Outline. Random Variables. Examples. Random Variable

Size: px
Start display at page:

Download "Outline. Random Variables. Examples. Random Variable"

Transcription

1 Outline Random Variables M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Random variables. CDF and pdf. Joint random variables. Correlated, independent, orthogonal. Correlation, convolution, correlation coefficient. Normal distribution. 1 2 s 1 S Random Variable X(.) R X : S R Function mapping the elements of the sample space S to the real line R. Equivalent Event: real value(s) associated with the elementary event(s). Probability of the real value = sum of probabilities of the original associated elementary event(s) in the sample space. 3 Examples Example: Throw die, outcome 1-6 dots. Random Variable: maps i dots to i, i =1,, 6. Example: Measurement of any physical quantity with additive random error (noise). Example: pitch, card game, collect tricks. Probabilities of equivalent events: 4

2 Cumulative Probability Distribution Function (CDF) Definition: The cumulative distribution function (CDF) of a random variable is a function defined Properties of the CDF 1. as 2. as 3. is a nondecreasing function of 5 6 Probability Density Function (pdf) Continuous random variable Nonnegative function defined on the real line. For every real interval f X (x) x x + dx x X x dx f ( x dx P X ) x Properties of the pdf 3. First two properties follow from the axioms of probability. Integrate: 8

3 Uniform Distribution 1, a x b f X ( x) b a 0, elsewhere x a 1 x 2 b 1/(b a) x Example: Spin the Pointer Probability of value in any subinterval of is proportional to its length. Area of rectangle must be unity MATLAB >> rand(m, n) % a=0, b=1, m by n 9 10 Density & Distribution Expectation of a Random Variable Expected value or mean of. Justified by relative frequency. Discrete Continuous 11 12

4 Function of a Random Variable Properties of Expectation Expected value of the function Discrete: Continuous: Jensen s Inequality For a random variable Convex function: and a function 1 Moments moment: expectation of power First moment is the mean Second moment is the mean square Discrete Continuous 15 16

5 Variance Second moment about the mean Standard Deviation: square root of variance Discrete Continuous 17 Properties of the Variance Uncorrelated: 18 Variance Property: Proof, 19 Example: Uniform Distribution Find the mean and variance Mean: Mean Square: Variance: 20

6 Moment Generating Function L Laplace transform of pdf (also defined with ) Use 2-sided Laplace transform table. 21 Series Expansion and Moments Moments: 22 Characteristic Function = Fourier transform: Use Fourier transform tables Moments: Normal or Gaussian Density Symmetric about the mean. Peak value (at )= (larger for sharper peak) Mode (most likely value) = mean Standard normal distribution, zero-mean, unit variance /

7 Why is it important? Fits many physical phenomena. Central limit theorem. Completely described by mean and variance. Independent uncorrelated. Right Tail Probability Probability of exceeding a given value. >> p = normspec([-inf,1],0,1,'outside') Complementary cumulative distribution. / =Prob. of false alarm Inverse monotonically decreasing invertible. Inverse is important in some applications (signal detection: prob. of false alarm). Erf : error function Error Function Erfc: complementary error function (invertible) erf(x) erfc(x) x

8 Relation to Normal Distribution Probability Less than Upper Bound is Normal Distribution: mean zero, variance 0.5 N For negative use Density Critical Value 29 x Erf and Gaussian Density / / 30 MATLAB: Computing Probabilities (similar for Maple) >> erf(x) % Error function >> erfc(x) % Complementary error function >> 0.5*(1+erf(x/sqrt(2)) ) % St. Normal P (t < x) >> 0.5*erfc(x/sqrt(2)) % St. Normal P (t > x) >> Qinv=sqrt(2)*erfinv(1-2*P) % Inverse Q(P) 31 Example: Test Scores Test scores are normally distributed with N >> fun exp(-(x-83).^2/128)./sqrt(128*pi); >> integral(fun,83-16,83+16) % within 2 sigma ans =

