CSE 105 Theory of Computation

Size: px
Start display at page:

Download "CSE 105 Theory of Computation"

Transcription

1 CSE 105 Theory of Computation Professor Jeanne Ferrante 1

2 Today s Agenda P and NP (7.2, 7.3) Next class: Review Reminders and announcements: CAPE & TA evals are open: Please participate! Final Exam Sat Jun 4, 11:30 am 2:29 pm in WLH 2001 Seat Assignments: Will be out soon. Last chance to request Left-handed seat 11:59 pm today You can bring your own a 5 in by 8 in index card (both sides) to the exam (no magnifying aids!!) 2

3 Time Complexity Def. Let M be a deterministic TM that always halts. The running time or time complexity of M is the function f: N N where f(n) is the maximum number of steps of the TM M on any Input of length n. Let M be a nondeterministic TM that always halts. The running time or time complexity of M is the function f: N N where f(n) is the maximum number of steps of TM M on any branch of the computation on any Input of length n. 3

4 Running times of decider TM s Deterministic q0 Nondeterministic q0 f(n)= MAX number of steps with input length n q rej f(n) = MAX number of steps on any branch with input length n q rej q rej q acc q acc 4

5 Polynomial vs Exponential DTIME Polynomial running time: n c for some constant c Exponential running time: 2 nδ for some real number δ > 0 If we double the input size from n to 2n: Polynomial time: n c (2n) c = 2 c n c Exponential time: 2 nδ 2 (2n)δ = 2 2δ n δ» Quickly explodes in size = ( 2 nδ ) 2δ 5

6 Review: Big-O Notation f(n) = 4nlog(n) + 3n 2 + 3n + 10 is equal to which of the following in Big-O notation? A. O(n 3 ) B. O(nlog(n)) C. O(n 2 ) D. None or more than one of the above 6

7 Time Complexity Classes Def. Let t: N R + be a function. The deterministic time complexity class DTIME(t(n)) is the collection of languages L that are decidable by a O(t(n)) deterministic, single tape TM. The nondeterministic time complexity class NTIME(t(n)) is the collection of languages L that are decidable by a O(t(n)) nondeterministic, single tape TM. DTIME(n 2 ) DTIME(n 3 )? A. TRUE B. FALSE C. Don t Know 7

8 Here, model resources matter! t(n) time deterministic multitape TM O(t(n) 2 )time deterministic single tape TM t(n) time nondeterministic single tape TM 2 O(t(n)) time deterministic single tape TM (Where t(n) >= n) 8

9 Example TM: M1 M1 = On input w: 1. Scan the input from left to right to check whether it is of form {0,1}*#{0,1}*. If not, reject. If the input consists of only #, accept. 2. Return the head to the left hand end of tape. 3. Zig-zag across the tape, checking that the first unmarked symbol to the left of the # is the same as the corresponding unmarked symbol following #. If the corresponding symbols do not match, or there is no unmarked symbol left after the #, reject. Otherwise if the symbols match, mark them and continue. 4. If all symbols to the left of # have been marked, check for unmarked symbols after the #. If any unmarked symbols remain to the right of the #, reject; if none are found, accept. L(M1) is in A.DTIME(n) B. DTIME(n 2 ) C. DTIME(nlogn) D.None or more than 1 of the above 9

10 Most useful! CLASS P (DETERMINISTIC POLYNOMIAL TIME) 10

11 P = U DTIME(n k ) k P is the class of languages that can be decided in polynomial time on a deterministic, single-tape TM Encodings in P Need polynomial time encodings Graph encodings Analyze graph problems in number n of nodes; still polynomial in size of graph Can t use Nondeterminism Can use multiple tapes Brute force approach may not be enough 11

12 Examples in Class P PATH = {<G,s,t> G is a directed graph with n nodes and a directed path from node s to node t} RELPRIME = { <x,y> x and y are relatively prime} Use Euclidean Algorithm to show in P Every CFL {w w is generated by CFG G} Use Dynamic Programming to show in P Most sorting algorithms To be in P, avoid brute-force searches! 12

13 May be exponential time deterministically! CLASS NP (NONDETERMINISTIC POLYNOMIAL TIME) 13

14 Class NP = U NTIME(n k ) For many problems, only solution is equivalent to brute force search NP is the class of languages that can be decided in polynomial time on a non-deterministic TM For problems in NP, best deterministic algorithms are exponential time P NP! Outstanding open problem in CS: P = NP? Prevailing opinion: P NP k 14

15 Travelling Salesperson Problem in NP Input: Encodings of collection {C1, Cn} of cities, Distance k, Distance Matrix D(i,j): distance between Ci and Cj Problem: Is there a tour of all cities with total distance less than k? Deterministically enumerating all tours to check distance is exponential Best known algorithms are exponential e.g. dynamic programming In NP: Nondeterministically guess a tour including all cities Checking if a given tour has distance less than k can be done in deterministic polynomial time 15

