10: Analysis of Algorithms

Size: px
Start display at page:

Download "10: Analysis of Algorithms"

Transcription

1 Overview 10: Analysis of Algorithms Which algorithm should I choose for a particular application? Ex: symbol table. (linked list, hash table, red-black tree,... ) Ex: sorting. (insertion sort, quicksort, mergesort,... ) Ex: halting problem. (none) Analysis of algorithms: framework for comparing algorithms and predicting performance. Computational complexity: framework for studying intrinsic difficulty of problems. Introduction to Computer Science Robert Sedgewick and Kevin Wayne 2 Overview Ex 1: N-body Simulation. Simulate gravitational interactions among N bodies. Brute force: N 2 steps. Barnes-Hut: N log N steps, enables new research. Ex 2: Discrete Fourier transform. physicists want N = # atoms in universe Break down waveform of N samples into periodic components. Applications: DVD players, JPEG, analysis of astronomical data, medical imaging, nonlinear Schroedinger equation,... Brute force: N 2 steps. FFT algorithm: N log N steps, enables new technology. Andrew Appel PU '81 Freidrich Gauss 1805 Attribute Cost Applicability Improvement Better Machines vs. Better Algorithms Better Machine $$$ or more. Makes "everything" run faster. Incremental quantitative improvements. Better Algorithm $ or less. May not apply to some problems. Dramatic quantitative improvements possible. Ex: sorting a billion items with quicksort on home PC is 100x faster than insertion sorting it on supercomputer. Ex 3: Sorting. Rearrange N items in ascending order. Fundamental information processing abstraction. Jon von Neumann IAS 1945 Computer home PC super Comparisons Per Second Insertion 3 centuries 2 weeks 3 hours 3 4

2 Case Study: Sorting Insertion Sort Sorting problem: Given N items, rearrange them in ascending order. Applications: databases, data compression, computational biology, computer graphics,... Insertion sort Brute-force sorting solution. Move left-to-right through array. Exchange next element with larger elements to its left, one-by-one. name Hauser Hong Hsu Hayes Haskell Hanley Hornet name Hanley Haskell Hauser Hayes Hong Hornet Hsu static void insertionsort(string[] a) { for (int i = 0; i < a.length; i++) { for (int j = i; j > 0; j--) { if (less(a[j], a[j-1])) exch(a, j, j-1); else break; 5 6 Helper Functions Estimating the Running Time Is string s lexicographically less than string t? static boolean less(string s, String t) { int n = Math.min(s.length(), t.length()); for (int i = 0; i < n; i++) { if (s.charat(i) < t.charat(i)) return true; else if (s.charat(i) > t.charat(i)) return false; return (s.length() < t.length()); Swap string references a[i] and a[j]. static void exch(string[] a, int i, int j) { String swap = a[i]; a[i] = a[j]; a[j] = swap; Total run time. Sum over all instructions: frequency cost. Frequency. Determined by algorithm and input. Cost. Determined by compiler and machine. Easier alternative. (i) Analyze asymptotic growth. (ii) For medium N, run and measure time. (iii) For large N, use (i) and (ii) to predict time. Asymptotic growth rates. Estimate time as a function of input size N. N, N log N, N 2, N 3, 2 N, N! Typically ignore lower order terms and leading coefficients. Ex. 6N N is asymptotically proportional to N 3 Donald Knuth 7 8

3 Insertion Sort: Analysis Insertion Sort: Analysis Worst case. Elements in reverse sorted order. i th iteration requires i - 1 compare and exchange operations total = N-2 + N-1 = N (N-1) / 2 Best case. Elements in sorted order already. i th iteration requires only 1 compare operation total = = N - 1 E F G H I J D C B A A B C D E F G H I J unsorted sorted active unsorted sorted active Insertion Sort: Analysis Insertion Sort: Analysis Average case. Elements are randomly ordered. i th iteration requires i / 2 comparison on average total = 0 + 1/2 + 2/ (N-1)/2 = N (N-1) / 4 Analysis Worst Comparisons N (N - 1) / 2 Asymptotic 0.5 N 2 Best N 1 N A D E F H J C B I G Average N (N 1) / N 2 unsorted sorted active 12 13

4 Estimating the Running Time: Insertion Sort Insertion Sort: Number of Comparisons (ii) Collect empirical data for medium N. Use System.currentTimeMillis to get number of milliseconds since January 1, long start = System.currentTimeMillis(); insertionsort(a); long stop = System.currentTimeMillis(); double elapsed = (stop - start) / ; N comparisons running time (iii) Predict for large N. Quadratic: 2x factor in input size 4x factor in comparisons. Comparsions (millions) Actual 1000 Predicted , million 0.7 seconds Input Size 10,000 20, million 98 million 4 seconds 25 seconds Lesson. Supercomputer can't rescue bad algorithm. 40, million 130 seconds 80, billion 570 seconds computer comparisons per second thousand Input Size million billion Data source: first N words of Charles Dicken's life work. Machine: Dell 2.2GHz PC with 1GB memory. home super day 1 second 3 centuries 2 weeks Profiling What is my program doing? % java Xprof InsertionSort < dickens.txt Flat profile of secs (11909 total ticks): main Compiled + native Method 90.9% InsertionSort.less 6.2% java.lang.math.min 2.8% InsertionSort.insertionsort 0.0% InsertionSort.main 0.0% java.io.bufferedinputstream.read 0.0% java.lang.stringbuffer.length 0.0% java.lang.stringbuffer.append 0.0% java.lang.string.<init> 0.0% StdIn.readString 99.9% Total compiled. C. A. R. Hoare, 1960 Q U I C K S O R T I S C O O L How to speed up the program? Make less run substantially faster. Call less substantially fewer times

