B: MATLAB Lcu: Compl Eponnials Aug 016 003-016, JH McClllan & RW Schaf 3 LECTURE

More information

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to:

1. Inverse Matrix 4[(3 7) (02)] 1[(0 7) (3 2)] Recall that the inverse of A is equal to: Rfrncs Brnank, B. and I. Mihov (1998). Masuring monary policy, Quarrly Journal of Economics CXIII, 315-34. Blanchard, O. R. Proi (00). An mpirical characrizaion of h dynamic ffcs of changs in govrnmn spnding

More information

AN INTRODUCTION TO FOURIER ANALYSIS PROF. VEDAT TAVSANOĞLU

AN INTRODUCTION TO FOURIER ANALYSIS PROF. VEDAT TAVSANOĞLU A IRODUCIO O FOURIER AALYSIS PROF. VEDA AVSAOĞLU 994 A IRODUCIO O FOURIER AALYSIS ABLE OF COES. HE FOURIER SERIES ---------------------------------------------------------------------3.. Priodic Funcions-----------------------------------------------------------------------3..

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

EE 529 Remote Sensing Techniques. Review

EE 529 Remote Sensing Techniques. Review 59 Rmo Snsing Tchniqus Rviw Oulin Annna array Annna paramrs RCS Polariaion Signals CFT DFT Array Annna Shor Dipol l λ r, R[ r ω ] r H φ ηk Ilsin 4πr η µ - Prmiiviy ε - Prmabiliy

More information

Sinusoidal Response Notes

Sinusoidal Response Notes ECE 30 Sinusoidal Rspons Nots For BIBO Systms AStolp /29/3 Th sinusoidal rspons of a systm is th output whn th input is a sinusoidal (which starts at tim 0) Systm Sinusoidal Rspons stp input H( s) output

More information

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series DSP Firs, Lcur 7C Fourir Sris Empls: Common Priodic Signls READIG ASSIGMES his Lcur: Appndi C, Scion C- Vrious Fourir Sris Puls Wvs ringulr Wv Rcifid Sinusoids lso in Ch. 3, Sc. 3-5 Aug 6 3-6, JH McCllln

More information

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if. Tranform Mhod and Calculu of Svral Variabl H7, p Lcurr: Armin Halilovic KTH, Campu Haning E-mail: armin@dkh, wwwdkh/armin REPETITION bfor h am PART, Tranform Mhod Laplac ranform: L Driv h formula : a L[

More information

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289. Convrgnc of ourir Trnsform Rding Assignmn Oppnhim Sc 42 pp289 Propris of Coninuous im ourir Trnsform Rviw Rviw or coninuous-im priodic signl x, j x j d Invrs ourir Trnsform 2 j j x d ourir Trnsform Linriy

More information

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate

A Condition for Stability in an SIR Age Structured Disease Model with Decreasing Survival Rate A Condiion for abiliy in an I Ag rucurd Disas Modl wih Dcrasing urvival a A.K. upriana, Edy owono Dparmn of Mahmaics, Univrsias Padjadjaran, km Bandung-umng 45363, Indonsia fax: 6--7794696, mail: asupria@yahoo.com.au;

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Sysems Prof. Mark Fowler Noe Se #2 Wha are Coninuous-Time Signals??? Reading Assignmen: Secion. of Kamen and Heck /22 Course Flow Diagram The arrows here show concepual flow beween ideas.

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p. ECE MS I DC Power P I = Inroducion o AC Power, MS I AC Power P =? A Solp //9, // // correced p4 '4 v( ) = p cos( ω ) v( ) p( ) Couldn' we define an "effecive" volage ha would allow us o use he same relaionships

More information

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK

EE202 Circuit Theory II , Spring. Dr. Yılmaz KALKAN & Dr. Atilla DÖNÜK EE202 Circui Theory II 2018 2019, Spring Dr. Yılmaz KALKAN & Dr. Ailla DÖNÜK 1. Basic Conceps (Chaper 1 of Nilsson - 3 Hrs.) Inroducion, Curren and Volage, Power and Energy 2. Basic Laws (Chaper 2&3 of

More information

EE105 Fall 2015 Microelectronic Devices and Circuits. LTI: Linear Time-Invariant System

