10.3: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine.

Size: px
Start display at page:

Download "10.3: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine."

Transcription

1 Overview 10.3: Intractability What is an algorithm? Turing machine. What problems can be solved on a computer? Computability. What ALGORITHMS will be useful in practice? Analysis of algorithms. Which PROBLEMS can be solved in practice? Intractability. Princeton CS Building West Wall, Circa 2001 Introduction to Computer Science Robert Sedgewick and Kevin Wayne 2 Properties of Algorithms Exponential Growth Which ALGORITHMS are useful in practice? A broad and robust definition: (Cobham 1960s, Jack Edmonds, 1962) Efficient = polynomial time for ALL inputs. Ex: mergesort requires at most N log 2 N steps. Ex: insertion sort requires at most N 2 / 2 steps. Exponential growth dwarfs technological change. Suppose each electron in the universe had power of today's supercomputers... And each works for the life of the universe in an effort to solve TSP problem via brute force N! algorithm. Inefficient = "exponential time" for SOME inputs. Ex: brute force TSP takes N! > 2 N steps. In practice, huge gulf between polynomial and exponential algorithms. Quantity Supercomputer instructions per second Age of universe in seconds Number Electrons in universe Estimated Will not help solve 1,000 city TSP problem. 1000! >> >>

2 Exponential Growth P Ex: sociology thesis proposal in Every year since 1950, the number of American children gunned down has doubled. What do YOU think? Which PROBLEMS will we be able to solve in practice? Those with efficient (polynomial-time) algorithms. Definition of P: Set of all decision problems solvable in polynomial time on a deterministic Turing machine. Problem Description Algorithm Yes No RELPRIME Are the integers x and y relatively prime? Euclid (300 BCE) COMPOSITE Does the integer x have a factor other than 1 and x? Agarwal-Kayal- Saxena (2002) EDIT- DISTANCE Is x closer to y or z in terms of edit distance? Dynamic Programming niether neither another niether another neither BACON Is the Kevin Bacon number of x less than 6? Breadth First Search Julia Roberts Akbar Abdi Some problems in P 5 7 Extended Church-Turing Thesis Properties of Problems Extended Church-Turing thesis: P = decision problems solvable in polynomial time on real computers. If function is computable by a piece of hardware in time T(n) for input of size n, then computable by TM in time (T(n)) k for some k. Evidence supporting thesis: True for all physical computers. k = 2 for random access machines. Which PROBLEMS won't we be able to solve in practice? No easy answers, but theory helps. Two hard problems. Factorization: Given an integer, find its prime factorization = Implication: to make future computers more efficient, only need to focus on improving implementation of existing designs. CIRCUIT-SAT: Is there a way to assign inputs to a given combinational circuit that makes its output true? Possible exception: quantum computers. Schor's factoring algorithm runs in poly-time on quantum computer. No algorithm currently known for classical computers. YES NO 8 9

3 More Hard Problems Reduction More hard computational problems. Biology: protein folding. Chemical engineering: heat exchanger network synthesis. Civil engineering: equilibrium of urban traffic flow. Economics: computation of arbitrage in financial markets with friction. Financial engineering: find minimum risk portfolio of given return. Genomics: phylogeny reconstruction, sequence assembly. Electrical engineering: VLSI layout. Mechanical engineering: structure of turbulence in sheared flows. Medicine: reconstructing 3-D shape from biplane angiocardiogram. Operations research: optimal resource allocation. Physics: anti-ferromagnetic Potts model. Politics: Shapley-Shubik voting power. Pop culture: Minesweeper consistency, playing optimal Tetris. Statistics: optimal experimental design. Problem X reduces to problem Y if given an efficient subroutine for Y, you can devise an efficient algorithm for X. Cost of solving X = cost of solving Y + cost of reduction. May call subroutine for Y more than once. Consequences: Classify problems: establish relative difficulty between two problems. Design algorithms: given algorithm for Y, can also solve X. Establish intractability: if X is hard, then so is Y. Example. X = COMPOSITE. Y = Factorization. static boolean iscomposite (int x) { int[] factors = factorize(x); return (factors.length > 1); } How can we justify our belief that these problems are difficult? More Reductions Some Hard Problems CIRCUIT-SAT reduces to 3SAT CIRCUIT-SAT TSP: What is the shortest tour that visits all N cities? 3SAT GRAPH Dick Karp (1972) 3DM VERTEX EXACT PLANAR HAMILTONIAN CIRCUIT CLIQUE SUBSET-SUM TSP INDEPENDENT SET PARTITION INTEGER PROGRAMMING KNAPSACK 12 13