5 .. Sort each "half" recursively. partitioning element partitioning element Q U I C K S O R T I S C O O L Q U I C K S O R T I S C O O L I C K I C L Q U S O R T S O O CI C KI I CK L QO OU OS QO R ST S OT OU L L partitioned array sort each piece : Java Implementation : Implementing Partition. Sort each "half" recursively. public void quicksort(string[] a, int left, int right) { if (right <= left) return; int i = partition(a, left, right); quicksort(a, left, i-1); quicksort(a, i+1, right); How do we partition in-place efficiently? static int partition(string[] a, int left, int right) { int i = left - 1; int j = right; while(true) { while (less(a[++i], a[right])) find item on left to swap ; while (less(a[right], a[--j])) find item on right to swap if (j == left) break; if (i >= j) break; check if pointers cross exch(a, i, j); swap exch(a, i, right); return i; swap with partitioning element return index where crossing occurs 20 21

6 : Analysis Sorting Summary Average case running time. Roughly 2 N log e N comparisons. Assumption: partition on random element (instead of rightmost one). Worst case running proportional to N 2. More likely that you are struck by lightning and meteor at same time. Numerical experiments roughly match predictions. A bit better because of many equal keys. N 200,000 comparisons 4.0 million running time 0.9 seconds 400,000 1 million 8.3 million 23 million 2.2 seconds 5.8 seconds 2 million 47 million 13 seconds 4 million 97 million 31 seconds see Sedgewick book or COS 226 for proof Comparsions (thousands) Input Size Insertion sort Lesson. Good algorithm can be much more powerful than supercomputer. Computer home PC super Comparisons Per Second Insertion 3 centuries 2 weeks 3 hours N = 1 billion Design, Analysis, and Implementation of Algorithms Computational Complexity of Problems Algorithm. Step-by-step recipe used to solve a problem. Generally independent of programming language or machine on which it is to be executed. Design. Find a method to solve the problem. Analysis. Evaluate effectiveness and predict theoretical performance. Implementation. Write Java code to test your theory. Analysis Design Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X. Upper bound. Cost guarantee provided by some algorithm for X. Lower bound. Proven limit on cost guarantee of any algorithm for X. Optimal algorithm. Algorithm with best cost guarantee for X. Example 1: X = sorting. Measure costs in terms of comparisons. Upper bound = N log 2 N with mergesort. Lower bound = N log 2 N - N log 2 e. Optimal algorithm = mergesort. lower bound ~ upper bound quicksort usually faster, but mergesort never slow applies to any comparison-based algorithm (see COS 226) Implement Theory simplifies and provides guidelines

7 Computational Complexity of Problems Summary Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X. Upper bound. Cost guarantee provided by some algorithm for X. Lower bound. Proven limit on cost guarantee of any algorithm for X. Optimal algorithm. Algorithm with best cost guarantee for X. How can I evaluate the performance of my algorithm? Computational experiments. Analysis of algorithms. What if it's not fast enough? Understand why. analysis of algorithms Buy a faster computer. performance improves incrementally Example 2: X = Euclidean TSP. Measure cost in terms of arithmetic operations. Upper bound = 2 N by dynamic programming. N! by brute force Lower bound = N. Optimal algorithm = ask again in 50 years. Find a better algorithm in a textbook. performance can improve dramatically Discover a new algorithm. not always easy or possible Sobering philosophical thoughts. see NP-completeness In theory, most problems are undecidable. In practice, most remaining problems are intractable. Analysis of algorithms helps us improve the ones we use. Essence of computational complexity: closing the gap

Lecture 20: Analysis of Algorithms

Lecture 20: Analysis of Algorithms Overview Lecture 20: Analysis of Algorithms Which algorithm should I choose for a particular application?! Ex: symbol table. (linked list, hash table, red-black tree,... )! Ex: sorting. (insertion sort,

More information

4.1, 4.2: Analysis of Algorithms

4.1, 4.2: Analysis of Algorithms Overview 4.1, 4.2: Analysis of Algorithms Analysis of algorithms: framework for comparing algorithms and predicting performance. Scientific method.! Observe some feature of the universe.! Hypothesize a

More information

Running Time. Overview. Case Study: Sorting. Sorting problem: Analysis of algorithms: framework for comparing algorithms and predicting performance.

Running Time. Overview. Case Study: Sorting. Sorting problem: Analysis of algorithms: framework for comparing algorithms and predicting performance. Running Time Analysis of Algorithms As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise -

More information

Lecture 14: Nov. 11 & 13

Lecture 14: Nov. 11 & 13 CIS 2168 Data Structures Fall 2014 Lecturer: Anwar Mamat Lecture 14: Nov. 11 & 13 Disclaimer: These notes may be distributed outside this class only with the permission of the Instructor. 14.1 Sorting

More information

Algorithms. Algorithms 2.2 MERGESORT. mergesort bottom-up mergesort sorting complexity divide-and-conquer ROBERT SEDGEWICK KEVIN WAYNE

Algorithms. Algorithms 2.2 MERGESORT. mergesort bottom-up mergesort sorting complexity divide-and-conquer ROBERT SEDGEWICK KEVIN WAYNE Algorithms ROBERT SEDGEWICK KEVIN WAYNE 2.2 MERGESORT Algorithms F O U R T H E D I T I O N mergesort bottom-up mergesort sorting complexity divide-and-conquer ROBERT SEDGEWICK KEVIN WAYNE http://algs4.cs.princeton.edu