9 Pseudorandom Number Generators Impulsive pdf >> rand % Uniform distribution over [0,1] >> randn % Standard normal Shifting and Scaling (also see random): >> y = sigmay*randn + ybar For Use impulse for discrete or mixed random variables. -2 f(y) F(y) Y (Y) N N Example: Half-wave rectifier Half-wave rectifier driven by noise 1 N R + R + R 0 Density/Distribution 35 36

10 Multiple Random Variables Multivariate Distributions Multivariate: vector of random variables Bivariate: 2 variables Discrete case: joint prob. = 2-dim. Array Obtain marginal prob. by adding col. or row x 20 x 2 A dx 2 dx1 x 1 x 10 = n by 1 vector Generalize: Marginal Distributions Marginal pdf: Integrate w.r.t. all other variables Example 39 Conditional Distribution Conditional probability Conditional density of given,,,,,,,,,,,,,,,,,,,,, 40

11 Bayes Rule for Random Vars. Independence,,,,, Independent,,,,,,,,,, dy Sum of Independent Random Vars. y z + d z dx z =x + y x Y Y Y 43 Independent vs. Uncorrelated Independent Uncorrelated Independent Uncorrelated. Uncorrelated Independent?? Not true, in general. True for multivariate Gaussian. 44

12 Central Limit Theorem Given n independent random variables Property of Convolutions: Convolution of a large number of positive functions is approximately Gaussian. Central Limit Theorem: Z is asymptotically Gaussian. Lim N 45 Correlation Coefficient Normalized measure of correlation between. Value between 1 and 1 Zero for uncorrelated Reduces to variance property for 46 Zero Correlation Coefficient Unity Correlation Coefficient Uncorrelated For uncorrelated 47 48

13 Range of Correlation Coefficient Proof: Quadratic in a has no real roots Discriminant: negative or zero discriminant for quadratic in a (zero for, equal roots) 49 Orthogonal Random Variables 50 Correlation and Covariance Covariance Matrix Generalization of 2 nd moment & variance to vector case. 51 Can be written in terms of variances and correlation coefficients. Diagonal for uncorrelated (& independent) variables. 52

14 Proof: Quadratic form Multivariate Normal / Generalization of normal distribution to n linearly independent random variables. If are mutually uncorrelated, Independent/Uncorrelated If Gaussian are mutually uncorrelated they are also mutually independent. / / 55 Bivariate Gaussian 56

15 Properties of Multivariate Normal Density N completely defined by and. If joint pdf is normal: Uncorrelated Independent. All marginal and conditional pdfs are normal. Linear transformation of normal vector gives a normal vector (next presentation). Conclusion Probabilistic description of random variables. Moments, characteristic function, moment generating function. Correlation and covariance. Correlated, independent, orthogonal. Normal (Gaussian) random variable References Brown & Hwang, Introduction to Random Signals and Applied Kalman Filtering, Wiley, NY, Stark & Woods, Probability and Random Processes, Prentice Hall, Upper Saddle River, NJ, R. M. Gray & L. D. Davisson, Random Processes: A mathematical Approach for Engineers, Prentice Hall, Englewood Cliffs, NJ, M. H. De Groot, M. J. Schervish, Probability & Statistics, Addison-Wesley, Boston, S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Prentice Hall, A. Papoulis and S.U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th Ed., McGraw Hill, Boston, MA,

Particle Filters. Outline

Particle Filters. Outline Particle Filters M. Sami Fadali Professor of EE University of Nevada Outline Monte Carlo integration. Particle filter. Importance sampling. Degeneracy Resampling Example. 1 2 Monte Carlo Integration Numerical

More information

Review (Probability & Linear Algebra)

Review (Probability & Linear Algebra) Review (Probability & Linear Algebra) CE-725 : Statistical Pattern Recognition Sharif University of Technology Spring 2013 M. Soleymani Outline Axioms of probability theory Conditional probability, Joint

More information

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Some slides have been adopted from Prof. H.R. Rabiee s and also Prof. R. Gutierrez-Osuna

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 2 Review of Probability, Important Distributions 0 c 2011, Georgia Institute of Technology (lect2 1) Conditional Probability Consider a sample space that consists of two

More information

ECE 5615/4615 Computer Project

ECE 5615/4615 Computer Project Set #1p Due Friday March 17, 017 ECE 5615/4615 Computer Project The details of this first computer project are described below. This being a form of take-home exam means that each person is to do his/her

More information

Probability and Stochastic Processes

Probability and Stochastic Processes Probability and Stochastic Processes A Friendly Introduction Electrical and Computer Engineers Third Edition Roy D. Yates Rutgers, The State University of New Jersey David J. Goodman New York University

More information

Dependence. MFM Practitioner Module: Risk & Asset Allocation. John Dodson. September 11, Dependence. John Dodson. Outline.

