Lecture 17: CookLevin Theorem, NPComplete Problems

 Sharlene Gray
 7 days ago
 Views:
Transcription
1 6.045 Lecture 17: CookLevin Theorem, NPComplete Problems 1
2 Is SAT solvable in O(n) time on a multitape TM? Logic circuits of 6n gates for SAT? If yes, then not only is P=NP, but there would be a dream machine that could crank out short proofs of theorems, quickly optimize all aspects of life recognizing quality work is all you need to produce THIS IS AN OPEN QUESTION! 2
3 Polynomial Time Reducibility f : Σ* Σ* is a polynomial time computable function if there is a polytime Turing machine M that on every input w, halts with just f(w) on its tape Language A is polytime reducible to language B, written as A P B, if there is a polytime computable f : Σ* Σ* so that: w A f(w) B f is a polynomial time reduction from A to B Note there is a k such that for all w, f(w) w k 3
4 A n w n f f B n c f(w) n c f converts any string w into a string f(w) such that w A f(w) B 4
5 Theorem: If A P B and B P C, then A P C A f B g C n n c n cd f g 5
6 Theorem: If A P B and B P, then A P Proof: Let M B be a polytime TM that decides B. Let f be a polytime reduction from A to B. We build a machine M A that decides A as follows: M A = On input w, 1. Compute f(w) 2. Run M B on f(w), output its answer w A f(w) B 6
7 Theorem: If A P B and B NP, then A NP Proof: Analogous 7
8 Theorem: If A P B and B 2 P, then A 2 P Theorem: If A P B and B 2 NP, then A 2 NP Corollary: If A P B and A P, then B P 8
9 Definition: A language B is NPcomplete if: 1. B NP 2. Every A in NP is polytime reducible to B That is, A P B When this is true, we say B is NPhard On homework, you showed A language L is recognizable iff L m A TM A TM is complete for recognizable languages : A TM is recognizable, and for all recognizable L, L m A TM 9
10 Suppose L is NPComplete P NP L If L P, then P = NP! If L P, then P NP! 10
11 Suppose L is NPComplete Then assuming the conjecture P NP, L is not decidable in n k time, for every k 11
12 There are thousands of NPcomplete problems! Your favorite topic certainly has an NPcomplete problem somewhere in it Even the other sciences are not safe: biology, chemistry, physics have NPcomplete problems too! 12
13 The CookLevin Theorem: SAT and 3SAT are NPcomplete 1. 3SAT NP A satisfying assignment is a proof that a 3cnf formula is satisfiable 2. 3SAT is NPhard Every language in NP can be polynomialtime reduced to 3SAT (complex logical formula) Corollary: 3SAT P if and only if P = NP 13
14 Theorem (CookLevin): 3SAT is NPcomplete Proof Idea: (1) 3SAT NP (done) (2) Every language A in NP is polynomial time reducible to 3SAT (this is the challenge) We give a polytime reduction from A to SAT The reduction converts a string w into a 3cnf formula such that w A iff 3SAT For any A NP, let N be a nondeterministic TM deciding A in n k time will simulate N on w 14
15 Deterministic Computation Nondeterministic Computation n k reject accept or reject accept exp(n k ) 15
16 Let L(N) NTIME(n k ). A tableau for N on w is an n k n k matrix whose rows are the configurations of some possible computation history of N on w # q 0 w 1 w 2 w n # # # n k Each cell contains a σ Q Γ { # } # # n k 16
17 A tableau is accepting if the last row of the tableau is an accepting configuration N accepts w if and only if there is an accepting tableau for N on w Given w, we ll construct a 3cnf formula with O( w 2k ) clauses, describing logical constraints that any accepting tableau for N on w must satisfy The 3cnf formula will be satisfiable if and only if there is an accepting tableau for N on w 17
18 Variables of formula will encode a tableau Let C = Q Γ { # } Each cell of a tableau contains a symbol from C cell[i,j] = symbol in the cell at row i and column j = the jth symbol in the ith configuration For every i and j (1 i, j n k ) and for every s C we make a Boolean variable x i,j,s in Total number of variables = C n 2k, which is O(n 2k ) The x i,j,s variables represent the cells of a tableau We will enforce the condition: for all i, j, s, x i,j,s = 1 cell[i,j] = s 18
19 Idea: Make so that every satisfying assignment to the variables x i,j,s corresponds to an accepting tableau for N on w (an assignment to all cell[i,j] s of the tableau) The formula will be the AND of four CNF formulas: = cell start accept move cell : for all i, j, there is a unique s C with x i,j,s = 1 start : the first row of the table equals the start configuration of N on w accept : the last row of the table has an accept state move : every row is a configuration that yields the configuration on the next row 19