More information

COMP 250: Quicksort. Carlos G. Oliver. February 13, Carlos G. Oliver COMP 250: Quicksort February 13, / 21

COMP 250: Quicksort. Carlos G. Oliver. February 13, Carlos G. Oliver COMP 250: Quicksort February 13, / 21 COMP 250: Quicksort Carlos G. Oliver February 13, 2018 Carlos G. Oliver COMP 250: Quicksort February 13, 2018 1 / 21 1 1 https://xkcd.com/1667/ Carlos G. Oliver COMP 250: Quicksort February 13, 2018 2

More information

Lecture 4. Quicksort

Lecture 4. Quicksort Lecture 4. Quicksort T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo choo@skku.edu Copyright 2000-2018 Networking

More information

Algorithms And Programming I. Lecture 5 Quicksort

Algorithms And Programming I. Lecture 5 Quicksort Algorithms And Programming I Lecture 5 Quicksort Quick Sort Partition set into two using randomly chosen pivot 88 31 25 52 14 98 62 30 23 79 14 31 2530 23 52 88 62 98 79 Quick Sort 14 31 2530 23 52 88

More information

Chapter 5. Divide and Conquer CLRS 4.3. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 5. Divide and Conquer CLRS 4.3. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 5 Divide and Conquer CLRS 4.3 Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Divide-and-Conquer Divide-and-conquer. Break up problem into several parts. Solve

More information

Analysis of Algorithms

Analysis of Algorithms Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 Analysis of Algorithms Input Algorithm Analysis

More information

Chapter 5. Divide and Conquer CLRS 4.3. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 5. Divide and Conquer CLRS 4.3. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 5 Divide and Conquer CLRS 4.3 Slides by Kevin Wayne. Copyright 25 Pearson-Addison Wesley. All rights reserved. Divide-and-Conquer Divide-and-conquer. Break up problem into several parts. Solve

More information

Sorting Algorithms. !rules of the game!shellsort!mergesort!quicksort!animations. Classic sorting algorithms

Sorting Algorithms. !rules of the game!shellsort!mergesort!quicksort!animations. Classic sorting algorithms Classic sorting algorithms Sorting Algorithms!rules of the game!shellsort!mergesort!quicksort!animations Reference: Algorithms in Java, Chapters 6-8 1 Critical components in the world s computational infrastructure.

More information

Analysis of Algorithms. Randomizing Quicksort

Analysis of Algorithms. Randomizing Quicksort Analysis of Algorithms Randomizing Quicksort Randomizing Quicksort Randomly permute the elements of the input array before sorting OR... modify the PARTITION procedure At each step of the algorithm we

More information

data structures and algorithms lecture 2

data structures and algorithms lecture 2 data structures and algorithms 2018 09 06 lecture 2 recall: insertion sort Algorithm insertionsort(a, n): for j := 2 to n do key := A[j] i := j 1 while i 1 and A[i] > key do A[i + 1] := A[i] i := i 1 A[i

More information

Formal Languages. We ll use the English language as a running example.

Formal Languages. We ll use the English language as a running example. Formal Languages We ll use the English language as a running example. Definitions. A string is a finite set of symbols, where each symbol belongs to an alphabet denoted by Σ. Examples. The set of all strings

More information

Lecture 1: Asymptotics, Recurrences, Elementary Sorting

Lecture 1: Asymptotics, Recurrences, Elementary Sorting Lecture 1: Asymptotics, Recurrences, Elementary Sorting Instructor: Outline 1 Introduction to Asymptotic Analysis Rate of growth of functions Comparing and bounding functions: O, Θ, Ω Specifying running

More information

Analysis of Algorithms CMPSC 565

Analysis of Algorithms CMPSC 565 Analysis of Algorithms CMPSC 565 LECTURES 38-39 Randomized Algorithms II Quickselect Quicksort Running time Adam Smith L1.1 Types of randomized analysis Average-case analysis : Assume data is distributed

More information

1 Divide and Conquer (September 3)

1 Divide and Conquer (September 3) The control of a large force is the same principle as the control of a few men: it is merely a question of dividing up their numbers. Sun Zi, The Art of War (c. 400 C.E.), translated by Lionel Giles (1910)

More information

CSCE 222 Discrete Structures for Computing

CSCE 222 Discrete Structures for Computing CSCE 222 Discrete Structures for Computing Algorithms Dr. Philip C. Ritchey Introduction An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.

More information

Asymptotic Running Time of Algorithms

Asymptotic Running Time of Algorithms Asymptotic Complexity: leading term analysis Asymptotic Running Time of Algorithms Comparing searching and sorting algorithms so far: Count worst-case of comparisons as function of array size. Drop lower-order

More information

Introduction. An Introduction to Algorithms and Data Structures

Introduction. An Introduction to Algorithms and Data Structures Introduction An Introduction to Algorithms and Data Structures Overview Aims This course is an introduction to the design, analysis and wide variety of algorithms (a topic often called Algorithmics ).