4 Some Hard Problems Some Hard Problems PLANAR-: Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color? PLANAR-: Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color? YES instance. NO instance Minesweeper Consistency Problem Minesweeper Consistency Problem Minesweeper. Start: Blank grid of squares, some of which conceal mines. Goal: Find location of all mines without detonating any. Choose a square. if mine underneath, it detonates and you lose otherwise, computer tells you # mines in neighboring squares Repeat. MINESWEEPER: Given a state of what purports to be a N-by-N Minesweeper game, is it logically consistent? YES NO 16 17

5 Reduction Minesweeper Consistency Problem Problem X reduces to problem Y if given an efficient subroutine for Y, you can devise an efficient algorithm for X. Cost of solving X = cost of solving Y + cost of reduction. May call subroutine for Y more than once. Claim. SAT reduces to MINESWEEPER. Build circuit by laying out appropriate minesweeper configurations. Minesweeper game is consistent if and only if circuit is satisfiable. Consequences: Classify problems: establish relative difficulty between two problems. Design algorithms: given algorithm for Y, can also solve X. Establish intractability: if X is hard, then so is Y. A Minesweeper Wire Example. X = CIRCUIT-SAT. Y = MINESWEEPER. Exactly one of x and x' is a bomb. A Minesweeper NOT Gate Minesweeper Consistency Problem One More Hard Problem Claim. SAT reduces to MINESWEEPER. CIRCUIT-SAT Build circuit by laying out appropriate minesweeper configurations. CIRCUIT-SAT reduces to 3SAT Minesweeper game is consistent if and only if circuit is satisfiable. 3SAT MINE- SWEEPER GRAPH 3DM VERTEX EXACT PLANAR HAMILTONIAN CIRCUIT CLIQUE SUBSET-SUM A Minesweeper AND Gate TSP INDEPENDENT SET PARTITION KNAPSACK INTEGER PROGRAMMING 20 21

6 Nondeterminism P and NP Nondeterministic machine. One that can GUESS the right answer and CHECK that the guessed answer is correct. P: Set of decision problems solvable in polynomial time on a deterministic Turing machine. Ex 1: COMPOSITE. Guess a factor p of x. Computer must check that p divides x. Input: x = 437,669 Guess: p = 809 NP: Set of decision problems solvable in polynomial time on a nondeterministic Turing machine. if we can solve SAT, we can solve any of them Ex 2: MINESWEEPER. Guess an assignment of mines to squares. Computer must check that each square adjacent to the required number of mines. Checking seems easy compared to solving from scratch. Is it really? running time = # steps to check Input Guess Cook-Levin Theorem (1960s). ALL problems in NP reduce to SAT. If efficient algorithm for SAT, then P = NP. Intellectual milestone in CS. Proof idea: Given problem X in NP, consider nondeterministic TM that solves X in nondeterministic polynomial time. For each time step t, use Boolean variables to model which symbol occupies cell i, location of read head, state of DFA, etc. Use logic gates to ensure TM makes legal moves, etc. SAT instance is satisfiable if and only if TM outputs YES. Stephen Cook Cook's Theorem: Implications The Main Question CIRCUIT-SAT reduces to 3SAT CIRCUIT-SAT All of these problems reduce to each other. Does P = NP? Can problems like SAT be solved in a polynomial number of steps? 3SAT GRAPH Is the decision problem as easy as checking a proposed solution? Does nondeterminism help you solve problems faster? Most important open problem in computer science. Clay Foundation $1 million prize. 3DM VERTEX EXACT PLANAR Jack Edmonds, 1962 HAMILTONIAN CIRCUIT CLIQUE SUBSET-SUM EXP P NP EXP P = NP TSP INDEPENDENT SET PARTITION INTEGER PROGRAMMING If P NP If P = NP KNAPSACK 24 25

7 Does P = NP? Does P = NP? If yes, then efficient algorithms for, TSP, FACTOR. If no, then can't hope to write efficient algorithm for TSP. What is the consensus opinion on P = NP? would break modern cryptography and collapse ecommerce and banking system Probably no, since thousands of researchers have spent four decades in search of polynomial algorithms without success. But yes is possible since no success in proving P NP either. NP-Complete NP-complete: A problem in NP is NP-complete if SAT reduces to it. Ex: SAT, MINESWEEPER, all Karp problems, thousands more. Note: FACTOR is in NP, but not known to be NP-complete. Links together a huge and diverse number of fundamental problems: Efficient algorithms for all Karp problems or none of them. If efficient algorithm for, then efficient algorithm for: any other NP-complete problem, including all Karp problems any other problem in NP, including FACTOR no one has found a way to reduce SAT to FACTOR Notorious complexity class. All known algorithms for these problems are exponential. Unlikely that they can be solved given limited computing resources. Called intractable Coping With Intractability Coping With Intractability Relax one of desired features. Solve the problem in polynomial time. Solve the problem to optimality. Solve arbitrary instances of the problem. Relax one of desired features. Solve the problem in polynomial time. Solve the problem to optimality. Solve arbitrary instances of the problem. Complexity theory deals with worst case behavior. Instance(s) you want to solve may be "easy." Concorde algorithm solved 13,509 US city TSP problem. Develop a heuristic, and hope it produces a good solution. TSP assignment. Metropolis algorithm, simulating annealing, genetic algorithms. Design an approximation algorithm: algorithm that is guaranteed to find a high-quality solution in polynomial time. Active area of research, but not always possible! Euclidean TSP tour within 1% of optimal. (Cook et. al., 1998) Sanjeev Arora (1997) 33 34