Dependence. MFM Practitioner Module: Risk & Asset Allocation. John Dodson. September 11, Dependence. John Dodson. Outline. MFM Practitioner Module: Risk & Asset Allocation September 11, 2013 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y

More information

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline.

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline. Practitioner Course: Portfolio Optimization September 10, 2008 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y ) (x,

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

G.PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING PROBABILITY THEORY & STOCHASTIC PROCESSES

G.PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING PROBABILITY THEORY & STOCHASTIC PROCESSES G.PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING PROBABILITY THEORY & STOCHASTIC PROCESSES LECTURE NOTES ON PTSP (15A04304) B.TECH ECE II YEAR I SEMESTER

More information

Preliminary statistics

Preliminary statistics 1 Preliminary statistics The solution of a geophysical inverse problem can be obtained by a combination of information from observed data, the theoretical relation between data and earth parameters (models),

More information

L2: Review of probability and statistics

L2: Review of probability and statistics Probability L2: Review of probability and statistics Definition of probability Axioms and properties Conditional probability Bayes theorem Random variables Definition of a random variable Cumulative distribution

More information

Estimation, Detection, and Identification CMU 18752

Estimation, Detection, and Identification CMU 18752 Estimation, Detection, and Identification CMU 18752 Graduate Course on the CMU/Portugal ECE PhD Program Spring 2008/2009 Instructor: Prof. Paulo Jorge Oliveira pjcro @ isr.ist.utl.pt Phone: +351 21 8418053

More information

3F1 Random Processes Course

3F1 Random Processes Course 3F1 Random Processes Course (supervisor copy) 1 3F1 Random Processes Course Nick Kingsbury October 6, 1 Contents 1 Probability Distributions 5 1.1 Aims and Motivation for the Course.........................

More information

Elements of Probability Theory

Elements of Probability Theory Short Guides to Microeconometrics Fall 2016 Kurt Schmidheiny Unversität Basel Elements of Probability Theory Contents 1 Random Variables and Distributions 2 1.1 Univariate Random Variables and Distributions......

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Course content (will be adapted to the background knowledge of the class):

Course content (will be adapted to the background knowledge of the class): Biomedical Signal Processing and Signal Modeling Lucas C Parra, parra@ccny.cuny.edu Departamento the Fisica, UBA Synopsis This course introduces two fundamental concepts of signal processing: linear systems

More information

matrix-free Elements of Probability Theory 1 Random Variables and Distributions Contents Elements of Probability Theory 2

matrix-free Elements of Probability Theory 1 Random Variables and Distributions Contents Elements of Probability Theory 2 Short Guides to Microeconometrics Fall 2018 Kurt Schmidheiny Unversität Basel Elements of Probability Theory 2 1 Random Variables and Distributions Contents Elements of Probability Theory matrix-free 1

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

Chapter 5,6 Multiple RandomVariables

Chapter 5,6 Multiple RandomVariables Chapter 5,6 Multiple RandomVariables ENCS66 - Probabilityand Stochastic Processes Concordia University Vector RandomVariables A vector r.v. is a function where is the sample space of a random experiment.