More information

Sorting. Chapter 11. CSE 2011 Prof. J. Elder Last Updated: :11 AM

Sorting. Chapter 11. CSE 2011 Prof. J. Elder Last Updated: :11 AM Sorting Chapter 11-1 - Sorting Ø We have seen the advantage of sorted data representations for a number of applications q Sparse vectors q Maps q Dictionaries Ø Here we consider the problem of how to efficiently

More information

Algorithms, CSE, OSU Quicksort. Instructor: Anastasios Sidiropoulos

Algorithms, CSE, OSU Quicksort. Instructor: Anastasios Sidiropoulos 6331 - Algorithms, CSE, OSU Quicksort Instructor: Anastasios Sidiropoulos Sorting Given an array of integers A[1... n], rearrange its elements so that A[1] A[2]... A[n]. Quicksort Quicksort(A, p, r) if

More information

Week 5: Quicksort, Lower bound, Greedy

Week 5: Quicksort, Lower bound, Greedy Week 5: Quicksort, Lower bound, Greedy Agenda: Quicksort: Average case Lower bound for sorting Greedy method 1 Week 5: Quicksort Recall Quicksort: The ideas: Pick one key Compare to others: partition into

More information

CS 4407 Algorithms Lecture 2: Iterative and Divide and Conquer Algorithms

CS 4407 Algorithms Lecture 2: Iterative and Divide and Conquer Algorithms CS 4407 Algorithms Lecture 2: Iterative and Divide and Conquer Algorithms Prof. Gregory Provan Department of Computer Science University College Cork 1 Lecture Outline CS 4407, Algorithms Growth Functions

More information

Big-O Notation and Complexity Analysis

Big-O Notation and Complexity Analysis Big-O Notation and Complexity Analysis Jonathan Backer backer@cs.ubc.ca Department of Computer Science University of British Columbia May 28, 2007 Problems Reading: CLRS: Growth of Functions 3 GT: Algorithm

More information

Formal Languages. We ll use the English language as a running example.

Formal Languages. We ll use the English language as a running example. Formal Languages We ll use the English language as a running example. Definitions. A string is a finite set of symbols, where each symbol belongs to an alphabet denoted by. Examples. The set of all strings

More information

Algorithms. Algorithms 2.3 QUICKSORT. quicksort selection duplicate keys system sorts ROBERT SEDGEWICK KEVIN WAYNE.

Algorithms. Algorithms 2.3 QUICKSORT. quicksort selection duplicate keys system sorts ROBERT SEDGEWICK KEVIN WAYNE. Algorithms ROBERT SEDGEWICK KEVIN WAYNE 2.3 QUICKSORT Algorithms F O U R T H E D I T I O N quicksort selection duplicate keys system sorts ROBERT SEDGEWICK KEVIN WAYNE http://algs4.cs.princeton.edu Two

More information

Data Structures and Algorithms CSE 465

Data Structures and Algorithms CSE 465 Data Structures and Algorithms CSE 465 LECTURE 8 Analyzing Quick Sort Sofya Raskhodnikova and Adam Smith Reminder: QuickSort Quicksort an n-element array: 1. Divide: Partition the array around a pivot

More information

Algorithms. Algorithms 2.3 QUICKSORT. quicksort selection duplicate keys system sorts ROBERT SEDGEWICK KEVIN WAYNE.

Algorithms. Algorithms 2.3 QUICKSORT. quicksort selection duplicate keys system sorts ROBERT SEDGEWICK KEVIN WAYNE. Announcements Last normal lecture for 3 weeks. Sign up for Coursera if you have not already. Next week s video lectures will be available tomorrow at 2 PM. Exercises also posted (so you can test comprehension).

More information

csci 210: Data Structures Program Analysis

csci 210: Data Structures Program Analysis csci 210: Data Structures Program Analysis Summary Topics commonly used functions analysis of algorithms experimental asymptotic notation asymptotic analysis big-o big-omega big-theta READING: GT textbook

More information

1 Quick Sort LECTURE 7. OHSU/OGI (Winter 2009) ANALYSIS AND DESIGN OF ALGORITHMS

1 Quick Sort LECTURE 7. OHSU/OGI (Winter 2009) ANALYSIS AND DESIGN OF ALGORITHMS OHSU/OGI (Winter 2009) CS532 ANALYSIS AND DESIGN OF ALGORITHMS LECTURE 7 1 Quick Sort QuickSort 1 is a classic example of divide and conquer. The hard work is to rearrange the elements of the array A[1..n]

More information

Computer Science 4.1 PERFORMANCE. empirical analysis mathematical analysis ROBERT SEDGEWICK KEVIN WAYNE.

Computer Science 4.1 PERFORMANCE. empirical analysis mathematical analysis ROBERT SEDGEWICK KEVIN WAYNE. Computer Science ROBERT SEDGEWICK KEVIN WAYNE 4.1 PERFORMANCE empirical analysis mathematical analysis http://introcs.cs.princeton.edu Kevin Wayne Last updated on 4/4/17 11:31 AM Performance Goal. Estimate

More information

SORTING ALGORITHMS BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING ERKUT ERDEM. Mar. 21, 2013

SORTING ALGORITHMS BBM ALGORITHMS DEPT. OF COMPUTER ENGINEERING ERKUT ERDEM. Mar. 21, 2013 BBM 202 - ALGORITHMS DPT. OF COMPUTR NGINRING RKUT RDM SORTING ALGORITHMS Mar. 21, 2013 Acknowledgement: The course slides are adapted from the slides prepared by R. Sedgewick and K. Wayne of Princeton

More information

Algorithms. Quicksort. Slide credit: David Luebke (Virginia)

Algorithms. Quicksort. Slide credit: David Luebke (Virginia) 1 Algorithms Quicksort Slide credit: David Luebke (Virginia) Sorting revisited We have seen algorithms for sorting: INSERTION-SORT, MERGESORT More generally: given a sequence of items Each item has a characteristic