8 Coping With Intractability Summary Relax one of desired features. Solve the problem in polynomial time. Solve the problem to optimality. Solve arbitrary instances of the problem. Exploit intractability. Cryptography. see next lecture Keep trying to prove P = NP. can do any 2 of 3 Many fundamental problems are NP-complete. TSP, CIRCUIT-SAT,. Theory says we probably won't be able to design efficient algorithms for NP-complete problems. You will surely run into these problems in your scientific life. If you know about NP-completeness, you can identify them and avoid wasting time and energy

7.8: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine.

7.8: Intractability. Overview. Exponential Growth. Properties of Algorithms. What is an algorithm? Turing machine. Overview 7.8: Intractability What is an algorithm? Turing machine. Which problems can be solved on a computer? Computability. Which ALGORITHMS will be useful in practice? Analysis of algorithms. Which

More information

7.8 Intractability. Overview. Properties of Algorithms. Exponential Growth. Q. What is an algorithm? A. Definition formalized using Turing machines.

7.8 Intractability. Overview. Properties of Algorithms. Exponential Growth. Q. What is an algorithm? A. Definition formalized using Turing machines. Overview 7.8 Intractability Q. What is an algorithm? A. Definition formalized using Turing machines. Q. Which problems can be solved on a computer? A. Computability. Q. Which algorithms will be useful

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 31 P and NP Self-reducibility NP-completeness Adam Smith 12/1/2008 S. Raskhodnikova; based on slides by K. Wayne Central ideas we ll cover Poly-time as feasible most

More information

4/22/12. NP and NP completeness. Efficient Certification. Decision Problems. Definition of P

4/22/12. NP and NP completeness. Efficient Certification. Decision Problems. Definition of P Efficient Certification and completeness There is a big difference between FINDING a solution and CHECKING a solution Independent set problem: in graph G, is there an independent set S of size at least

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURES 30-31 NP-completeness Definition NP-completeness proof for CIRCUIT-SAT Adam Smith 11/3/10 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova,

More information

A difficult problem. ! Given: A set of N cities and $M for gas. Problem: Does a traveling salesperson have enough $ for gas to visit all the cities?

A difficult problem. ! Given: A set of N cities and $M for gas. Problem: Does a traveling salesperson have enough $ for gas to visit all the cities? Intractability A difficult problem Traveling salesperson problem (TSP) Given: A set of N cities and $M for gas. Problem: Does a traveling salesperson have enough $ for gas to visit all the cities? An algorithm

More information

4/19/11. NP and NP completeness. Decision Problems. Definition of P. Certifiers and Certificates: COMPOSITES

4/19/11. NP and NP completeness. Decision Problems. Definition of P. Certifiers and Certificates: COMPOSITES Decision Problems NP and NP completeness Identify a decision problem with a set of binary strings X Instance: string s. Algorithm A solves problem X: As) = yes iff s X. Polynomial time. Algorithm A runs

More information

Intractability. A difficult problem. Exponential Growth. A Reasonable Question about Algorithms !!!!!!!!!! Traveling salesperson problem (TSP)

Intractability. A difficult problem. Exponential Growth. A Reasonable Question about Algorithms !!!!!!!!!! Traveling salesperson problem (TSP) A difficult problem Intractability A Reasonable Question about Algorithms Q. Which algorithms are useful in practice? A. [von Neumann 1953, Gödel 1956, Cobham 1964, Edmonds 1965, Rabin 1966] Model of computation

More information

8.1 Polynomial-Time Reductions. Chapter 8. NP and Computational Intractability. Classify Problems

8.1 Polynomial-Time Reductions. Chapter 8. NP and Computational Intractability. Classify Problems Chapter 8 8.1 Polynomial-Time Reductions NP and Computational Intractability Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Classify Problems According to Computational

More information

3/22/2018. CS 580: Algorithm Design and Analysis. 8.3 Definition of NP. Chapter 8. NP and Computational Intractability. Decision Problems.