20 start : the first row of the table equals the start configuration of N on w start = x 1,1,# x 1,2,q 0 x 1,3,w x 1,4,w x 1,n+2,w 1 2 n x 1,n+3, x 1,n 1, x k 1,n k,# # q 0 w 1 w 2 w n # # # O(n k ) clauses 20
21 accept : the last row of the table has an accept state accept = x k n,j, q accept 1 j n k # q 0 w 1 w 2 w n # # # # q accept # 21
22 accept : the last row of the table has an accept state accept = x k n,j, q accept 1 j n k How can we convert accept into a 3cnf formula? The clause (a 1 a 2 a t ) is equivalent to (a 1 a 2 z 1 ) ( z 1 a 3 z 2 ) ( z t3 a t1 a t ) where z i are new variables. This produces O(t) new 3cnf clauses. O(n k ) clauses 22
23 cell : for all i, j, there is a unique s C with x i,j,s = 1 cell = 1 i, j n k s C x i,j,s ( x i,j,s x i,j,t ) s,t C s t for all i,j at least one x i,j,s is set to 1 at most one x i,j,s is set to 1 O(n 2k ) clauses 23
24 move : every row is a configuration that yields the configuration on the next row Key Question: If one row yields the next row, how many cells can be different between the two rows? Answer: AT MOST THREE CELLS! # b a # b a a q 1 b q 2 a c c b # c b # 24
25 move : every row is a configuration that yields the configuration on the next row Key Question: If one row yields the next row, how many cells can be different between the two rows? Answer: AT MOST THREE CELLS! # b a # b a a q 1 b q 2 a c c b # c b # 25
26 move : every row is a configuration that yields the configuration on the next row Idea: check that every 2 3 window of cells is legal (consistent with the transition function of N) # q 0 w 1 w 2 w n # # # j i the (i,j) window # # 26
27 move = 1 i, j n k ( the (i, j) window is legal ) the (i, j) window is legal = (a 1,, a 6 ) ISN T legal ( x i,j,a x i,j+1,a x i,j+2,a x i+1,j,a x i+1,j+1,a x i+1,j+2,a ) O(n 2k ) clauses 31
28 Summary. We wanted to prove: Every A in NP has a polynomial time reduction to 3SAT For every A in NP, we know A is decided by some nondeterministic n k time Turing machine N We gave a generic method to reduce a string w to a 3CNF formula of O( w 2k ) clauses such that satisfying assignments to the variables of directly correspond to accepting computation histories of N on w The formula is the AND of four 3CNF formulas: = cell start accept move 32
29 Theorem (CookLevin): SAT and 3SAT are NPcomplete Corollary: SAT P if and only if P = NP Given a favorite problem 2 NP, how can we prove it is NPhard? Generic Recipe: 1. Take a problem that you know to be NPhard (3SAT) 2. Prove that P Then for all A 2 NP, A P and P We conclude that A P, and is NPhard 33
30 is NPComplete P NP 34
31 Reading Assignment Read Luca Trevisan s notes for an alternative proof of the CookLevin Theorem! Sketch: 1. Define CIRCUITSAT: Given a logical circuit C(y), is there an input a such that C(a)=1? 2. Show that CIRCUITSAT is NPhard: The n k x n k tableau for N on w can be simulated using a logical circuit of O(n 2k ) gates 3. Reduce CIRCUITSAT to 3SAT in polytime 4. Conclude 3SAT is also NPhard 35
TIME COMPLEXITY AND POLYNOMIAL TIME; NON DETERMINISTIC TURING MACHINES AND NP. THURSDAY Mar 20
TIME COMPLEXITY AND POLYNOMIAL TIME; NON DETERMINISTIC TURING MACHINES AND NP THURSDAY Mar 20 COMPLEXITY THEORY Studies what can and can t be computed under limited resources such as time, space, etc Today:
More informationLecture 16: Time Complexity and P vs NP
6.045 Lecture 16: Time Complexity and P vs NP 1 TimeBounded Complexity Classes Definition: TIME(t(n)) = { L there is a Turing machine M with time complexity O(t(n)) so that L = L(M) } = { L L is a language
More informationLecture 22: PSPACE
6.045 Lecture 22: PSPACE 1 VOTE VOTE VOTE For your favorite course on automata and complexity Please complete the online subject evaluation for 6.045 2 Final Exam Information Who: You On What: Everything
More informationFinish KComplexity, Start Time Complexity
6.045 Finish KComplexity, Start Time Complexity 1 Kolmogorov Complexity Definition: The shortest description of x, denoted as d(x), is the lexicographically shortest string such that M(w) halts
More informationComputability Theory. CS215, Lecture 6,
Computability Theory CS215, Lecture 6, 2000 1 The Birth of Turing Machines At the end of the 19th century, Gottlob Frege conjectured that mathematics could be built from fundamental logic In 1900 David
More information6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch
6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch Today: More Complexity Theory Polynomialtime reducibility, NPcompleteness, and the Satisfiability (SAT) problem Topics: Introduction
More informationThe Polynomial Hierarchy
The Polynomial Hierarchy Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee Motivation..synthesizing circuits is exceedingly difficulty. It is even
More informationPSPACE COMPLETENESS TBQF. THURSDAY April 17
PSPACE COMPLETENESS TBQF THURSDAY April 17 Definition: Language B is PSPACEcomplete if: 1. B PSPACE 2. Every A in PSPACE is polytime reducible to B (i.e. B is PSPACEhard) QUANTIFIED BOOLEAN FORMULAS
More informationDefinition: Alternating time and space Game Semantics: State of machine determines who
CMPSCI 601: Recall From Last Time Lecture 3 Definition: Alternating time and space Game Semantics: State of machine determines who controls, White wants it to accept, Black wants it to reject. White wins
More informationTheory of Computation. Ch.8 Space Complexity. wherein all branches of its computation halt on all
Definition 8.1 Let M be a deterministic Turing machine, DTM, that halts on all inputs. The space complexity of M is the function f : N N, where f(n) is the maximum number of tape cells that M scans on
More informationLecture Notes: The Halting Problem; Reductions
Lecture Notes: The Halting Problem; Reductions COMS W3261 Columbia University 20 Mar 2012 1 Review Key point. Turing machines can be encoded as strings, and other Turing machines can read those strings
More informationEssential facts about NPcompleteness:
CMPSCI611: NP Completeness Lecture 17 Essential facts about NPcompleteness: Any NPcomplete problem can be solved by a simple, but exponentially slow algorithm. We don t have polynomialtime solutions
More informationNP Complete Problems. COMP 215 Lecture 20
NP Complete Problems COMP 215 Lecture 20 Complexity Theory Complexity theory is a research area unto itself. The central project is classifying problems as either tractable or intractable. Tractable Worst
More informationNPComplete problems
NPComplete problems NPcomplete problems (NPC): A subset of NP. If any NPcomplete problem can be solved in polynomial time, then every problem in NP has a polynomial time solution. NPcomplete languages
More informationNotes on Complexity Theory Last updated: October, Lecture 6
Notes on Complexity Theory Last updated: October, 2015 Lecture 6 Notes by Jonathan Katz, lightly edited by Dov Gordon 1 PSPACE and PSPACECompleteness As in our previous study of N P, it is useful to identify
More informationLecture 23: Rice Theorem and Turing machine behavior properties 21 April 2009
CS 373: Theory of Computation Sariel HarPeled and Madhusudan Parthasarathy Lecture 23: Rice Theorem and Turing machine behavior properties 21 April 2009 This lecture covers Rice s theorem, as well as
More informationCS154, Lecture 10: Rice s Theorem, Oracle Machines
CS154, Lecture 10: Rice s Theorem, Oracle Machines Moral: Analyzing Programs is Really, Really Hard But can we more easily tell when some program analysis problem is undecidable? Problem 1 Undecidable
More informationsatisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs
Any Expression φ Can Be Converted into CNFs and DNFs φ = x j : This is trivially true. φ = φ 1 and a CNF is sought: Turn φ 1 into a DNF and apply de Morgan s laws to make a CNF for φ. φ = φ 1 and a DNF
More informationSAT, Coloring, Hamiltonian Cycle, TSP
1 SAT, Coloring, Hamiltonian Cycle, TSP Slides by Carl Kingsford Apr. 28, 2014 Sects. 8.2, 8.7, 8.5 2 Boolean Formulas Boolean Formulas: Variables: x 1, x 2, x 3 (can be either true or false) Terms: t
More informationComplexity Theory: The P vs NP question
The $1M question Complexity Theory: The P vs NP question Lecture 28 (December 1, 2009) The Clay Mathematics Institute Millenium Prize Problems 1. Birch and SwinnertonDyer Conjecture 2. Hodge Conjecture
More informationTheory of Computation CS3102 Spring 2015 A tale of computers, math, problem solving, life, love and tragic death
Theory of Computation CS3102 Spring 2015 A tale of computers, math, problem solving, life, love and tragic death Robbie Hott www.cs.virginia.edu/~jh2jf Department of Computer Science University of Virginia
More informationDefinition: Alternating time and space Game Semantics: State of machine determines who
CMPSCI 601: Recall From Last Time Lecture Definition: Alternating time and space Game Semantics: State of machine determines who controls, White wants it to accept, Black wants it to reject. White wins
More informationFurther discussion of Turing machines