16 Another Example in NP SAT = {<E> E is a satisfiable Boolean expression} A Boolean expression has operators AND, OR and NOT, and Boolean values which take the value 0 (false) or 1 (true) A Boolean expression is satisfiable if there is some assignment to its variables which makes the expression evaluate to 1 (true) x AND (y OR z) is satisfiable when x = 1, y = 1, z = 0 x AND (NOT x) is never satisfiable 16

17 Given <E> of size n: Decider for SAT 1. Nondeterministically guess an assignment of values to the variables in E 2. Check whether the assignment satisfies E; if so accept SAT is in A. DTIME(n c ), c a constant B. DTIME (2 nc ), c a constant C. NTIME(n c ), c a constant D. None or more than one of the above 17

18 Another Example In NP CLIQUE = {<G,k> G is an undirected graph with a clique of size k} A clique is a subgraph of G where every 2 nodes are connected by an edge Deterministically enumerating all subsets of k nodes and checking whether they have edges between each node is exponential Checking if a given set of edges forms a clique of size k can be done in deterministic polynomial time A. True B. False C. Don t Know 18

19 Summary Problems in P PATH Any CFL RELPRIME ADDITION MULTIPLICATION Problems in NP Any problem in P Traveling Salesperson SAT CLIQUE 19

20 DOES P = NP or P NP??? L? CF L Regular P NP?? Decidable P = Class of languages for which membership can be decided in deterministic polynomial time NP = Class of languages for which membership can be checked in deterministic polynomial time 20

21 Advances in P = NP? Stephen Cook won the Turing Award (1982) for his 1971 paper that laid the foundations for the theory of NP- Completeness. Intuitively: A problem X in NP is NP-complete if showing the problem X is in P guarantees all problems in NP are in P Cook-Levin TH: SAT is NP-complete So if SAT is in P, then P = NP! 21

22 Polynomial Time Computable Functions A function f : Σ* Σ* is polynomial time computable if some deterministic polynomial time TM M exists that given a string w in Σ* as input, halts with just f(w) on its tape. Note that f need not be 1-1 or onto M must always halt Can be any function a TM M can compute in deterministic polynomial time! TM M computes a polynomial time computable function: M = On input w, make a second copy of w immediately after the input, and halt A. True B. False C. Don t Know 22

23 Polynomial Time Reducibility: A p B Language A is polynomial time reducible to language B, written A P B, if there is a polynomial time computable function f : Σ* Σ* such that for any w in Σ* w є A IFF f(w) є B Turns question of whether a in A into question about whether f(a) in B in polynomial time Note that if w NOT in A, then there must be b = f(w) NOT in B If A p B and B p C THEN A p C IS A. TRUE B. FALSE C. DON T KNOW 23

24 Th. 7.31: If A p B AND B IS IN P, THEN A IS IN P. Proof: Let M be the polynomial time decider for B, and let f be the polynomial time reduction from A to B. We define a polynomial time decider N for A: N = On input w: 1. Compute f(w) 2. Run M on input f(w) and if M accepts, accept; if M rejects, reject Correctness: w in A IFF M accepts f(w) IFF N accepts w because f is a reduction and by construction of N. N runs in polynomial time because steps 1 and 2 both run in polynomial time (this follows in step 2 because f(w) is polynomial in the length of w, and then M runs in polynomial time on f(w)) 24

25 NP-Completeness A language B is NP-Complete if 1. B is in NP 2. Every A in NP is polynomial time reducible to B (A p B ) TH 7.35: If B is NP-complete and in P, then P = NP Proof: If B is NP-complete, then by definition, for every A in NP, A p B. But B is also in P, so by TH A is in P. 25

26 Many NP-Complete Problems SAT: Determining if Boolean Formula is satisfiable CLIQUE: Determining if undirected graph has clique of size k HAMPATH SUBSET-SUM But NONE yet shown to be in P! $1M Prize NEXT TIME: REVIEW 26

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 7.2, 7.3 Distinguish between polynomial and exponential DTIME Define nondeterministic

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Logistics HW7 due tonight Thursday's class: REVIEW Final exam on Thursday Dec 8, 8am-11am, LEDDN AUD Note card allowed

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 7 Distinguish between computability and complexity Articulate motivation questions

More information

Chapter 7: Time Complexity

Chapter 7: Time Complexity Chapter 7: Time Complexity 1 Time complexity Let M be a deterministic Turing machine that halts on all inputs. The running time or time complexity of M is the function f: N N, where f(n) is the maximum