3/22/2018. CS 580: Algorithm Design and Analysis. 8.3 Definition of NP. Chapter 8. NP and Computational Intractability. Decision Problems. CS 580: Algorithm Design and Analysis 8.3 Definition of NP Jeremiah Blocki Purdue University Spring 208 Recap Decision Problems Polynomial Time Reductions (X P Y ) Key Problems Independent Set, Vertex

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Recap Polynomial Time Reductions (X P Y ) Key Problems Independent Set, Vertex Cover, Set Cover, 3-SAT etc Example Reductions

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Review Basic reduction strategies. Simple equivalence: INDEPENDENT-SET P VERTEX-COVER. Special case to general case: VERTEX-COVER P SET-COVER. Encoding with gadgets:

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Recap Polynomial Time Reductions (X P Y ) View 1: A polynomial time algorithm for Y yields a polynomial time algorithm

More information

COP 4531 Complexity & Analysis of Data Structures & Algorithms

COP 4531 Complexity & Analysis of Data Structures & Algorithms COP 4531 Complexity & Analysis of Data Structures & Algorithms Lecture 18 Reductions and NP-completeness Thanks to Kevin Wayne and the text authors who contributed to these slides Classify Problems According

More information

Announcements. Analysis of Algorithms

Announcements. Analysis of Algorithms Announcements Analysis of Algorithms Piyush Kumar (Lecture 9: NP Completeness) Welcome to COP 4531 Based on Kevin Wayne s slides Programming Assignment due: April 25 th Submission: email your project.tar.gz

More information

Chapter 8. NP and Computational Intractability. CS 350 Winter 2018

Chapter 8. NP and Computational Intractability. CS 350 Winter 2018 Chapter 8 NP and Computational Intractability CS 350 Winter 2018 1 Algorithm Design Patterns and Anti-Patterns Algorithm design patterns. Greedy. Divide-and-conquer. Dynamic programming. Duality. Reductions.

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Homework 5 due on March 29 th at 11:59 PM (on Blackboard) Recap Polynomial Time Reductions (X P Y ) P Decision problems

More information

3/22/2018. CS 580: Algorithm Design and Analysis. Circuit Satisfiability. Recap. The "First" NP-Complete Problem. Example.

3/22/2018. CS 580: Algorithm Design and Analysis. Circuit Satisfiability. Recap. The First NP-Complete Problem. Example. Circuit Satisfiability CS 580: Algorithm Design and Analysis CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output

More information

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P

Easy Problems vs. Hard Problems. CSE 421 Introduction to Algorithms Winter Is P a good definition of efficient? The class P Easy Problems vs. Hard Problems CSE 421 Introduction to Algorithms Winter 2000 NP-Completeness (Chapter 11) Easy - problems whose worst case running time is bounded by some polynomial in the size of the

More information

Reductions. Reduction. Linear Time Reduction: Examples. Linear Time Reductions

Reductions. Reduction. Linear Time Reduction: Examples. Linear Time Reductions Reduction Reductions Problem X reduces to problem Y if given a subroutine for Y, can solve X. Cost of solving X = cost of solving Y + cost of reduction. May call subroutine for Y more than once. Ex: X

More information

Algorithms Design & Analysis. Approximation Algorithm

Algorithms Design & Analysis. Approximation Algorithm Algorithms Design & Analysis Approximation Algorithm Recap External memory model Merge sort Distribution sort 2 Today s Topics Hard problem Approximation algorithms Metric traveling salesman problem A

More information

COMPUTER SCIENCE. Computer Science. 16. Intractability. Computer Science. An Interdisciplinary Approach. Section 7.4.

COMPUTER SCIENCE. Computer Science. 16. Intractability. Computer Science. An Interdisciplinary Approach. Section 7.4. COMPUTER SCIENCE S E D G E W I C K / W A Y N E PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y Computer Science Computer Science An Interdisciplinary Approach Section 7.4 ROBERT SEDGEWICK

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 24 Last time Relationship between models: deterministic/nondeterministic Class P Today Class NP Sofya Raskhodnikova Homework 9 due Homework 0 out 4/5/206 L24. I-clicker

More information

Computer Science. 16. Intractability. 16. Intractability. Computer Science. Reasonable questions. P and NP Poly-time reductions NP-completeness

Computer Science. 16. Intractability. 16. Intractability. Computer Science. Reasonable questions. P and NP Poly-time reductions NP-completeness PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y PA R T I I : A L G O R I T H M S, M A C H I N E S, a n d T H E O R Y Computer Science 6. Intractability Computer Science Reasonable

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 25 Last time Class NP Today Polynomial-time reductions Adam Smith; Sofya Raskhodnikova 4/18/2016 L25.1 The classes P and NP P is the class of languages decidable