More information

Quicksort. Where Average and Worst Case Differ. S.V. N. (vishy) Vishwanathan. University of California, Santa Cruz

Quicksort. Where Average and Worst Case Differ. S.V. N. (vishy) Vishwanathan. University of California, Santa Cruz Quicksort Where Average and Worst Case Differ S.V. N. (vishy) Vishwanathan University of California, Santa Cruz vishy@ucsc.edu February 1, 2016 S.V. N. Vishwanathan (UCSC) CMPS101 1 / 28 Basic Idea Outline

More information

csci 210: Data Structures Program Analysis

csci 210: Data Structures Program Analysis csci 210: Data Structures Program Analysis 1 Summary Summary analysis of algorithms asymptotic analysis big-o big-omega big-theta asymptotic notation commonly used functions discrete math refresher READING:

More information

Central Algorithmic Techniques. Iterative Algorithms

Central Algorithmic Techniques. Iterative Algorithms Central Algorithmic Techniques Iterative Algorithms Code Representation of an Algorithm class InsertionSortAlgorithm extends SortAlgorithm { void sort(int a[]) throws Exception { for (int i = 1; i < a.length;

More information

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu Analysis of Algorithm Efficiency Dr. Yingwu Zhu Measure Algorithm Efficiency Time efficiency How fast the algorithm runs; amount of time required to accomplish the task Our focus! Space efficiency Amount

More information

Topic 17. Analysis of Algorithms

Topic 17. Analysis of Algorithms Topic 17 Analysis of Algorithms Analysis of Algorithms- Review Efficiency of an algorithm can be measured in terms of : Time complexity: a measure of the amount of time required to execute an algorithm

More information

Data Structures and Algorithms Chapter 2

Data Structures and Algorithms Chapter 2 1 Data Structures and Algorithms Chapter 2 Werner Nutt 2 Acknowledgments The course follows the book Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples

More information

P, NP, NP-Complete, and NPhard

P, NP, NP-Complete, and NPhard P, NP, NP-Complete, and NPhard Problems Zhenjiang Li 21/09/2011 Outline Algorithm time complicity P and NP problems NP-Complete and NP-Hard problems Algorithm time complicity Outline What is this course

More information

Outline. 1 Introduction. 3 Quicksort. 4 Analysis. 5 References. Idea. 1 Choose an element x and reorder the array as follows:

Outline. 1 Introduction. 3 Quicksort. 4 Analysis. 5 References. Idea. 1 Choose an element x and reorder the array as follows: Outline Computer Science 331 Quicksort Mike Jacobson Department of Computer Science University of Calgary Lecture #28 1 Introduction 2 Randomized 3 Quicksort Deterministic Quicksort Randomized Quicksort

More information

Survey says... Announcements. Survey says... Survey says...

Survey says... Announcements. Survey says... Survey says... Announcements Survey says... Last normal lecture for 3 weeks. Sign up for Coursera if you have not already. Next week s video lectures will be available tomorrow at 2 PM. Exercises also posted (so you

More information

Sorting Algorithms. We have already seen: Selection-sort Insertion-sort Heap-sort. We will see: Bubble-sort Merge-sort Quick-sort

Sorting Algorithms. We have already seen: Selection-sort Insertion-sort Heap-sort. We will see: Bubble-sort Merge-sort Quick-sort Sorting Algorithms We have already seen: Selection-sort Insertion-sort Heap-sort We will see: Bubble-sort Merge-sort Quick-sort We will show that: O(n log n) is optimal for comparison based sorting. Bubble-Sort

More information

Sorting algorithms. Sorting algorithms

Sorting algorithms. Sorting algorithms Properties of sorting algorithms A sorting algorithm is Comparison based If it works by pairwise key comparisons. In place If only a constant number of elements of the input array are ever stored outside

More information

Quicksort. Recurrence analysis Quicksort introduction. November 17, 2017 Hassan Khosravi / Geoffrey Tien 1

Quicksort. Recurrence analysis Quicksort introduction. November 17, 2017 Hassan Khosravi / Geoffrey Tien 1 Quicksort Recurrence analysis Quicksort introduction November 17, 2017 Hassan Khosravi / Geoffrey Tien 1 Announcement Slight adjustment to lab 5 schedule (Monday sections A, B, E) Next week (Nov.20) regular

More information

Outline. 1 Merging. 2 Merge Sort. 3 Complexity of Sorting. 4 Merge Sort and Other Sorts 2 / 10

Outline. 1 Merging. 2 Merge Sort. 3 Complexity of Sorting. 4 Merge Sort and Other Sorts 2 / 10 Merge Sort 1 / 10 Outline 1 Merging 2 Merge Sort 3 Complexity of Sorting 4 Merge Sort and Other Sorts 2 / 10 Merging Merge sort is based on a simple operation known as merging: combining two ordered arrays

More information

CSE 421, Spring 2017, W.L.Ruzzo. 8. Average-Case Analysis of Algorithms + Randomized Algorithms

CSE 421, Spring 2017, W.L.Ruzzo. 8. Average-Case Analysis of Algorithms + Randomized Algorithms CSE 421, Spring 2017, W.L.Ruzzo 8. Average-Case Analysis of Algorithms + Randomized Algorithms 1 outline and goals 1) Probability tools you've seen allow formal definition of "average case" running time

More information

10.3: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine.