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Lecture 10 More examples of problems in P Closure properties of the class P The class NP given by Jiri Srba Lecture 10 Computability and Complexity 1/12 Example: Relatively

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

Time Complexity. CS60001: Foundations of Computing Science

Time Complexity. CS60001: Foundations of Computing Science Time Complexity CS60001: Foundations of Computing Science Professor, Dept. of Computer Sc. & Engg., Measuring Complexity Definition Let M be a deterministic Turing machine that halts on all inputs. The

More information

CS154, Lecture 13: P vs NP

CS154, Lecture 13: P vs NP CS154, Lecture 13: P vs NP The EXTENDED Church-Turing Thesis Everyone s Intuitive Notion of Efficient Algorithms Polynomial-Time Turing Machines More generally: TM can simulate every reasonable model of

More information

Lecture 16: Time Complexity and P vs NP

Lecture 16: Time Complexity and P vs NP 6.045 Lecture 16: Time Complexity and P vs NP 1 Time-Bounded Complexity Classes Definition: TIME(t(n)) = { L there is a Turing machine M with time complexity O(t(n)) so that L = L(M) } = { L L is a language

More information

Time Complexity (1) CSCI Spring Original Slides were written by Dr. Frederick W Maier. CSCI 2670 Time Complexity (1)

Time Complexity (1) CSCI Spring Original Slides were written by Dr. Frederick W Maier. CSCI 2670 Time Complexity (1) Time Complexity (1) CSCI 2670 Original Slides were written by Dr. Frederick W Maier Spring 2014 Time Complexity So far we ve dealt with determining whether or not a problem is decidable. But even if it

More information

CISC 4090 Theory of Computation

CISC 4090 Theory of Computation CISC 4090 Theory of Computation Complexity Professor Daniel Leeds dleeds@fordham.edu JMH 332 Computability Are we guaranteed to get an answer? Complexity How long do we have to wait for an answer? (Ch7)

More information

Computational Models Lecture 11, Spring 2009

Computational Models Lecture 11, Spring 2009 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 1 Computational Models Lecture 11, Spring 2009 Deterministic Time Classes NonDeterministic Time Classes

More information

P and NP. Or, how to make $1,000,000.

P and NP. Or, how to make $1,000,000. P and NP Or, how to make $1,000,000. http://www.claymath.org/millennium-problems/p-vs-np-problem Review: Polynomial time difference between single-tape and multi-tape TMs Exponential time difference between

More information

CS5371 Theory of Computation. Lecture 19: Complexity IV (More on NP, NP-Complete)

CS5371 Theory of Computation. Lecture 19: Complexity IV (More on NP, NP-Complete) CS5371 Theory of Computation Lecture 19: Complexity IV (More on NP, NP-Complete) Objectives More discussion on the class NP Cook-Levin Theorem The Class NP revisited Recall that NP is the class of language

More information

TIME COMPLEXITY AND POLYNOMIAL TIME; NON DETERMINISTIC TURING MACHINES AND NP. THURSDAY Mar 20

TIME COMPLEXITY AND POLYNOMIAL TIME; NON DETERMINISTIC TURING MACHINES AND NP. THURSDAY Mar 20 TIME COMPLEXITY AND POLYNOMIAL TIME; NON DETERMINISTIC TURING MACHINES AND NP THURSDAY Mar 20 COMPLEXITY THEORY Studies what can and can t be computed under limited resources such as time, space, etc Today:

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY. FLAC (15-453) Spring l. Blum TIME COMPLEXITY AND POLYNOMIAL TIME;

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY. FLAC (15-453) Spring l. Blum TIME COMPLEXITY AND POLYNOMIAL TIME; 15-453 TIME COMPLEXITY AND POLYNOMIAL TIME; FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NON DETERMINISTIC TURING MACHINES AND NP THURSDAY Mar 20 COMPLEXITY THEORY Studies what can and can t be computed

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory The class NP Haniel Barbosa Readings for this lecture Chapter 7 of [Sipser 1996], 3rd edition. Section 7.3. Question Why are we unsuccessful

More information

Theory of Computation Time Complexity

Theory of Computation Time Complexity Theory of Computation Time Complexity Bow-Yaw Wang Academia Sinica Spring 2012 Bow-Yaw Wang (Academia Sinica) Time Complexity Spring 2012 1 / 59 Time for Deciding a Language Let us consider A = {0 n 1

More information

Finish K-Complexity, Start Time Complexity

Finish K-Complexity, Start Time Complexity 6.045 Finish K-Complexity, Start Time Complexity 1 Kolmogorov Complexity Definition: The shortest description of x, denoted as d(x), is the lexicographically shortest string such that M(w) halts