More information

Approximation and Randomized Algorithms (ARA) Lecture 2, September 1, 2010

Approximation and Randomized Algorithms (ARA) Lecture 2, September 1, 2010 Approximation and Randomized Algorithms (ARA) Lecture 2, September 1, 2010 Last time Algorithm Revision Algorithms for the stable matching problem Five illustrative algorithm problems Computatibility Today

More information

Lecture 4: NP and computational intractability

Lecture 4: NP and computational intractability Chapter 4 Lecture 4: NP and computational intractability Listen to: Find the longest path, Daniel Barret What do we do today: polynomial time reduction NP, co-np and NP complete problems some examples

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Logistics HW7 due tonight Thursday's class: REVIEW Final exam on Thursday Dec 8, 8am-11am, LEDDN AUD Note card allowed

More information

Lecture 19: Finish NP-Completeness, conp and Friends

Lecture 19: Finish NP-Completeness, conp and Friends 6.045 Lecture 19: Finish NP-Completeness, conp and Friends 1 Polynomial Time Reducibility f : Σ* Σ* is a polynomial time computable function if there is a poly-time Turing machine M that on every input

More information

Polynomial-Time Reductions

Polynomial-Time Reductions Reductions 1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. [von Neumann 1953, Godel

More information

NP Complete Problems. COMP 215 Lecture 20

NP Complete Problems. COMP 215 Lecture 20 NP Complete Problems COMP 215 Lecture 20 Complexity Theory Complexity theory is a research area unto itself. The central project is classifying problems as either tractable or intractable. Tractable Worst

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 26 Computational Intractability Polynomial Time Reductions Sofya Raskhodnikova S. Raskhodnikova; based on slides by A. Smith and K. Wayne L26.1 What algorithms are

More information

NP-complete problems. CSE 101: Design and Analysis of Algorithms Lecture 20

NP-complete problems. CSE 101: Design and Analysis of Algorithms Lecture 20 NP-complete problems CSE 101: Design and Analysis of Algorithms Lecture 20 CSE 101: Design and analysis of algorithms NP-complete problems Reading: Chapter 8 Homework 7 is due today, 11:59 PM Tomorrow

More information

} } } Lecture 23: Computational Complexity. Lecture Overview. Definitions: EXP R. uncomputable/ undecidable P C EXP C R = = Examples

} } } Lecture 23: Computational Complexity. Lecture Overview. Definitions: EXP R. uncomputable/ undecidable P C EXP C R = = Examples Lecture 23 Computational Complexity 6.006 Fall 2011 Lecture 23: Computational Complexity Lecture Overview P, EXP, R Most problems are uncomputable NP Hardness & completeness Reductions Definitions: P =

More information

Limitations of Algorithm Power

Limitations of Algorithm Power Limitations of Algorithm Power Objectives We now move into the third and final major theme for this course. 1. Tools for analyzing algorithms. 2. Design strategies for designing algorithms. 3. Identifying

More information

Introduction to Complexity Theory

Introduction to Complexity Theory Introduction to Complexity Theory Read K & S Chapter 6. Most computational problems you will face your life are solvable (decidable). We have yet to address whether a problem is easy or hard. Complexity

More information

Ian Stewart's article "Million-Dollar Minesweeper"

Ian Stewart's article Million-Dollar Minesweeper Page 1 of 5 Million-Dollar Minesweeper Lecture: November 1, 2000 (Video Online) Ian Stewart, Department of Mathematics, University of Warwick, UK It's not often you can win a million dollars by analysing

More information

SAT, NP, NP-Completeness

SAT, NP, NP-Completeness CS 473: Algorithms, Spring 2018 SAT, NP, NP-Completeness Lecture 22 April 13, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 57 Part I Reductions Continued Ruta (UIUC)

More information

Friday Four Square! Today at 4:15PM, Outside Gates

Friday Four Square! Today at 4:15PM, Outside Gates P and NP Friday Four Square! Today at 4:15PM, Outside Gates Recap from Last Time Regular Languages DCFLs CFLs Efficiently Decidable Languages R Undecidable Languages Time Complexity A step of a Turing

More information

8. INTRACTABILITY I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 2/6/18 2:16 AM

8. INTRACTABILITY I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley. Last updated on 2/6/18 2:16 AM 8. INTRACTABILITY I poly-time reductions packing and covering problems constraint satisfaction problems sequencing problems partitioning problems graph coloring numerical problems Lecture slides by Kevin

More information

P and NP. Inge Li Gørtz. Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides

P and NP. Inge Li Gørtz. Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides P and NP Inge Li Gørtz Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides 1 Overview Problem classification Tractable Intractable Reductions Tools for classifying problems

More information

P and NP. Warm Up: Super Hard Problems. Overview. Problem Classification. Tools for classifying problems according to relative hardness.