10.3: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine. Overview 10.3: Intractability What is an algorithm? Turing machine. What problems can be solved on a computer? Computability. What ALGORITHMS will be useful in practice? Analysis of algorithms. Which PROBLEMS

More information

Great Theoretical Ideas in Computer Science. Lecture 9: Introduction to Computational Complexity

Great Theoretical Ideas in Computer Science. Lecture 9: Introduction to Computational Complexity 15-251 Great Theoretical Ideas in Computer Science Lecture 9: Introduction to Computational Complexity February 14th, 2017 Poll What is the running time of this algorithm? Choose the tightest bound. def

More information

Computer Science. Questions for discussion Part II. Computer Science COMPUTER SCIENCE. Section 4.2.

Computer Science. Questions for discussion Part II. Computer Science COMPUTER SCIENCE. Section 4.2. COMPUTER SCIENCE S E D G E W I C K / W A Y N E PA R T I I : A L G O R I T H M S, T H E O R Y, A N D M A C H I N E S Computer Science Computer Science An Interdisciplinary Approach Section 4.2 ROBERT SEDGEWICK

More information

Chapter 5. Divide and Conquer. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 5. Divide and Conquer. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 5 Divide and Conquer Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Divide-and-Conquer Divide-and-conquer. Break up problem into several parts. Solve each

More information

b + O(n d ) where a 1, b > 1, then O(n d log n) if a = b d d ) if a < b d O(n log b a ) if a > b d

b + O(n d ) where a 1, b > 1, then O(n d log n) if a = b d d ) if a < b d O(n log b a ) if a > b d CS161, Lecture 4 Median, Selection, and the Substitution Method Scribe: Albert Chen and Juliana Cook (2015), Sam Kim (2016), Gregory Valiant (2017) Date: January 23, 2017 1 Introduction Last lecture, we

More information

Divide and Conquer Algorithms

Divide and Conquer Algorithms Divide and Conquer Algorithms Introduction There exist many problems that can be solved using a divide-and-conquer algorithm. A divide-andconquer algorithm A follows these general guidelines. Divide Algorithm

More information

Review Of Topics. Review: Induction

Review Of Topics. Review: Induction Review Of Topics Asymptotic notation Solving recurrences Sorting algorithms Insertion sort Merge sort Heap sort Quick sort Counting sort Radix sort Medians/order statistics Randomized algorithm Worst-case

More information

Fundamental Algorithms

Fundamental Algorithms Chapter 2: Sorting, Winter 2018/19 1 Fundamental Algorithms Chapter 2: Sorting Jan Křetínský Winter 2018/19 Chapter 2: Sorting, Winter 2018/19 2 Part I Simple Sorts Chapter 2: Sorting, Winter 2018/19 3

More information

Computational Complexity

Computational Complexity Computational Complexity S. V. N. Vishwanathan, Pinar Yanardag January 8, 016 1 Computational Complexity: What, Why, and How? Intuitively an algorithm is a well defined computational procedure that takes

More information

Linear Time Selection

Linear Time Selection Linear Time Selection Given (x,y coordinates of N houses, where should you build road These lecture slides are adapted from CLRS.. Princeton University COS Theory of Algorithms Spring 0 Kevin Wayne Given

More information

Fundamental Algorithms

Fundamental Algorithms Fundamental Algorithms Chapter 2: Sorting Harald Räcke Winter 2015/16 Chapter 2: Sorting, Winter 2015/16 1 Part I Simple Sorts Chapter 2: Sorting, Winter 2015/16 2 The Sorting Problem Definition Sorting

More information

Data Structures. Outline. Introduction. Andres Mendez-Vazquez. December 3, Data Manipulation Examples

Data Structures. Outline. Introduction. Andres Mendez-Vazquez. December 3, Data Manipulation Examples Data Structures Introduction Andres Mendez-Vazquez December 3, 2015 1 / 53 Outline 1 What the Course is About? Data Manipulation Examples 2 What is a Good Algorithm? Sorting Example A Naive Algorithm Counting

More information

Computer Algorithms CISC4080 CIS, Fordham Univ. Outline. Last class. Instructor: X. Zhang Lecture 2

Computer Algorithms CISC4080 CIS, Fordham Univ. Outline. Last class. Instructor: X. Zhang Lecture 2 Computer Algorithms CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Lecture 2 Outline Introduction to algorithm analysis: fibonacci seq calculation counting number of computer steps recursive formula

More information

Computer Algorithms CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Lecture 2

Computer Algorithms CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Lecture 2 Computer Algorithms CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Lecture 2 Outline Introduction to algorithm analysis: fibonacci seq calculation counting number of computer steps recursive formula

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 9 Divide and Conquer Merge sort Counting Inversions Binary Search Exponentiation Solving Recurrences Recursion Tree Method Master Theorem Sofya Raskhodnikova S. Raskhodnikova;

More information

NEW RESEARCH on THEORY and PRACTICE of SORTING and SEARCHING. R. Sedgewick Princeton University. J. Bentley Bell Laboratories

NEW RESEARCH on THEORY and PRACTICE of SORTING and SEARCHING. R. Sedgewick Princeton University. J. Bentley Bell Laboratories NEW RESEARCH on THEORY and PRACTICE of SORTING and SEARCHING R. Sedgewick Princeton University J. Bentley Bell Laboratories Context Layers of abstraction in modern computing Applications Programming Environment

More information

On Partial Sorting. Conrado Martínez. Univ. Politècnica de Catalunya, Spain

On Partial Sorting. Conrado Martínez. Univ. Politècnica de Catalunya, Spain Univ. Politècnica de Catalunya, Spain 10th Seminar on the Analysis of Algorithms MSRI, Berkeley, U.S.A. June 2004 1 Introduction 2 3 Introduction Partial sorting: Given an array A of n elements and a value