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 5: Review on Probability Theory Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Febraury 22 th, 2015 1 Lecture Outlines o Review on probability theory

More information

Review: mostly probability and some statistics

Review: mostly probability and some statistics Review: mostly probability and some statistics C2 1 Content robability (should know already) Axioms and properties Conditional probability and independence Law of Total probability and Bayes theorem Random

More information

ECE 636: Systems identification

ECE 636: Systems identification ECE 636: Systems identification Lectures 3 4 Random variables/signals (continued) Random/stochastic vectors Random signals and linear systems Random signals in the frequency domain υ ε x S z + y Experimental

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Random Variables. P(x) = P[X(e)] = P(e). (1)

Random Variables. P(x) = P[X(e)] = P(e). (1) Random Variables Random variable (discrete or continuous) is used to derive the output statistical properties of a system whose input is a random variable or random in nature. Definition Consider an experiment

More information

Introduction to Probability and Stocastic Processes - Part I

Introduction to Probability and Stocastic Processes - Part I Introduction to Probability and Stocastic Processes - Part I Lecture 2 Henrik Vie Christensen vie@control.auc.dk Department of Control Engineering Institute of Electronic Systems Aalborg University Denmark

More information

COMPLEX SIGNALS are used in various areas of signal

COMPLEX SIGNALS are used in various areas of signal IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 2, FEBRUARY 1997 411 Second-Order Statistics of Complex Signals Bernard Picinbono, Fellow, IEEE, and Pascal Bondon, Member, IEEE Abstract The second-order

More information

Steady-state DKF. M. Sami Fadali Professor EE UNR

Steady-state DKF. M. Sami Fadali Professor EE UNR Steady-state DKF M. Sami Fadali Professor EE UNR 1 Outline Stability of linear estimators. Lyapunov equation. Uniform exponential stability. Steady-state behavior of Lyapunov equation. Riccati equation.

More information

ECE 3800 Probabilistic Methods of Signal and System Analysis

ECE 3800 Probabilistic Methods of Signal and System Analysis ECE 3800 Probabilistic Methods of Signal and System Analysis Dr. Bradley J. Bazuin Western Michigan University College of Engineering and Applied Sciences Department of Electrical and Computer Engineering

More information

Review of Probability

Review of Probability Review of robabilit robabilit Theor: Man techniques in speech processing require the manipulation of probabilities and statistics. The two principal application areas we will encounter are: Statistical

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

Probability Theory for Machine Learning. Chris Cremer September 2015

Probability Theory for Machine Learning. Chris Cremer September 2015 Probability Theory for Machine Learning Chris Cremer September 2015 Outline Motivation Probability Definitions and Rules Probability Distributions MLE for Gaussian Parameter Estimation MLE and Least Squares

More information

where r n = dn+1 x(t)

where r n = dn+1 x(t) Random Variables Overview Probability Random variables Transforms of pdfs Moments and cumulants Useful distributions Random vectors Linear transformations of random vectors The multivariate normal distribution

More information

DETECTION theory deals primarily with techniques for

DETECTION theory deals primarily with techniques for ADVANCED SIGNAL PROCESSING SE Optimum Detection of Deterministic and Random Signals Stefan Tertinek Graz University of Technology turtle@sbox.tugraz.at Abstract This paper introduces various methods for

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

B4 Estimation and Inference

B4 Estimation and Inference B4 Estimation and Inference 6 Lectures Hilary Term 27 2 Tutorial Sheets A. Zisserman Overview Lectures 1 & 2: Introduction sensors, and basics of probability density functions for representing sensor error

More information

An Introduction to Multivariate Statistical Analysis

An Introduction to Multivariate Statistical Analysis An Introduction to Multivariate Statistical Analysis Third Edition T. W. ANDERSON Stanford University Department of Statistics Stanford, CA WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

Fundamentals of Statistical Signal Processing Volume II Detection Theory

Fundamentals of Statistical Signal Processing Volume II Detection Theory Fundamentals of Statistical Signal Processing Volume II Detection Theory Steven M. Kay University of Rhode Island PH PTR Prentice Hall PTR Upper Saddle River, New Jersey 07458 http://www.phptr.com Contents

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes

Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes Fundamentals of Digital Commun. Ch. 4: Random Variables and Random Processes Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of

More information

HANDBOOK OF APPLICABLE MATHEMATICS

HANDBOOK OF APPLICABLE MATHEMATICS HANDBOOK OF APPLICABLE MATHEMATICS Chief Editor: Walter Ledermann Volume II: Probability Emlyn Lloyd University oflancaster A Wiley-Interscience Publication JOHN WILEY & SONS Chichester - New York - Brisbane