More information

CSE 135: Introduction to Theory of Computation NP-completeness

CSE 135: Introduction to Theory of Computation NP-completeness CSE 135: Introduction to Theory of Computation NP-completeness Sungjin Im University of California, Merced 04-15-2014 Significance of the question if P? NP Perhaps you have heard of (some of) the following

More information

Complexity (Pre Lecture)

Complexity (Pre Lecture) Complexity (Pre Lecture) Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2018 Dantam (Mines CSCI-561) Complexity (Pre Lecture) Fall 2018 1 / 70 Why? What can we always compute efficiently? What

More information

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Nathan Brunelle Department of Computer Science University of Virginia www.cs.virginia.edu/~njb2b/theory

More information

CSE 105 Theory of Computation

CSE 105 Theory of Computation CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Undecidability Today s Agenda Review and More Problems A Non-TR Language Reminders and announcements: HW 7 (Last!!)

More information

CP405 Theory of Computation

CP405 Theory of Computation CP405 Theory of Computation BB(3) q 0 q 1 q 2 0 q 1 1R q 2 0R q 2 1L 1 H1R q 1 1R q 0 1L Growing Fast BB(3) = 6 BB(4) = 13 BB(5) = 4098 BB(6) = 3.515 x 10 18267 (known) (known) (possible) (possible) Language:

More information

Advanced Topics in Theoretical Computer Science

Advanced Topics in Theoretical Computer Science Advanced Topics in Theoretical Computer Science Part 5: Complexity (Part II) 30.01.2014 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Contents Recall: Turing

More information

Lecture 19: Finish NP-Completeness, conp and Friends

Lecture 19: Finish NP-Completeness, conp and Friends 6.045 Lecture 19: Finish NP-Completeness, conp and Friends 1 Polynomial Time Reducibility f : Σ* Σ* is a polynomial time computable function if there is a poly-time Turing machine M that on every input

More information

Chapter 1 - Time and Space Complexity. deterministic and non-deterministic Turing machine time and space complexity classes P, NP, PSPACE, NPSPACE

Chapter 1 - Time and Space Complexity. deterministic and non-deterministic Turing machine time and space complexity classes P, NP, PSPACE, NPSPACE Chapter 1 - Time and Space Complexity deterministic and non-deterministic Turing machine time and space complexity classes P, NP, PSPACE, NPSPACE 1 / 41 Deterministic Turing machines Definition 1.1 A (deterministic

More information

CS154, Lecture 17: conp, Oracles again, Space Complexity

CS154, Lecture 17: conp, Oracles again, Space Complexity CS154, Lecture 17: conp, Oracles again, Space Complexity Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string

More information

CSE 105 Theory of Computation

CSE 105 Theory of Computation CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Undecidability Today s Agenda Review: The TM Acceptance problem, A TM The Halting Problem for TM s Other problems

More information

22c:135 Theory of Computation. Analyzing an Algorithm. Simplifying Conventions. Example computation. How much time does M1 take to decide A?

22c:135 Theory of Computation. Analyzing an Algorithm. Simplifying Conventions. Example computation. How much time does M1 take to decide A? Example computation Consider the decidable language A = {0 n 1 n n 0} and the following TM M1 deciding A: M1 = "On input string w: 1. Scan across the tape and reject if a 0 appears after a 1 2. Repeat

More information

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class CSE 105 THEORY OF COMPUTATION Spring 2018 review class Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with confidence. Identify areas to focus

More information

BBM402-Lecture 11: The Class NP

BBM402-Lecture 11: The Class NP BBM402-Lecture 11: The Class NP Lecturer: Lale Özkahya Resources for the presentation: http://ocw.mit.edu/courses/electrical-engineering-andcomputer-science/6-045j-automata-computability-andcomplexity-spring-2011/syllabus/

More information

Friday Four Square! Today at 4:15PM, Outside Gates

Friday Four Square! Today at 4:15PM, Outside Gates P and NP Friday Four Square! Today at 4:15PM, Outside Gates Recap from Last Time Regular Languages DCFLs CFLs Efficiently Decidable Languages R Undecidable Languages Time Complexity A step of a Turing

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Summarize key concepts, ideas, themes from CSE 105. Approach your final exam studying with

More information

Lecture 3: Nondeterminism, NP, and NP-completeness

Lecture 3: Nondeterminism, NP, and NP-completeness CSE 531: Computational Complexity I Winter 2016 Lecture 3: Nondeterminism, NP, and NP-completeness January 13, 2016 Lecturer: Paul Beame Scribe: Paul Beame 1 Nondeterminism and NP Recall the definition

More information

Turing Machines and Time Complexity

Turing Machines and Time Complexity Turing Machines and Time Complexity Turing Machines Turing Machines (Infinitely long) Tape of 1 s and 0 s Turing Machines (Infinitely long) Tape of 1 s and 0 s Able to read and write the tape, and move