P and NP. Warm Up: Super Hard Problems. Overview. Problem Classification. Tools for classifying problems according to relative hardness. Overview Problem classification Tractable Intractable P and NP Reductions Tools for classifying problems according to relative hardness Inge Li Gørtz Thank you to Kevin Wayne, Philip Bille and Paul Fischer

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 7 Define NP-completeness Give examples of NP-complete problems Use polynomial-time

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 7.2, 7.3 Distinguish between polynomial and exponential DTIME Define nondeterministic

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 7 Distinguish between computability and complexity Articulate motivation questions

More information

CS/COE

CS/COE CS/COE 1501 www.cs.pitt.edu/~nlf4/cs1501/ P vs NP But first, something completely different... Some computational problems are unsolvable No algorithm can be written that will always produce the correct

More information

1. Introduction Recap

1. Introduction Recap 1. Introduction Recap 1. Tractable and intractable problems polynomial-boundness: O(n k ) 2. NP-complete problems informal definition 3. Examples of P vs. NP difference may appear only slightly 4. Optimization

More information

NP and NP Completeness

NP and NP Completeness CS 374: Algorithms & Models of Computation, Spring 2017 NP and NP Completeness Lecture 23 April 20, 2017 Chandra Chekuri (UIUC) CS374 1 Spring 2017 1 / 44 Part I NP Chandra Chekuri (UIUC) CS374 2 Spring

More information

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness Harry Lewis November 19, 2013 Reading: Sipser 7.4, 7.5. For culture : Computers and Intractability: A Guide to the Theory

More information

NP completeness and computational tractability Part II

NP completeness and computational tractability Part II Grand challenge: Classify Problems According to Computational Requirements NP completeness and computational tractability Part II Some Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All

More information

Unit 1A: Computational Complexity

Unit 1A: Computational Complexity Unit 1A: Computational Complexity Course contents: Computational complexity NP-completeness Algorithmic Paradigms Readings Chapters 3, 4, and 5 Unit 1A 1 O: Upper Bounding Function Def: f(n)= O(g(n)) if

More information

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Nathan Brunelle Department of Computer Science University of Virginia www.cs.virginia.edu/~njb2b/theory

More information

Algorithms 6.5 REDUCTIONS. designing algorithms establishing lower bounds classifying problems intractability

Algorithms 6.5 REDUCTIONS. designing algorithms establishing lower bounds classifying problems intractability 6.5 REDUCTIONS Algorithms F O U R T H E D I T I O N designing algorithms establishing lower bounds classifying problems intractability R O B E R T S E D G E W I C K K E V I N W A Y N E Algorithms, 4 th

More information

Data Structures in Java

Data Structures in Java Data Structures in Java Lecture 21: Introduction to NP-Completeness 12/9/2015 Daniel Bauer Algorithms and Problem Solving Purpose of algorithms: find solutions to problems. Data Structures provide ways

More information

NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with

More information

CSC 1700 Analysis of Algorithms: P and NP Problems

CSC 1700 Analysis of Algorithms: P and NP Problems CSC 1700 Analysis of Algorithms: P and NP Problems Professor Henry Carter Fall 2016 Recap Algorithmic power is broad but limited Lower bounds determine whether an algorithm can be improved by more than

More information

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2)

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2) Algorithms and Theory of Computation Lecture 22: NP-Completeness (2) Xiaohui Bei MAS 714 November 8, 2018 Nanyang Technological University MAS 714 November 8, 2018 1 / 20 Set Cover Set Cover Input: a set

More information

Agenda. What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class

Agenda. What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class Complexity Agenda What is a complexity class? What are the important complexity classes? How do you prove an algorithm is in a certain class Complexity class A complexity class is a set All problems within

More information

NP-Completeness. Until now we have been designing algorithms for specific problems

NP-Completeness. Until now we have been designing algorithms for specific problems NP-Completeness 1 Introduction Until now we have been designing algorithms for specific problems We have seen running times O(log n), O(n), O(n log n), O(n 2 ), O(n 3 )... We have also discussed lower

More information

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1 CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Goal: Evaluate the computational requirements (this course s focus: time) to solve

More information

Complexity Theory Part II

Complexity Theory Part II Complexity Theory Part II Time Complexity The time complexity of a TM M is a function denoting the worst-case number of steps M takes on any input of length n. By convention, n denotes the length of the

More information

NP-Completeness. NP-Completeness 1

NP-Completeness. NP-Completeness 1 NP-Completeness Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey and Johnson, W.H. Freeman and Company, 1979. NP-Completeness 1 General Problems, Input Size and

More information

1.1 P, NP, and NP-complete

1.1 P, NP, and NP-complete CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: Introduction to NP-complete Problems Date: 11/01/2008 Lecturer: Lap Chi Lau Scribe: Jerry Jilin Le This lecture gives a general introduction