Further discussion of Turing machines In this lecture we will discuss various aspects of decidable and Turingrecognizable languages that were not mentioned in previous lectures. In particular, we will
More informationDRAFT. Algebraic computation models. Chapter 14
Chapter 14 Algebraic computation models Somewhat rough We think of numerical algorithms rootfinding, gaussian elimination etc. as operating over R or C, even though the underlying representation of the
More information6.841/18.405J: Advanced Complexity Wednesday, February 12, Lecture Lecture 3
6.841/18.405J: Advanced Complexity Wednesday, February 12, 2003 Lecture Lecture 3 Instructor: Madhu Sudan Scribe: Bobby Kleinberg 1 The language MinDNF At the end of the last lecture, we introduced the
More informationLecture 2: Tape reduction and Time Hierarchy
Computational Complexity Theory, Fall 2010 August 27 Lecture 2: Tape reduction and Time Hierarchy Lecturer: Peter Bro Miltersen Scribe: Andreas Hummelshøj Jakobsen Tape reduction Theorem 1 (ktapes 2tape
More informationComplexity Theory. Jörg Kreiker. Summer term Chair for Theoretical Computer Science Prof. Esparza TU München
Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 Lecture 4 NPcompleteness Recap: relations between classes EXP PSPACE = NPSPACE conp NP conp
More informationThe Complexity of Optimization Problems
The Complexity of Optimization Problems Summary Lecture 1  Complexity of algorithms and problems  Complexity classes: P and NP  Reducibility  Karp reducibility  Turing reducibility Uniform and logarithmic
More informationLecture 8. MINDNF = {(φ, k) φ is a CNF expression and DNF expression ψ s.t. ψ k and ψ is equivalent to φ}
6.841 Advanced Complexity Theory February 28, 2005 Lecture 8 Lecturer: Madhu Sudan Scribe: Arnab Bhattacharyya 1 A New Theme In the past few lectures, we have concentrated on nonuniform types of computation
More informationA.Antonopoulos 18/1/2010
Class DP Basic orems 18/1/2010 Class DP Basic orems 1 Class DP 2 Basic orems Class DP Basic orems TSP Versions 1 TSP (D) 2 EXACT TSP 3 TSP COST 4 TSP (1) P (2) P (3) P (4) DP Class Class DP Basic orems
More informationFORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
15453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A contextfree grammar is in Chomsky normal form if every rule is of the form:
More informationLecture 18: More NPComplete Problems
6.045 Lecture 18: More NPComplete Problems 1 The Clique Problem a d f c b e g Given a graph G and positive k, does G contain a complete subgraph on k nodes? CLIQUE = { (G,k) G is an undirected graph with
More informationDRAFT. Diagonalization. Chapter 4
Chapter 4 Diagonalization..the relativized P =?NP question has a positive answer for some oracles and a negative answer for other oracles. We feel that this is further evidence of the difficulty of the
More informationChapter 1  Time and Space Complexity. deterministic and nondeterministic Turing machine time and space complexity classes P, NP, PSPACE, NPSPACE
Chapter 1  Time and Space Complexity deterministic and nondeterministic Turing machine time and space complexity classes P, NP, PSPACE, NPSPACE 1 / 41 Deterministic Turing machines Definition 1.1 A (deterministic
More informationVariations of the Turing Machine
Variations of the Turing Machine 1 The Standard Model Infinite Tape a a b a b b c a c a ReadWrite Head (Left or Right) Control Unit Deterministic 2 Variations of the Standard Model Turing machines with:
More information1 Reductions and Expressiveness
15451/651: Design & Analysis of Algorithms November 3, 2015 Lecture #17 last changed: October 30, 2015 In the past few lectures we have looked at increasingly more expressive problems solvable using efficient
More informationCSCI 1590 Intro to Computational Complexity
CSCI 1590 Intro to Computational Complexity Space Complexity John E. Savage Brown University February 11, 2008 John E. Savage (Brown University) CSCI 1590 Intro to Computational Complexity February 11,
More informationCSCI 1590 Intro to Computational Complexity
CSCI 1590 Intro to Computational Complexity Complement Classes and the Polynomial Time Hierarchy John E. Savage Brown University February 9, 2009 John E. Savage (Brown University) CSCI 1590 Intro to Computational
More informationCSCI 1010 Models of Computa3on. Lecture 11 Proving Languages NPComplete
CSCI 1010 Models of Computa3on Lecture 11 Proving Languages NPComplete Overview P3me reduc3ons Composi3on of P3me reduc3ons Reduc3on from CIRCUIT SAT to SAT SAT is NPcomplete. 3SAT is NPcomplete.