More information

The Cook-Levin Theorem

The Cook-Levin Theorem An Exposition Sandip Sinha Anamay Chaturvedi Indian Institute of Science, Bangalore 14th November 14 Introduction Deciding a Language Let L {0, 1} be a language, and let M be a Turing machine. We say M

More information

Applied Computer Science II Chapter 7: Time Complexity. Prof. Dr. Luc De Raedt. Institut für Informatik Albert-Ludwigs Universität Freiburg Germany

Applied Computer Science II Chapter 7: Time Complexity. Prof. Dr. Luc De Raedt. Institut für Informatik Albert-Ludwigs Universität Freiburg Germany Applied Computer Science II Chapter 7: Time Complexity Prof. Dr. Luc De Raedt Institut für Informati Albert-Ludwigs Universität Freiburg Germany Overview Measuring complexity The class P The class NP NP-completeness

More information

Notes for Lecture Notes 2

Notes for Lecture Notes 2 Stanford University CS254: Computational Complexity Notes 2 Luca Trevisan January 11, 2012 Notes for Lecture Notes 2 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Theory of Computation CS3102 Spring 2015 A tale of computers, math, problem solving, life, love and tragic death

Theory of Computation CS3102 Spring 2015 A tale of computers, math, problem solving, life, love and tragic death Theory of Computation CS3102 Spring 2015 A tale of computers, math, problem solving, life, love and tragic death Robbie Hott www.cs.virginia.edu/~jh2jf Department of Computer Science University of Virginia

More information

NP, polynomial-time mapping reductions, and NP-completeness

NP, polynomial-time mapping reductions, and NP-completeness NP, polynomial-time mapping reductions, and NP-completeness In the previous lecture we discussed deterministic time complexity, along with the time-hierarchy theorem, and introduced two complexity classes:

More information

conp, Oracles, Space Complexity

conp, Oracles, Space Complexity conp, Oracles, Space Complexity 1 What s next? A few possibilities CS161 Design and Analysis of Algorithms CS254 Complexity Theory (next year) CS354 Topics in Circuit Complexity For your favorite course

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 25 Last time Class NP Today Polynomial-time reductions Adam Smith; Sofya Raskhodnikova 4/18/2016 L25.1 The classes P and NP P is the class of languages decidable

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 3.3, 4.1 State and use the Church-Turing thesis. Give examples of decidable problems.

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 24 Last time Relationship between models: deterministic/nondeterministic Class P Today Class NP Sofya Raskhodnikova Homework 9 due Homework 0 out 4/5/206 L24. I-clicker

More information

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT

CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT CS154, Lecture 15: Cook-Levin Theorem SAT, 3SAT Definition: A language B is NP-complete if: 1. B NP 2. Every A in NP is poly-time reducible to B That is, A P B When this is true, we say B is NP-hard On

More information

Polynomial time reduction and NP-completeness. Exploring some time complexity limits of polynomial time algorithmic solutions

Polynomial time reduction and NP-completeness. Exploring some time complexity limits of polynomial time algorithmic solutions Polynomial time reduction and NP-completeness Exploring some time complexity limits of polynomial time algorithmic solutions 1 Polynomial time reduction Definition: A language L is said to be polynomial

More information

Chapter 2 : Time complexity

Chapter 2 : Time complexity Dr. Abhijit Das, Chapter 2 : Time complexity In this chapter we study some basic results on the time complexities of computational problems. concentrate our attention mostly on polynomial time complexities,

More information

Complexity Theory Part I

Complexity Theory Part I Complexity Theory Part I Problem Problem Set Set 77 due due right right now now using using a late late period period The Limits of Computability EQ TM EQ TM co-re R RE L D ADD L D HALT A TM HALT A TM

More information

Intractable Problems [HMU06,Chp.10a]

Intractable Problems [HMU06,Chp.10a] Intractable Problems [HMU06,Chp.10a] Time-Bounded Turing Machines Classes P and NP Polynomial-Time Reductions A 10 Minute Motivation https://www.youtube.com/watch?v=yx40hbahx3s 1 Time-Bounded TM s A Turing

More information

CSE 105 Theory of Computation

CSE 105 Theory of Computation CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Today s Agenda Quick Review of CFG s and PDA s Introduction to Turing Machines and their Languages Reminders and

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY THURSDAY APRIL 3 REVIEW for Midterm TUESDAY April 8 Definition: A Turing Machine is a 7-tuple T = (Q, Σ, Γ, δ, q, q accept, q reject ), where: Q is a