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

ECE 3800 Probabilistic Methods of Signal and System Analysis

ECE 3800 Probabilistic Methods of Signal and System Analysis ECE 3800 Probabilistic Methods of Signal and System Analysis Dr. Bradley J. Bazuin Western Michigan University College of Engineering and Applied Sciences Department of Electrical and Computer Engineering

More information

component risk analysis

component risk analysis 273: Urban Systems Modeling Lec. 3 component risk analysis instructor: Matteo Pozzi 273: Urban Systems Modeling Lec. 3 component reliability outline risk analysis for components uncertain demand and uncertain

More information

UNIT Define joint distribution and joint probability density function for the two random variables X and Y.

UNIT Define joint distribution and joint probability density function for the two random variables X and Y. UNIT 4 1. Define joint distribution and joint probability density function for the two random variables X and Y. Let and represent the probability distribution functions of two random variables X and Y

More information

Stochastic Processes. Review of Elementary Probability Lecture I. Hamid R. Rabiee Ali Jalali

Stochastic Processes. Review of Elementary Probability Lecture I. Hamid R. Rabiee Ali Jalali Stochastic Processes Review o Elementary Probability bili Lecture I Hamid R. Rabiee Ali Jalali Outline History/Philosophy Random Variables Density/Distribution Functions Joint/Conditional Distributions

More information

Lecture Note 1: Probability Theory and Statistics

Lecture Note 1: Probability Theory and Statistics Univ. of Michigan - NAME 568/EECS 568/ROB 530 Winter 2018 Lecture Note 1: Probability Theory and Statistics Lecturer: Maani Ghaffari Jadidi Date: April 6, 2018 For this and all future notes, if you would

More information

BACKGROUND NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2016 PROBABILITY A. STRANDLIE NTNU AT GJØVIK AND UNIVERSITY OF OSLO

BACKGROUND NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2016 PROBABILITY A. STRANDLIE NTNU AT GJØVIK AND UNIVERSITY OF OSLO ACKGROUND NOTES FYS 4550/FYS9550 - EXERIMENTAL HIGH ENERGY HYSICS AUTUMN 2016 ROAILITY A. STRANDLIE NTNU AT GJØVIK AND UNIVERSITY OF OSLO efore embarking on the concept of probability, we will first define

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

Uniform Correlation Mixture of Bivariate Normal Distributions and. Hypercubically-contoured Densities That Are Marginally Normal

Uniform Correlation Mixture of Bivariate Normal Distributions and. Hypercubically-contoured Densities That Are Marginally Normal Uniform Correlation Mixture of Bivariate Normal Distributions and Hypercubically-contoured Densities That Are Marginally Normal Kai Zhang Department of Statistics and Operations Research University of

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/13 KC Border Introduction to Probability and Statistics Winter 219 Lecture 1: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2, 2.2,

More information

conditional cdf, conditional pdf, total probability theorem?

conditional cdf, conditional pdf, total probability theorem? 6 Multiple Random Variables 6.0 INTRODUCTION scalar vs. random variable cdf, pdf transformation of a random variable conditional cdf, conditional pdf, total probability theorem expectation of a random

More information

Chapter 2 Random Variables

Chapter 2 Random Variables Stochastic Processes Chapter 2 Random Variables Prof. Jernan Juang Dept. of Engineering Science National Cheng Kung University Prof. Chun-Hung Liu Dept. of Electrical and Computer Eng. National Chiao Tung

More information

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I Code: 15A04304 R15 B.Tech II Year I Semester (R15) Regular Examinations November/December 016 PROBABILITY THEY & STOCHASTIC PROCESSES (Electronics and Communication Engineering) Time: 3 hours Max. Marks:

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27 Probability Review Yutian Li Stanford University January 18, 2018 Yutian Li (Stanford University) Probability Review January 18, 2018 1 / 27 Outline 1 Elements of probability 2 Random variables 3 Multiple