More informationChomsky Normal Form and TURING MACHINES. TUESDAY Feb 4
Chomsky Normal Form and TURING MACHINES TUESDAY Feb 4 CHOMSKY NORMAL FORM A contextfree grammar is in Chomsky normal form if every rule is of the form: A BC A a S ε B and C aren t start variables a is
More informationSpace Complexity. The space complexity of a program is how much memory it uses.
Space Complexity The space complexity of a program is how much memory it uses. Measuring Space When we compute the space used by a TM, we do not count the input (think of input as readonly). We say that
More informationDe Morgan s a Laws. De Morgan s laws say that. (φ 1 φ 2 ) = φ 1 φ 2, (φ 1 φ 2 ) = φ 1 φ 2.
De Morgan s a Laws De Morgan s laws say that (φ 1 φ 2 ) = φ 1 φ 2, (φ 1 φ 2 ) = φ 1 φ 2. Here is a proof for the first law: φ 1 φ 2 (φ 1 φ 2 ) φ 1 φ 2 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 a Augustus DeMorgan
More informationLecture 20: PSPACE. November 15, 2016 CS 1010 Theory of Computation
Lecture 20: PSPACE November 15, 2016 CS 1010 Theory of Computation Recall that PSPACE = k=1 SPACE(nk ). We will see that a relationship between time and space complexity is given by: P NP PSPACE = NPSPACE
More informationΤαουσάκος Θανάσης Αλγόριθμοι και Πολυπλοκότητα II 7 Φεβρουαρίου 2013
Ταουσάκος Θανάσης Αλγόριθμοι και Πολυπλοκότητα II 7 Φεβρουαρίου 2013 Alternation: important generalization of nondeterminism Redefining NonDeterminism in terms of configurations: a configuration lead
More information2 P vs. NP and Diagonalization
2 P vs NP and Diagonalization CS 6810 Theory of Computing, Fall 2012 Instructor: David Steurer (sc2392) Date: 08/28/2012 In this lecture, we cover the following topics: 1 3SAT is NP hard; 2 Time hierarchies;
More informationAdvanced Topics in Theoretical Computer Science
Advanced Topics in Theoretical Computer Science Part 5: Complexity (Part II) 30.01.2014 Viorica SofronieStokkermans Universität KoblenzLandau email: sofronie@unikoblenz.de 1 Contents Recall: Turing
More informationCpSc 421 Homework 9 Solution
CpSc 421 Homework 9 Solution Attempt any three of the six problems below. The homework is graded on a scale of 100 points, even though you can attempt fewer or more points than that. Your recorded grade
More informationComputational Complexity: A Modern Approach. Draft of a book: Dated January 2007 Comments welcome!
i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University complexitybook@gmail.com Not to be reproduced or distributed
More informationTime Complexity. Definition. Let t : n n be a function. NTIME(t(n)) = {L L is a language decidable by a O(t(n)) deterministic TM}
Time Complexity Definition Let t : n n be a function. TIME(t(n)) = {L L is a language decidable by a O(t(n)) deterministic TM} NTIME(t(n)) = {L L is a language decidable by a O(t(n)) nondeterministic
More information6.045J/18.400J: Automata, Computability and Complexity Final Exam. There are two sheets of scratch paper at the end of this exam.