More information

6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch

6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch 6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch Today: More Complexity Theory Polynomial-time reducibility, NP-completeness, and the Satisfiability (SAT) problem Topics: Introduction

More information

1 Non-deterministic Turing Machine

1 Non-deterministic Turing Machine 1 Non-deterministic Turing Machine A nondeterministic Turing machine is a generalization of the standard TM for which every configuration may yield none, or one or more than one next configurations. In

More information

Computational complexity

Computational complexity COMS11700 Computational complexity Department of Computer Science, University of Bristol Bristol, UK 2 May 2014 COMS11700: Computational complexity Slide 1/23 Introduction If we can prove that a language

More information

1 Computational Problems

1 Computational Problems Stanford University CS254: Computational Complexity Handout 2 Luca Trevisan March 31, 2010 Last revised 4/29/2010 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Could we potentially place A in a smaller complexity class if we consider other computational models?

Could we potentially place A in a smaller complexity class if we consider other computational models? Introduction to Complexity Theory Big O Notation Review Linear function: r(n) =O(n). Polynomial function: r(n) =2 O(1) Exponential function: r(n) =2 no(1) Logarithmic function: r(n) = O(log n) Poly-log

More information

CSCI FOUNDATIONS OF COMPUTER SCIENCE

CSCI FOUNDATIONS OF COMPUTER SCIENCE 1 CSCI- 2200 FOUNDATIONS OF COMPUTER SCIENCE Spring 2015 May 11, 2015 2 Announcements The bonus quiz points will be posted on LMS today. You can earn up to 3 bonus points on the final exam. I will have

More information

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office?

Announcements. Friday Four Square! Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Did you lose a phone in my office? N P NP Completeness Announcements Friday Four Square! Today at 4:15PM, outside Gates. Problem Set 8 due right now. Problem Set 9 out, due next Friday at 2:15PM. Explore P, NP, and their connection. Did

More information

Lecture 21: Space Complexity (The Final Exam Frontier?)

Lecture 21: Space Complexity (The Final Exam Frontier?) 6.045 Lecture 21: Space Complexity (The Final Exam Frontier?) 1 conp NP MIN-FORMULA conp P NP FIRST-SAT TAUT P FACTORING SAT NP NP NP 2 VOTE VOTE VOTE For your favorite course on automata and complexity

More information

Introduction to Complexity Theory

Introduction to Complexity Theory Introduction to Complexity Theory Read K & S Chapter 6. Most computational problems you will face your life are solvable (decidable). We have yet to address whether a problem is easy or hard. Complexity

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1 U.C. Berkeley CS278: Computational Complexity Handout N1 Professor Luca Trevisan August 30, 2004 Notes for Lecture 1 This course assumes CS170, or equivalent, as a prerequisite. We will assume that the

More information

Complexity Theory Part II

Complexity Theory Part II Complexity Theory Part II Time Complexity The time complexity of a TM M is a function denoting the worst-case number of steps M takes on any input of length n. By convention, n denotes the length of the

More information

P vs. NP Classes. Prof. (Dr.) K.R. Chowdhary.

P vs. NP Classes. Prof. (Dr.) K.R. Chowdhary. P vs. NP Classes Prof. (Dr.) K.R. Chowdhary Email: kr.chowdhary@iitj.ac.in Formerly at department of Computer Science and Engineering MBM Engineering College, Jodhpur Monday 10 th April, 2017 kr chowdhary

More information

Lecture 17: Cook-Levin Theorem, NP-Complete Problems

Lecture 17: Cook-Levin Theorem, NP-Complete Problems 6.045 Lecture 17: Cook-Levin Theorem, NP-Complete Problems 1 Is SAT solvable in O(n) time on a multitape TM? Logic circuits of 6n gates for SAT? If yes, then not only is P=NP, but there would be a dream

More information

Definition: conp = { L L NP } What does a conp computation look like?

Definition: conp = { L L NP } What does a conp computation look like? Space Complexity 28 Definition: conp = { L L NP } What does a conp computation look like? In NP algorithms, we can use a guess instruction in pseudocode: Guess string y of x k length and the machine accepts

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Today's learning goals Sipser Ch 3 Trace the computation of a Turing machine using its transition function and configurations.

More information

CS Lecture 28 P, NP, and NP-Completeness. Fall 2008

CS Lecture 28 P, NP, and NP-Completeness. Fall 2008 CS 301 - Lecture 28 P, NP, and NP-Completeness Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata Equivalence of

More information

Announcements. Problem Set 7 graded; will be returned at end of lecture. Unclaimed problem sets and midterms moved!