More information

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is Math 416 Lecture 3 Expected values The average or mean or expected value of x 1, x 2, x 3,..., x n is x 1 x 2... x n n x 1 1 n x 2 1 n... x n 1 n 1 n x i p x i where p x i 1 n is the probability of x i

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes. Closed book and notes. 60 minutes. A summary table of some univariate continuous distributions is provided. Four Pages. In this version of the Key, I try to be more complete than necessary to receive full

More information

Uncorrelatedness and Independence

Uncorrelatedness and Independence Uncorrelatedness and Independence Uncorrelatedness:Two r.v. x and y are uncorrelated if C xy = E[(x m x )(y m y ) T ] = 0 or equivalently R xy = E[xy T ] = E[x]E[y T ] = m x m T y White random vector:this

More information

NONLINEAR RANDOM DISPLACEMENT AND FATIGUE ESTIMATES USING PDF TRANSFORMATIONS

NONLINEAR RANDOM DISPLACEMENT AND FATIGUE ESTIMATES USING PDF TRANSFORMATIONS NONLINEAR RANDOM DISPLACEMENT AND FATIGUE ESTIMATES USING PDF TRANSFORMATIONS K. A. Sweitzer and N. S. Ferguson ITT Industries Space Systems Division LLC, Rochester, NY, USA Institute of Sound and Vibration

More information

ECE Lecture #10 Overview

ECE Lecture #10 Overview ECE 450 - Lecture #0 Overview Introduction to Random Vectors CDF, PDF Mean Vector, Covariance Matrix Jointly Gaussian RV s: vector form of pdf Introduction to Random (or Stochastic) Processes Definitions

More information

Introduction...2 Chapter Review on probability and random variables Random experiment, sample space and events

Introduction...2 Chapter Review on probability and random variables Random experiment, sample space and events Introduction... Chapter...3 Review on probability and random variables...3. Random eperiment, sample space and events...3. Probability definition...7.3 Conditional Probability and Independence...7.4 heorem

More information

Probability Theory Review Reading Assignments

Probability Theory Review Reading Assignments Probability Theory Review Reading Assignments R. Duda, P. Hart, and D. Stork, Pattern Classification, John-Wiley, 2nd edition, 2001 (appendix A.4, hard-copy). "Everything I need to know about Probability"

More information

Introduction to Machine Learning

Introduction to Machine Learning What does this mean? Outline Contents Introduction to Machine Learning Introduction to Probabilistic Methods Varun Chandola December 26, 2017 1 Introduction to Probability 1 2 Random Variables 3 3 Bayes

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

ECE 650 1/11. Homework Sets 1-3

ECE 650 1/11. Homework Sets 1-3 ECE 650 1/11 Note to self: replace # 12, # 15 Homework Sets 1-3 HW Set 1: Review Assignment from Basic Probability 1. Suppose that the duration in minutes of a long-distance phone call is exponentially

More information

Review of Probability Theory

Review of Probability Theory Review of Probability Theory Arian Maleki and Tom Do Stanford University Probability theory is the study of uncertainty Through this class, we will be relying on concepts from probability theory for deriving

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Lecture 11. Probability Theory: an Overveiw

Lecture 11. Probability Theory: an Overveiw Math 408 - Mathematical Statistics Lecture 11. Probability Theory: an Overveiw February 11, 2013 Konstantin Zuev (USC) Math 408, Lecture 11 February 11, 2013 1 / 24 The starting point in developing the

More information

Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis. Agenda

Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis. Agenda Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis Lecture Recalls of probability theory Massimo Piccardi University of Technology, Sydney,

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

STAT 7032 Probability. Wlodek Bryc

STAT 7032 Probability. Wlodek Bryc STAT 7032 Probability Wlodek Bryc Revised for Spring 2019 Printed: January 14, 2019 File: Grad-Prob-2019.TEX Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221 E-mail address:

More information

Introducing the Normal Distribution

Introducing the Normal Distribution Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 10: Introducing the Normal Distribution Relevant textbook passages: Pitman [5]: Sections 1.2,

More information

Probability theory. References:

Probability theory. References: Reasoning Under Uncertainty References: Probability theory Mathematical methods in artificial intelligence, Bender, Chapter 7. Expert systems: Principles and programming, g, Giarratano and Riley, pag.