6.045J/18.400J: Automata, Computability and Complexity May 20, 2005 6.045 Final Exam Prof. Nancy Lynch Name: Please write your name on each page. This exam is open book, open notes. There are two sheets
More information3 Probabilistic Turing Machines
CS 252  Probabilistic Turing Machines (Algorithms) Additional Reading 3 and Homework problems 3 Probabilistic Turing Machines When we talked about computability, we found that nondeterminism was sometimes
More informationBusch Complexity Lectures: Turing s Thesis. Costas Busch  LSU 1
Busch Complexity Lectures: Turing s Thesis Costas Busch  LSU 1 Turing s thesis (1930): Any computation carried out by mechanical means can be performed by a Turing Machine Costas Busch  LSU 2 Algorithm:
More informationLecture 3: Reductions and Completeness
CS 710: Complexity Theory 9/13/2011 Lecture 3: Reductions and Completeness Instructor: Dieter van Melkebeek Scribe: Brian Nixon Last lecture we introduced the notion of a universal Turing machine for deterministic
More informationAutomata Theory CS Complexity Theory I: Polynomial Time
Automata Theory CS411201517 Complexity Theory I: Polynomial Time David Galles Department of Computer Science University of San Francisco 170: Tractable vs. Intractable If a problem is recursive, then
More informationThe space complexity of a standard Turing machine. The space complexity of a nondeterministic Turing machine
298 8. Space Complexity The space complexity of a standard Turing machine M = (Q,,,, q 0, accept, reject) on input w is space M (w) = max{ uav : q 0 w M u q av, q Q, u, a, v * } The space complexity of
More informationTopics in Complexity Theory
Topics in Complexity Theory Announcements Final exam this Friday from 12:15PM3:15PM Please let us know immediately after lecture if you want to take the final at an alternate time and haven't yet told
More informationP, NP, NPComplete, and NPhard
P, NP, NPComplete, and NPhard Problems Zhenjiang Li 21/09/2011 Outline Algorithm time complicity P and NP problems NPComplete and NPHard problems Algorithm time complicity Outline What is this course
More informationRandomized Complexity Classes; RP
Randomized Complexity Classes; RP Let N be a polynomialtime precise NTM that runs in time p(n) and has 2 nondeterministic choices at each step. N is a polynomial Monte Carlo Turing machine for a language
More information198:538 Lecture Given on February 23rd, 1998
198:538 Lecture Given on February 23rd, 1998 Lecturer: Professor Eric Allender Scribe: Sunny Daniels November 25, 1998 1 A Result From theorem 5 of the lecture on 16th February 1998, together with the
More informationPolynomialTime Reductions
Reductions 1 PolynomialTime Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. [von Neumann 1953, Godel
More informationTuring Machines Part II
Turing Machines Part II Hello Hello Condensed Slide Slide Readers! Readers! This This lecture lecture is is almost almost entirely entirely animations that that show show how how each each Turing Turing
More informationTheory of Computer Science. Theory of Computer Science. E5.1 Routing Problems. E5.2 Packing Problems. E5.3 Conclusion.
Theory of Computer Science May 31, 2017 E5. Some NPComplete Problems, Part II Theory of Computer Science E5. Some NPComplete Problems, Part II E5.1 Routing Problems Malte Helmert University of Basel
More informationLecture 17. In this lecture, we will continue our discussion on randomization.