Announcements. Problem Set 7 graded; will be returned at end of lecture. Unclaimed problem sets and midterms moved! N P NP Announcements Problem Set 7 graded; will be returned at end of lecture. Unclaimed problem sets and midterms moved! Now in cabinets in the Gates open area near the drop-off box. The Complexity Class

More information

CS5371 Theory of Computation. Lecture 18: Complexity III (Two Classes: P and NP)

CS5371 Theory of Computation. Lecture 18: Complexity III (Two Classes: P and NP) CS5371 Theory of Computation Lecture 18: Complexity III (Two Classes: P and NP) Objectives Define what is the class P Examples of languages in P Define what is the class NP Examples of languages in NP

More information

Lecture 22: PSPACE

Lecture 22: PSPACE 6.045 Lecture 22: PSPACE 1 VOTE VOTE VOTE For your favorite course on automata and complexity Please complete the online subject evaluation for 6.045 2 Final Exam Information Who: You On What: Everything

More information

Complexity: moving from qualitative to quantitative considerations

Complexity: moving from qualitative to quantitative considerations Complexity: moving from qualitative to quantitative considerations Textbook chapter 7 Complexity Theory: study of what is computationally feasible (or tractable) with limited resources: running time (main

More information

NP-Completeness and Boolean Satisfiability

NP-Completeness and Boolean Satisfiability NP-Completeness and Boolean Satisfiability Mridul Aanjaneya Stanford University August 14, 2012 Mridul Aanjaneya Automata Theory 1/ 49 Time-Bounded Turing Machines A Turing Machine that, given an input

More information

Computability Theory

Computability Theory CS:4330 Theory of Computation Spring 2018 Computability Theory P versus NP and NP-Completeness Haniel Barbosa Readings for this lecture Chapter 7 of [Sipser 1996], 3rd edition. Section 7.4. The P versus

More information

Complexity Theory Part I

Complexity Theory Part I Complexity Theory Part I Outline for Today Recap from Last Time Reviewing Verifiers Nondeterministic Turing Machines What does nondeterminism mean in the context of TMs? And just how powerful are NTMs?

More information

Complexity. Complexity Theory Lecture 3. Decidability and Complexity. Complexity Classes

Complexity. Complexity Theory Lecture 3. Decidability and Complexity. Complexity Classes Complexity Theory 1 Complexity Theory 2 Complexity Theory Lecture 3 Complexity For any function f : IN IN, we say that a language L is in TIME(f(n)) if there is a machine M = (Q, Σ, s, δ), such that: L

More information

CS20a: NP completeness. NP-complete definition. Related properties. Cook's Theorem

CS20a: NP completeness. NP-complete definition. Related properties. Cook's Theorem CS20a: NP completeness Cook s theorem SAT is an NP-complete problem http://www.cs.caltech.edu/courses/cs20/a/ December 2, 2002 1 NP-complete definition A problem is in NP if it can be solved by a nondeterministic

More information

Computational Complexity

Computational Complexity CS311 Computational Structures Computational Complexity Lecture 16 Andrew P. Black Andrew Tolmach 1 So, itʼs computable! But at what cost? Some things that are computable in principle are in practice intractable

More information

COMPLEXITY THEORY. PSPACE = SPACE(n k ) k N. NPSPACE = NSPACE(n k ) 10/30/2012. Space Complexity: Savitch's Theorem and PSPACE- Completeness

COMPLEXITY THEORY. PSPACE = SPACE(n k ) k N. NPSPACE = NSPACE(n k ) 10/30/2012. Space Complexity: Savitch's Theorem and PSPACE- Completeness 15-455 COMPLEXITY THEORY Space Complexity: Savitch's Theorem and PSPACE- Completeness October 30,2012 MEASURING SPACE COMPLEXITY FINITE STATE CONTROL I N P U T 1 2 3 4 5 6 7 8 9 10 We measure space complexity

More information

NP-Completeness Part II

NP-Completeness Part II NP-Completeness Part II Please evaluate this course on Axess. Your comments really do make a difference. Announcements Problem Set 8 due tomorrow at 12:50PM sharp with one late day. Problem Set 9 out,

More information

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM

An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Turing Machines Review An example of a decidable language that is not a CFL Implementation-level description of a TM State diagram of TM Varieties of TMs Multi-Tape TMs Nondeterministic TMs String Enumerators

More information

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine.