More information

LECTURE NOTES ON DESIGN AND ANALYSIS OF ALGORITHMS

LECTURE NOTES ON DESIGN AND ANALYSIS OF ALGORITHMS G.PULLAIAH COLLEGE OF ENGINEERING AND TECHNOLOGY LECTURE NOTES ON DESIGN AND ANALYSIS OF ALGORITHMS Department of Computer Science and Engineering 1 UNIT 1 Basic Concepts Algorithm An Algorithm is a finite

More information

Module 1: Analyzing the Efficiency of Algorithms

Module 1: Analyzing the Efficiency of Algorithms Module 1: Analyzing the Efficiency of Algorithms Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu What is an Algorithm?

More information

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2019

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2019 CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis Ruth Anderson Winter 2019 Today Algorithm Analysis What do we care about? How to compare two algorithms Analyzing Code Asymptotic Analysis

More information

Turing Machines and Time Complexity

Turing Machines and Time Complexity Turing Machines and Time Complexity Turing Machines Turing Machines (Infinitely long) Tape of 1 s and 0 s Turing Machines (Infinitely long) Tape of 1 s and 0 s Able to read and write the tape, and move

More information

CSE 312, Winter 2011, W.L.Ruzzo. 8. Average-Case Analysis of Algorithms + Randomized Algorithms

CSE 312, Winter 2011, W.L.Ruzzo. 8. Average-Case Analysis of Algorithms + Randomized Algorithms CSE 312, Winter 2011, W.L.Ruzzo 8. Average-Case Analysis of Algorithms + Randomized Algorithms 1 insertion sort Array A[1]..A[n] for i = 1..n-1 { T = A[i] Sorted j swap j = i-1 compare while j >= 0 &&

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

Complexity Theory Part I

Complexity Theory Part I Complexity Theory Part I Problem Problem Set Set 77 due due right right now now using using a late late period period The Limits of Computability EQ TM EQ TM co-re R RE L D ADD L D HALT A TM HALT A TM

More information

Chapter 2: The Basics. slides 2017, David Doty ECS 220: Theory of Computation based on The Nature of Computation by Moore and Mertens

Chapter 2: The Basics. slides 2017, David Doty ECS 220: Theory of Computation based on The Nature of Computation by Moore and Mertens Chapter 2: The Basics slides 2017, David Doty ECS 220: Theory of Computation based on The Nature of Computation by Moore and Mertens Problem instances vs. decision problems vs. search problems Decision

More information

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2018

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2018 CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis Ruth Anderson Winter 2018 Today Algorithm Analysis What do we care about? How to compare two algorithms Analyzing Code Asymptotic Analysis

More information

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2018

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2018 CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis Ruth Anderson Winter 2018 Today Algorithm Analysis What do we care about? How to compare two algorithms Analyzing Code Asymptotic Analysis

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms Autumn 2018-2019 Outline 1 Algorithm Analysis (contd.) Outline Algorithm Analysis (contd.) 1 Algorithm Analysis (contd.) Growth Rates of Some Commonly Occurring Functions

More information

Asymptotic Algorithm Analysis & Sorting

Asymptotic Algorithm Analysis & Sorting Asymptotic Algorithm Analysis & Sorting (Version of 5th March 2010) (Based on original slides by John Hamer and Yves Deville) We can analyse an algorithm without needing to run it, and in so doing we can

More information

Algorithms, Design and Analysis. Order of growth. Table 2.1. Big-oh. Asymptotic growth rate. Types of formulas for basic operation count

Algorithms, Design and Analysis. Order of growth. Table 2.1. Big-oh. Asymptotic growth rate. Types of formulas for basic operation count Types of formulas for basic operation count Exact formula e.g., C(n) = n(n-1)/2 Algorithms, Design and Analysis Big-Oh analysis, Brute Force, Divide and conquer intro Formula indicating order of growth

More information

Reminder of Asymptotic Notation. Inf 2B: Asymptotic notation and Algorithms. Asymptotic notation for Running-time

Reminder of Asymptotic Notation. Inf 2B: Asymptotic notation and Algorithms. Asymptotic notation for Running-time 1 / 18 Reminder of Asymptotic Notation / 18 Inf B: Asymptotic notation and Algorithms Lecture B of ADS thread Let f, g : N! R be functions. We say that: I f is O(g) if there is some n 0 N and some c >

More information

! Insert. ! Remove largest. ! Copy. ! Create. ! Destroy. ! Test if empty. ! Fraud detection: isolate $$ transactions.

! Insert. ! Remove largest. ! Copy. ! Create. ! Destroy. ! Test if empty. ! Fraud detection: isolate $$ transactions. Priority Queues Priority Queues Data. Items that can be compared. Basic operations.! Insert.! Remove largest. defining ops! Copy.! Create.! Destroy.! Test if empty. generic ops Reference: Chapter 6, Algorithms

More information

Problem. Problem Given a dictionary and a word. Which page (if any) contains the given word? 3 / 26

Problem. Problem Given a dictionary and a word. Which page (if any) contains the given word? 3 / 26 Binary Search Introduction Problem Problem Given a dictionary and a word. Which page (if any) contains the given word? 3 / 26 Strategy 1: Random Search Randomly select a page until the page containing

More information

Quicksort (CLRS 7) We previously saw how the divide-and-conquer technique can be used to design sorting algorithm Merge-sort