ITCS:CCT09 : Computational Complexity Theory May 11, 2009 Lecturer: Jayalal Sarma M.N. Lecture 17 Scribe: Hao Song In this lecture, we will continue our discussion on randomization. 1 BPP and the Polynomial
More informationOn Rice s theorem. Hans Hüttel. October 2001
On Rice s theorem Hans Hüttel October 2001 We have seen that there exist languages that are Turingacceptable but not Turingdecidable. An important example of such a language was the language of the Halting
More informationAn introduction to Parameterized Complexity Theory
An introduction to Parameterized Complexity Theory May 15, 2012 A motivation to parametrize Definitions Standard Complexity Theory does not distinguish between the distinct parts of the input. It categorizes
More informationBounded rationality of restricted Turing machines
Bounded rationality of restricted Turing machines Lijie Chen, Pingzhong Tang IIIS, Tsinghua University, Beijing, China September 10, 2015 Abstract Bounded rationality aims to understand the effects of
More informationPolynomial Space. The classes PS and NPS Relationship to Other Classes Equivalence PS = NPS A PSComplete Problem
Polynomial Space The classes PS and NPS Relationship to Other Classes Equivalence PS = NPS A PSComplete Problem 1 PolynomialSpaceBounded TM s A TM M is said to be polyspacebounded if there is a polynomial
More informationChapter 2 Algorithms and Computation
Chapter 2 Algorithms and Computation In this chapter, we first discuss the principles of algorithm and computation in general framework, common both in classical and quantum computers, then we go to the
More information11. Tractability and Decidability
11. Tractability and Decidability Frank Stephan April 1, 2014 Introduction Computational Complexity In 1844 Gabriel Lamé studied and analysed the running time of Euclid s algorithm. In 1982, Stephen Cook
More informationComputer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms
Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Limitations of Algorithms We conclude with a discussion of the limitations of the power of algorithms. That is, what kinds
More informationComputability and Complexity Theory
Discrete Math for Bioinformatics WS 09/10:, by A Bockmayr/K Reinert, January 27, 2010, 18:39 9001 Computability and Complexity Theory Computability and complexity Computability theory What problems can
More information9. PSPACE 9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACEcomplete
Geography game Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable
More information9. PSPACE. PSPACE complexity class quantified satisfiability planning problem PSPACEcomplete
9. PSPACE PSPACE complexity class quantified satisfiability planning problem PSPACEcomplete Lecture slides by Kevin Wayne Copyright 2005 PearsonAddison Wesley Copyright 2013 Kevin Wayne http://www.cs.princeton.edu/~wayne/kleinbergtardos
More informationMa/CS 117c Handout # 5 P vs. NP
Ma/CS 117c Handout # 5 P vs. NP We consider the possible relationships among the classes P, NP, and conp. First we consider properties of the class of NPcomplete problems, as opposed to those which are
More informationU.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 9/6/2004. Notes for Lecture 3
U.C. Berkeley CS278: Computational Complexity Handout N3 Professor Luca Trevisan 9/6/2004 Notes for Lecture 3 Revised 10/6/04 1 SpaceBounded Complexity Classes A machine solves a problem using space s(
More informationA Complexity Theory for Parallel Computation
A Complexity Theory for Parallel Computation The questions: What is the computing power of reasonable parallel computation models? Is it possible to make technology independent statements? Is it possible
More informationAn example of a decidable language that is not a CFL Implementationlevel description of a TM State diagram of TM
Turing Machines Review An example of a decidable language that is not a CFL Implementationlevel description of a TM State diagram of TM Varieties of TMs MultiTape TMs Nondeterministic TMs String Enumerators
More informationA Short History of Computational Complexity
A Short History of Computational Complexity Lance Fortnow, Steve Homer Georgia Kaouri NTUAthens Overview 1936: Turing machine early 60 s: birth of computational complexity early 70 s: NPcompleteness,
More informationCSCI3390Assignment 2 Solutions
CSCI3390Assignment 2 Solutions due February 3, 2016 1 TMs for Deciding Languages Write the specification of a Turing machine recognizing one of the following three languages. Do one of these problems.
More informationA Collection of Problems in Propositional Logic
A Collection of Problems in Propositional Logic Hans Kleine Büning SS 2016 Problem 1: SAT (respectively SAT) Instance: A propositional formula α (for SAT in CNF). Question: Is α satisfiable? The problems
More informationMTAT Complexity Theory October 13th14th, Lecture 6
MTAT.07.004 Complexity Theory October 13th14th, 2011 Lecturer: Peeter Laud Lecture 6 Scribe(s): Riivo Talviste 1 Logarithmic memory Turing machines working in logarithmic space become interesting when
More information2 Natural Proofs: a barrier for proving circuit lower bounds