More information

NP-Complete Reductions 1

NP-Complete Reductions 1 x x x 2 x 2 x 3 x 3 x 4 x 4 CS 4407 2 22 32 Algorithms 3 2 23 3 33 NP-Complete Reductions Prof. Gregory Provan Department of Computer Science University College Cork Lecture Outline x x x 2 x 2 x 3 x 3

More information

NP Completeness and Approximation Algorithms

NP Completeness and Approximation Algorithms Winter School on Optimization Techniques December 15-20, 2016 Organized by ACMU, ISI and IEEE CEDA NP Completeness and Approximation Algorithms Susmita Sur-Kolay Advanced Computing and Microelectronic

More information

CS 583: Algorithms. NP Completeness Ch 34. Intractability

CS 583: Algorithms. NP Completeness Ch 34. Intractability CS 583: Algorithms NP Completeness Ch 34 Intractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Standard working

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA.

Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA. Summer School on Introduction to Algorithms and Optimization Techniques July 4-12, 2017 Organized by ACMU, ISI and IEEE CEDA NP Completeness Susmita Sur-Kolay Advanced Computing and Microelectronics Unit

More information

CS154, Lecture 17: conp, Oracles again, Space Complexity

CS154, Lecture 17: conp, Oracles again, Space Complexity CS154, Lecture 17: conp, Oracles again, Space Complexity Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string

More information

Computational Complexity

Computational Complexity Computational Complexity Algorithm performance and difficulty of problems So far we have seen problems admitting fast algorithms flow problems, shortest path, spanning tree... and other problems for which

More information

NP-Completeness. f(n) \ n n sec sec sec. n sec 24.3 sec 5.2 mins. 2 n sec 17.9 mins 35.

NP-Completeness. f(n) \ n n sec sec sec. n sec 24.3 sec 5.2 mins. 2 n sec 17.9 mins 35. NP-Completeness Reference: Computers and Intractability: A Guide to the Theory of NP-Completeness by Garey and Johnson, W.H. Freeman and Company, 1979. NP-Completeness 1 General Problems, Input Size and

More information

conp, Oracles, Space Complexity

conp, Oracles, Space Complexity conp, Oracles, Space Complexity 1 What s next? A few possibilities CS161 Design and Analysis of Algorithms CS254 Complexity Theory (next year) CS354 Topics in Circuit Complexity For your favorite course

More information

Chapter 34: NP-Completeness

Chapter 34: NP-Completeness Graph Algorithms - Spring 2011 Set 17. Lecturer: Huilan Chang Reference: Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms, 2nd Edition, The MIT Press. Chapter 34: NP-Completeness 2. Polynomial-time

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 25 NP Completeness Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms 1 NP-Completeness Some

More information

ON THE DUALITY FEATURE OF P-CLASS PROBLEMS AND NP COMPLETE PROBLEMS

ON THE DUALITY FEATURE OF P-CLASS PROBLEMS AND NP COMPLETE PROBLEMS ON THE DUALITY FEATURE OF P-CLASS PROBLEMS AND NP COMPLETE PROBLEMS WenhongTian 1, 2 1 University of Electronic Science and Technology of China, Chengdu, China. 2 Chongqing Institute of Green and Intelligent

More information

Complexity, P and NP

Complexity, P and NP Complexity, P and NP EECS 477 Lecture 21, 11/26/2002 Last week Lower bound arguments Information theoretic (12.2) Decision trees (sorting) Adversary arguments (12.3) Maximum of an array Graph connectivity

More information

VIII. NP-completeness

VIII. NP-completeness VIII. NP-completeness 1 / 15 NP-Completeness Overview 1. Introduction 2. P and NP 3. NP-complete (NPC): formal definition 4. How to prove a problem is NPC 5. How to solve a NPC problem: approximate algorithms

More information

CSE 105 Theory of Computation

CSE 105 Theory of Computation CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Today s Agenda P and NP (7.2, 7.3) Next class: Review Reminders and announcements: CAPE & TA evals are open: Please

More information

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9 1 Computational Complexity and Intractability: An Introduction to the Theory of NP Chapter 9 2 Objectives Classify problems as tractable or intractable Define decision problems Define the class P Define

More information

NP-Complete Problems. More reductions

NP-Complete Problems. More reductions NP-Complete Problems More reductions Definitions P: problems that can be solved in polynomial time (typically in n, size of input) on a deterministic Turing machine Any normal computer simulates a DTM

More information

CS 5114: Theory of Algorithms

CS 5114: Theory of Algorithms CS 5114: Theory of Algorithms Clifford A. Shaffer Department of Computer Science Virginia Tech Blacksburg, Virginia Spring 2014 Copyright c 2014 by Clifford A. Shaffer CS 5114: Theory of Algorithms Spring

More information

Some Algebra Problems (Algorithmic) CSE 417 Introduction to Algorithms Winter Some Problems. A Brief History of Ideas

Some Algebra Problems (Algorithmic) CSE 417 Introduction to Algorithms Winter Some Problems. A Brief History of Ideas Some Algebra Problems (Algorithmic) CSE 417 Introduction to Algorithms Winter 2006 NP-Completeness (Chapter 8) Given positive integers a, b, c Question 1: does there exist a positive integer x such that

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 P and NP P: The family of problems that can be solved quickly in polynomial time.