Quicksort (CLRS 7) We previously saw how the divide-and-conquer technique can be used to design sorting algorithm Merge-sort Quicksort (CLRS 7) We previously saw how the divide-and-conquer technique can be used to design sorting algorithm Merge-sort Partition n elements array A into two subarrays of n/2 elements each Sort the

More information

Motivation. Dictionaries. Direct Addressing. CSE 680 Prof. Roger Crawfis

Motivation. Dictionaries. Direct Addressing. CSE 680 Prof. Roger Crawfis Motivation Introduction to Algorithms Hash Tables CSE 680 Prof. Roger Crawfis Arrays provide an indirect way to access a set. Many times we need an association between two sets, or a set of keys and associated

More information

CISC 235: Topic 1. Complexity of Iterative Algorithms

CISC 235: Topic 1. Complexity of Iterative Algorithms CISC 235: Topic 1 Complexity of Iterative Algorithms Outline Complexity Basics Big-Oh Notation Big-Ω and Big-θ Notation Summations Limitations of Big-Oh Analysis 2 Complexity Complexity is the study of

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Divide-and-Conquer Chapter 5 Divide and Conquer Divide-and-conquer. Break up problem into several parts. Solve each part recursively. Combine solutions to sub-problems into overall solution. Most common

More information

Elementary Sorts 1 / 18

Elementary Sorts 1 / 18 Elementary Sorts 1 / 18 Outline 1 Rules of the Game 2 Selection Sort 3 Insertion Sort 4 Shell Sort 5 Visualizing Sorting Algorithms 6 Comparing Sorting Algorithms 2 / 18 Rules of the Game Sorting is the

More information

Data Structures in Java

Data Structures in Java Data Structures in Java Lecture 21: Introduction to NP-Completeness 12/9/2015 Daniel Bauer Algorithms and Problem Solving Purpose of algorithms: find solutions to problems. Data Structures provide ways

More information

O Notation (Big Oh) We want to give an upper bound on the amount of time it takes to solve a problem.

O Notation (Big Oh) We want to give an upper bound on the amount of time it takes to solve a problem. O Notation (Big Oh) We want to give an upper bound on the amount of time it takes to solve a problem. defn: v(n) = O(f(n)) constants c and n 0 such that v(n) c f(n) whenever n > n 0 Termed complexity:

More information

ITI Introduction to Computing II

ITI Introduction to Computing II (with contributions from R. Holte) School of Electrical Engineering and Computer Science University of Ottawa Version of January 9, 2019 Please don t print these lecture notes unless you really need to!

More information

Sorting and Searching. Tony Wong

Sorting and Searching. Tony Wong Tony Wong 2017-03-04 Sorting Sorting is the reordering of array elements into a specific order (usually ascending) For example, array a[0..8] consists of the final exam scores of the n = 9 students in

More information

1. Basic Algorithms: Bubble Sort

1. Basic Algorithms: Bubble Sort Sorting Algorithms Sorting Sorting. Given n elements, rearrange in ascending order. Obvious sorting applications. List files in a directory. Organize an MP3 library. List names in a phone book. Display

More information

Algorithms and Their Complexity

Algorithms and Their Complexity CSCE 222 Discrete Structures for Computing David Kebo Houngninou Algorithms and Their Complexity Chapter 3 Algorithm An algorithm is a finite sequence of steps that solves a problem. Computational complexity

More information

Divide-and-Conquer. Consequence. Brute force: n 2. Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici.

Divide-and-Conquer. Consequence. Brute force: n 2. Divide-and-conquer: n log n. Divide et impera. Veni, vidi, vici. Divide-and-Conquer Divide-and-conquer. Break up problem into several parts. Solve each part recursively. Combine solutions to sub-problems into overall solution. Most common usage. Break up problem of

More information

Reductions. Reduction. Linear Time Reduction: Examples. Linear Time Reductions

Reductions. Reduction. Linear Time Reduction: Examples. Linear Time Reductions Reduction Reductions Problem X reduces to problem Y if given a subroutine for Y, can solve X. Cost of solving X = cost of solving Y + cost of reduction. May call subroutine for Y more than once. Ex: X

More information

Quicksort algorithm Average case analysis

Quicksort algorithm Average case analysis Quicksort algorithm Average case analysis After today, you should be able to implement quicksort derive the average case runtime of quick sort and similar algorithms Q1-3 For any recurrence relation in

More information

Data Structures and Algorithms Chapter 3

Data Structures and Algorithms Chapter 3 1 Data Structures and Algorithms Chapter 3 Werner Nutt 2 Acknowledgments The course follows the book Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples

More information

1. Basic Algorithms: Bubble Sort

1. Basic Algorithms: Bubble Sort Sorting Algorithms Sorting Sorting. Given n elements, rearrange in ascending order. Obvious sorting applications. List files in a directory. Organize an MP3 library. List names in a phone book. Display

More information

Data Structures and Algorithm Analysis (CSC317) Randomized Algorithms (part 3)

Data Structures and Algorithm Analysis (CSC317) Randomized Algorithms (part 3) Data Structures and Algorithm Analysis (CSC317) Randomized Algorithms (part 3) Quicksort p r Quicksort(A, p, r) 1. If p

More information

Divide-and-conquer. Curs 2015

Divide-and-conquer. Curs 2015 Divide-and-conquer Curs 2015 The divide-and-conquer strategy. 1. Break the problem into smaller subproblems, 2. recursively solve each problem, 3. appropriately combine their answers. Known Examples: Binary

More information