Topics in Theoretical Computer Science April 4, 2016 Lecturer: Ola Svensson Lecture 6 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent
More informationApproximation Preserving Reductions
Approximation Preserving Reductions  Memo Summary  APreducibility  Lreduction technique  Complete problems  Examples: MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET, MAXIMUM 2SAT, MAXIMUM NAE 3SAT, MAXIMUM
More informationCPSC 506: Complexity of Computa5on
CPSC 506: Complexity of Computa5on On the founda5ons of our field, connec5ons between Science and Compu5ng, where our field might be headed in the future CPSC 506 MW 910:30, DMP 101 cs.ubc.ca/~condon/cpsc506/
More informationIntroduction to Turing Machines. Reading: Chapters 8 & 9
Introduction to Turing Machines Reading: Chapters 8 & 9 1 Turing Machines (TM) Generalize the class of CFLs: Recursively Enumerable Languages Recursive Languages ContextFree Languages Regular Languages
More informationComputational Complexity
Computational Complexity Pascal Hitzler http://www.pascalhitzler.de CS 740 Lecture, Spring Quarter 2010 Wright State University, Dayton, OH, U.S.A. Final version. Contents 1 BigOhNotation 2 2 Turing
More informationComputational Complexity CSCIGA Subhash Khot Transcribed by Patrick Lin
Computational Complexity CSCIGA 3350 Subhash Khot Transcribed by Patrick Lin Abstract. These notes are from a course in Computational Complexity, as offered in Spring 2014 at the Courant Institute of
More informationThe Complexity of Maximum. MatroidGreedoid Intersection and. Weighted Greedoid Maximization
Department of Computer Science Series of Publications C Report C20042 The Complexity of Maximum MatroidGreedoid Intersection and Weighted Greedoid Maximization Taneli Mielikäinen Esko Ukkonen University
More informationCSCE 551: ChinTser Huang. University of South Carolina
CSCE 551: Theory of Computation ChinTser Huang huangct@cse.sc.edu University of South Carolina ChurchTuring Thesis The definition of the algorithm came in the 1936 papers of Alonzo Church h and Alan
More informationStochasticity in Algorithmic Statistics for Polynomial Time
Stochasticity in Algorithmic Statistics for Polynomial Time Alexey Milovanov 1 and Nikolay Vereshchagin 2 1 National Research University Higher School of Economics, Moscow, Russia almas239@gmail.com 2
More informationProperties That Characterize
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 43, 380404 (1991) Properties That Characterize LOGCFL* H. VENKATESWARAN School of Information and Computer Science, Georgia Institute of Technology, Atlanta, Georgia
More informationFORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
5453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NONDETERMINISM and REGULAR OPERATIONS THURSDAY JAN 6 UNION THEOREM The union of two regular languages is also a regular language Regular Languages Are
More informationComputer Science. Questions for discussion Part II. Computer Science COMPUTER SCIENCE. Section 4.2.
COMPUTER SCIENCE S E D G E W I C K / W A Y N E PA R T I I : A L G O R I T H M S, T H E O R Y, A N D M A C H I N E S Computer Science Computer Science An Interdisciplinary Approach Section 4.2 ROBERT SEDGEWICK
More informationLance Fortnow Georgia Institute of Technology A PERSONAL VIEW OF P VERSUS NP
Lance Fortnow Georgia Institute of Technology A PERSONAL VIEW OF P VERSUS NP NEW YORK TIMES AUGUST 16, 2010 Step 1: Post Elusive Proof. Step 2: Watch Fireworks. By John Markoff Vinay Deolalikar, a mathematician
More informationTopic: Sampling, Medians of Means method and DNF counting Date: October 6, 2004 Scribe: Florin Oprea
15859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Sampling, Medians of Means method and DNF counting Date: October 6, 200 Scribe: Florin Oprea 8.1 Introduction In this lecture we will consider
More informationNotes on SpaceBounded Complexity
U.C. Berkeley CS172: Automata, Computability and Complexity Handout 7 Professor Luca Trevisan April 14, 2015 Notes on SpaceBounded Complexity These are notes for CS278, Computational Complexity, scribed
More informationMore About Turing Machines. Programming Tricks Restrictions Extensions Closure Properties
More About Turing Machines Programming Tricks Restrictions Extensions Closure Properties 1 Overview At first, the TM doesn t look very powerful. Can it really do anything a computer can? We ll discuss
More informationCS154, Lecture 12: Kolmogorov Complexity: A Universal Theory of Data Compression
CS154, Lecture 12: Kolmogorov Complexity: A Universal Theory of Data Compression Rosencrantz & Guildenstern Are Dead (Tom Stoppard) Rigged Lottery? And the winning numbers are: 1, 2, 3, 4, 5, 6 But is
More informationFORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY
5453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY YOU NEED TO PICK UP THE SYLLABUS, THE COURSE SCHEDULE, THE PROJECT INFO SHEET, TODAY S CLASS NOTES
More informationLecture 12: Interactive Proofs
princeton university cos 522: computational complexity Lecture 12: Interactive Proofs Lecturer: Sanjeev Arora Scribe:Carl Kingsford Recall the certificate definition of NP. We can think of this characterization
More information