EE105 Fall 2015 Microelectronic Devices and Circuits. LTI: Linear Time-Invariant System EE5 Fall 5 Mrolron Dvs and Crus Prof. Mng C. Wu wu@s.rkl.du 5 Suarda Da all SD - LTI: Lnar Tm-Invaran Ssm Ssm s lnar sudd horoughl n 6AB: Ssm s m nvaran: Thr s no lok or m rfrn Th ransfr funon s no a funon

More information

Lagrangian for RLC circuits using analogy with the classical mechanics concepts

Lagrangian for RLC circuits using analogy with the classical mechanics concepts Lagrangian for RLC circuis using analogy wih h classical mchanics concps Albrus Hariwangsa Panuluh and Asan Damanik Dparmn of Physics Educaion, Sanaa Dharma Univrsiy Kampus III USD Paingan, Maguwoharjo,

More information

Double Slits in Space and Time

Double Slits in Space and Time Doubl Slis in Sac an Tim Gorg Jons As has bn ror rcnly in h mia, a am l by Grhar Paulus has monsra an inrsing chniqu for ionizing argon aoms by using ulra-shor lasr ulss. Each lasr uls is ffcivly on an

More information

2 Weighted Residual Methods

2 Weighted Residual Methods 2 Weighed Residua Mehods Fundamena equaions Consider he probem governed by he differenia equaion: Γu = f in. (83) The above differenia equaion is soved by using he boundary condiions given as foows: u

More information

Laplace Transforms recap for ccts

Laplace Transforms recap for ccts Lalac Tranform rca for cc Wha h big ida?. Loo a iniial condiion ron of cc du o caacior volag and inducor currn a im Mh or nodal analyi wih -domain imdanc rianc or admianc conducanc Soluion of ODE drivn

More information

Chap.3 Laplace Transform

Chap.3 Laplace Transform Chap. aplac Tranorm Tranorm: An opraion ha ranorm a uncion ino anohr uncion i Dirniaion ranorm: ii x: d dx x x Ingraion ranorm: x: x dx x c Now, conidr a dind ingral k, d,ha ranorm ino a uncion o variabl

More information

Part 3 System Identification

Part 3 System Identification 2.6 Sy Idnificaion, Eiaion, and Larning Lcur o o. 5 Apri 2, 26 Par 3 Sy Idnificaion Prpci of Sy Idnificaion Tory u Tru Proc S y Exprin Dign Daa S Z { u, y } Conincy Mod S arg inv θ θ ˆ M θ ~ θ? Ky Quion:

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapr Rviw 0 6. ( a a ln a. This will qual a if an onl if ln a, or a. + k an (ln + c. Thrfor, a an valu of, whr h wo curvs inrsc, h wo angn lins will b prpnicular. 6. (a Sinc h lin passs hrough h origin

More information

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas Third In-Class Exam Soluions Mah 6, Profssor David Lvrmor Tusday, 5 April 07 [0] Th vrical displacmn of an unforcd mass on a spring is givn by h 5 3 cos 3 sin a [] Is his sysm undampd, undr dampd, criically

More information

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER A THREE COPARTENT ATHEATICAL ODEL OF LIVER V. An N. Ch. Paabhi Ramacharyulu Faculy of ahmaics, R D collgs, Hanamonda, Warangal, India Dparmn of ahmaics, Naional Insiu of Tchnology, Warangal, India E-ail:

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison Economics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 3/28/2012 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 16 1 Consumpion Th Vry Forsighd dconsumr A vry forsighd

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

AC STEADY-STATE ANALYSIS

AC STEADY-STATE ANALYSIS EANNG GOAS AC STEAD-STATE ANASS SNUSODS viw basic facs abou sinusoidal signals SNUSODA AND COPEX FOCNG FUNCTONS Bhavior of circuis wih sinusoidal indpndn sourcs and modling of sinusoids in rms of complx

More information

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2 Mah 0 Homwork S 6 Soluions 0 oins. ( ps) I ll lav i o you o vrify ha y os sin = +. Th guss for h pariular soluion and is drivaivs is blow. Noi ha w ndd o add s ono h las wo rms sin hos ar xaly h omplimnary

More information