More information

CSC 421: Algorithm Design & Analysis. Spring 2018

CSC 421: Algorithm Design & Analysis. Spring 2018 CSC 421: Algorithm Design & Analysis Spring 2018 Complexity & Computability complexity theory tractability, decidability P vs. NP, Turing machines NP-complete, reductions approximation algorithms, genetic

More information

CSCI3390-Lecture 14: The class NP

CSCI3390-Lecture 14: The class NP CSCI3390-Lecture 14: The class NP 1 Problems and Witnesses All of the decision problems described below have the form: Is there a solution to X? where X is the given problem instance. If the instance is

More information

1 Computational problems

1 Computational problems 80240233: Computational Complexity Lecture 1 ITCS, Tsinghua Univesity, Fall 2007 9 October 2007 Instructor: Andrej Bogdanov Notes by: Andrej Bogdanov The aim of computational complexity theory is to study

More information

Lecture 14 - P v.s. NP 1

Lecture 14 - P v.s. NP 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanford.edu) February 27, 2018 Lecture 14 - P v.s. NP 1 In this lecture we start Unit 3 on NP-hardness and approximation

More information

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1

CS 320, Fall Dr. Geri Georg, Instructor 320 NP 1 NP CS 320, Fall 2017 Dr. Geri Georg, Instructor georg@colostate.edu 320 NP 1 NP Complete A class of problems where: No polynomial time algorithm has been discovered No proof that one doesn t exist 320

More information

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015 CS 374: Algorithms & Models of Computation, Spring 2015 NP Completeness Lecture 23 November 19, 2015 Chandra & Lenny (UIUC) CS374 1 Spring 2015 1 / 37 Part I NP-Completeness Chandra & Lenny (UIUC) CS374

More information

BBM402-Lecture 11: The Class NP

BBM402-Lecture 11: The Class NP BBM402-Lecture 11: The Class NP Lecturer: Lale Özkahya Resources for the presentation: http://ocw.mit.edu/courses/electrical-engineering-andcomputer-science/6-045j-automata-computability-andcomplexity-spring-2011/syllabus/

More information

ECS122A Handout on NP-Completeness March 12, 2018

ECS122A Handout on NP-Completeness March 12, 2018 ECS122A Handout on NP-Completeness March 12, 2018 Contents: I. Introduction II. P and NP III. NP-complete IV. How to prove a problem is NP-complete V. How to solve a NP-complete problem: approximate algorithms

More information

Definition: conp = { L L NP } What does a conp computation look like?

Definition: conp = { L L NP } What does a conp computation look like? Space Complexity 28 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string y of x k length and the machine accepts

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Computational Complexity CLRS 34.1-34.4 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures 1 / 50 Polynomial

More information

Tractability. Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time?

Tractability. Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time? Tractability Some problems are intractable: as they grow large, we are unable to solve them in reasonable time What constitutes reasonable time?» Standard working definition: polynomial time» On an input

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

Announcements. Problem Set 7 graded; will be returned at end of lecture. Unclaimed problem sets and midterms moved!

Announcements. Problem Set 7 graded; will be returned at end of lecture. Unclaimed problem sets and midterms moved! N P NP Announcements Problem Set 7 graded; will be returned at end of lecture. Unclaimed problem sets and midterms moved! Now in cabinets in the Gates open area near the drop-off box. The Complexity Class

More information

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT Definition: A language B is NP-complete if: 1. B NP 2. Every A in NP is poly-time reducible to B That is, A P B When this is true, we say B is NP-hard On

More information

Computational Intractability 2010/4/15. Lecture 2

Computational Intractability 2010/4/15. Lecture 2 Computational Intractability 2010/4/15 Professor: David Avis Lecture 2 Scribe:Naoki Hatta 1 P and NP 1.1 Definition of P and NP Decision problem it requires yes/no answer. Example: X is a set of strings.

More information

CS 6505, Complexity and Algorithms Week 7: NP Completeness

CS 6505, Complexity and Algorithms Week 7: NP Completeness CS 6505, Complexity and Algorithms Week 7: NP Completeness Reductions We have seen some problems in P and NP, and we ve talked about space complexity. The Space Hierarchy Theorem showed us that there are

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information