The Class NP. NP is the problems that can be solved in polynomial time by a nondeterministic machine. The Class NP NP is the problems that can be solved in polynomial time by a nondeterministic machine. NP The time taken by nondeterministic TM is the length of the longest branch. The collection of all

More information

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP

CS Lecture 29 P, NP, and NP-Completeness. k ) for all k. Fall The class P. The class NP CS 301 - Lecture 29 P, NP, and NP-Completeness Fall 2008 Review Languages and Grammars Alphabets, strings, languages Regular Languages Deterministic Finite and Nondeterministic Automata Equivalence of

More information

The P versus NP Problem. Dean Casalena University of Cape Town CSLDEA001

The P versus NP Problem. Dean Casalena University of Cape Town CSLDEA001 The P versus NP Problem Dean Casalena University of Cape Town CSLDEA001 dean@casalena.co.za Contents 1. Introduction 2. Turing Machines and Syntax 2.1 Overview 2.2 Turing Machine Syntax. 2.3 Polynomial

More information

NP Complete Problems. COMP 215 Lecture 20

NP Complete Problems. COMP 215 Lecture 20 NP Complete Problems COMP 215 Lecture 20 Complexity Theory Complexity theory is a research area unto itself. The central project is classifying problems as either tractable or intractable. Tractable Worst

More information

Algorithms and Theory of Computation. Lecture 19: Class P and NP, Reduction

Algorithms and Theory of Computation. Lecture 19: Class P and NP, Reduction Algorithms and Theory of Computation Lecture 19: Class P and NP, Reduction Xiaohui Bei MAS 714 October 29, 2018 Nanyang Technological University MAS 714 October 29, 2018 1 / 26 Decision Problems Revisited

More information

Space Complexity. Huan Long. Shanghai Jiao Tong University

Space Complexity. Huan Long. Shanghai Jiao Tong University Space Complexity Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/ chen/

More information

15.1 Proof of the Cook-Levin Theorem: SAT is NP-complete

15.1 Proof of the Cook-Levin Theorem: SAT is NP-complete CS125 Lecture 15 Fall 2016 15.1 Proof of the Cook-Levin Theorem: SAT is NP-complete Already know SAT NP, so only need to show SAT is NP-hard. Let L be any language in NP. Let M be a NTM that decides L

More information

Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q, Σ, Γ are all finite

Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q, Σ, Γ are all finite The Church-Turing Thesis CS60001: Foundations of Computing Science Professor, Dept. of Computer Sc. & Engg., Turing Machines A Turing Machine is a 7-tuple, (Q, Σ, Γ, δ, q 0, q accept, q reject ), where

More information

Intractable Problems. Time-Bounded Turing Machines Classes P and NP Polynomial-Time Reductions

Intractable Problems. Time-Bounded Turing Machines Classes P and NP Polynomial-Time Reductions Intractable Problems Time-Bounded Turing Machines Classes P and NP Polynomial-Time Reductions 1 Time-Bounded TM s A Turing machine that, given an input of length n, always halts within T(n) moves is said

More information

NP-Completeness. A language B is NP-complete iff B NP. This property means B is NP hard

NP-Completeness. A language B is NP-complete iff B NP. This property means B is NP hard NP-Completeness A language B is NP-complete iff B NP A NP A P B This property means B is NP hard 1 3SAT is NP-complete 2 Result Idea: B is known to be NP complete Use it to prove NP-Completeness of C IF

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

Computability and Complexity CISC462, Fall 2018, Space complexity 1

Computability and Complexity CISC462, Fall 2018, Space complexity 1 Computability and Complexity CISC462, Fall 2018, Space complexity 1 SPACE COMPLEXITY This material is covered in Chapter 8 of the textbook. For simplicity, we define the space used by a Turing machine

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 4.2 Trace high-level descriptions of algorithms for computational problems. Use

More information

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9 1 Computational Complexity and Intractability: An Introduction to the Theory of NP Chapter 9 2 Objectives Classify problems as tractable or intractable Define decision problems Define the class P Define

More information

Time Complexity. Definition. Let t : n n be a function. NTIME(t(n)) = {L L is a language decidable by a O(t(n)) deterministic TM}

Time Complexity. Definition. Let t : n n be a function. NTIME(t(n)) = {L L is a language decidable by a O(t(n)) deterministic TM} Time Complexity Definition Let t : n n be a function. TIME(t(n)) = {L L is a language decidable by a O(t(n)) deterministic TM} NTIME(t(n)) = {L L is a language decidable by a O(t(n)) non-deterministic

More information

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity

Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity CSE 531: Computational Complexity I Winter 2016 Lecture 6: Oracle TMs, Diagonalization Limits, Space Complexity January 22, 2016 Lecturer: Paul Beame Scribe: Paul Beame Diagonalization enabled us to separate

More information

CS294: Pseudorandomness and Combinatorial Constructions September 13, Notes for Lecture 5

CS294: Pseudorandomness and Combinatorial Constructions September 13, Notes for Lecture 5 UC Berkeley Handout N5 CS94: Pseudorandomness and Combinatorial Constructions September 3, 005 Professor Luca Trevisan Scribe: Gatis Midrijanis Notes for Lecture 5 In the few lectures we are going to look

More information