More information

Stochastic Processes

Stochastic Processes Elements of Lecture II Hamid R. Rabiee with thanks to Ali Jalali Overview Reading Assignment Chapter 9 of textbook Further Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A First Course in Stochastic

More information

Multivariate random variables

Multivariate random variables Multivariate random variables DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Joint distributions Tool to characterize several

More information

ECS /1 Part IV.2 Dr.Prapun

ECS /1 Part IV.2 Dr.Prapun Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology ECS35 4/ Part IV. Dr.Prapun.4 Families of Continuous Random Variables

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Introduction to Probabilistic Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB

More information

Statistics for scientists and engineers

Statistics for scientists and engineers Statistics for scientists and engineers February 0, 006 Contents Introduction. Motivation - why study statistics?................................... Examples..................................................3

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

Introduction to Probability Theory

Introduction to Probability Theory Introduction to Probability Theory Ping Yu Department of Economics University of Hong Kong Ping Yu (HKU) Probability 1 / 39 Foundations 1 Foundations 2 Random Variables 3 Expectation 4 Multivariate Random

More information

3. Review of Probability and Statistics

3. Review of Probability and Statistics 3. Review of Probability and Statistics ECE 830, Spring 2014 Probabilistic models will be used throughout the course to represent noise, errors, and uncertainty in signal processing problems. This lecture

More information

Lecture 3. Probability - Part 2. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. October 19, 2016

Lecture 3. Probability - Part 2. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. October 19, 2016 Lecture 3 Probability - Part 2 Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza October 19, 2016 Luigi Freda ( La Sapienza University) Lecture 3 October 19, 2016 1 / 46 Outline 1 Common Continuous

More information

LECTURE NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO

LECTURE NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO LECTURE NOTES FYS 4550/FYS9550 - EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I PROBABILITY AND STATISTICS A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO Before embarking on the concept

More information

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl.

E X A M. Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours. Number of pages incl. E X A M Course code: Course name: Number of pages incl. front page: 6 MA430-G Probability Theory and Stochastic Processes Date: December 13, 2016 Duration: 4 hours Resources allowed: Notes: Pocket calculator,

More information

Large Sample Properties of Estimators in the Classical Linear Regression Model

Large Sample Properties of Estimators in the Classical Linear Regression Model Large Sample Properties of Estimators in the Classical Linear Regression Model 7 October 004 A. Statement of the classical linear regression model The classical linear regression model can be written in

More information

Lecture 2. Spring Quarter Statistical Optics. Lecture 2. Characteristic Functions. Transformation of RVs. Sums of RVs

Lecture 2. Spring Quarter Statistical Optics. Lecture 2. Characteristic Functions. Transformation of RVs. Sums of RVs s of Spring Quarter 2018 ECE244a - Spring 2018 1 Function s of The characteristic function is the Fourier transform of the pdf (note Goodman and Papen have different notation) C x(ω) = e iωx = = f x(x)e

More information

Multivariate Distributions

Multivariate Distributions IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Multivariate Distributions We will study multivariate distributions in these notes, focusing 1 in particular on multivariate

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 PROBABILITY. Prof. Steven Waslander

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 PROBABILITY. Prof. Steven Waslander ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 Prof. Steven Waslander p(a): Probability that A is true 0 pa ( ) 1 p( True) 1, p( False) 0 p( A B) p( A) p( B) p( A B) A A B B 2 Discrete Random Variable X

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

CSCI-6971 Lecture Notes: Probability theory

CSCI-6971 Lecture Notes: Probability theory CSCI-6971 Lecture Notes: Probability theory Kristopher R. Beevers Department of Computer Science Rensselaer Polytechnic Institute beevek@cs.rpi.edu January 31, 2006 1 Properties of probabilities Let, A,

More information

Lessons in Estimation Theory for Signal Processing, Communications, and Control

Lessons in Estimation Theory for Signal Processing, Communications, and Control Lessons in Estimation Theory for Signal Processing, Communications, and Control Jerry M. Mendel Department of Electrical Engineering University of Southern California Los Angeles, California PRENTICE HALL

More information