Steady-state DKF. M. Sami Fadali Professor EE UNR

Size: px
Start display at page:

Download "Steady-state DKF. M. Sami Fadali Professor EE UNR"

Transcription

1 Steady-state DKF M. Sami Fadali Professor EE UNR 1

2 Outline Stability of linear estimators. Lyapunov equation. Uniform exponential stability. Steady-state behavior of Lyapunov equation. Riccati equation. Steady-state behavior of Riccati equation. 2

3 Time-varying Recursion x k + 1 = φ k x + k, x + k = x k + K k φ k = φ k + 1, k z k H k x k Eliminate x + k (or eliminate x k ). x k + 1 = φ k I n K k H k x k + φ k K k z k = Aҧ k x k + φ k Kz k Aҧ k = φ k I n K k H k, φ k = φ k + 1, k x + k + 1 = I n K k + 1 H k + 1 φ k x + k +K k + 1 z k + 1 3

4 Stability of Predictor/Corrector Consider LTI case with a constant gain K. x k + 1 = φ I n KH x k + φkz k x + k + 1 = I n KH φ x + k + Kz k + 1 Stable dynamics for eigenvalues of state matrix inside the unit circle. Example: φ = 0.2I 2, K = T, H = 1 5 Eigenvalues (0.2, 0.14): Stable filter. 4

5 Implications of Stability Test Must have a known constant gain to test stability: Kalman filter must be first designed before its stability can be determined. Result is for any gain not necessarily the optimal Kalman gain. Tells us nothing about error dynamics. 5

6 ҧ ҧ Discrete Lyapunov Equation P k+1 = φ k P + k φ T k + Q k Substitute for P + k (Joseph form) P k+1 = φ k I n K k H k P k I n K k H T T k φ k +φ k K k R k K T k φ T k + Q k Lyapunov Equation: P k+1 = Aҧ k P k A T k + തQ k A k = φ k I n K k H k തQ k = φ k K k R k K T k φ T k + Q k Applies for any gain K (not just the optimal Kalman gain K) 6

7 ҧ ҧ ҧ Solution of Lyapunov Eqn. P k+1 = Aҧ k P k A T k + തQ k P k = Φ k, 0 P 0 Φ T k, 0 k 1 + i=0 A k 1 Φ k, i + 1 തQ i Φ T k, i + 1 Φ k, i = A k 2 Aҧ i, For constant A, ҧ Φ k, i = Proof by induction. Φ k, k = I n Aҧ k i 7

8 Uniform Exponential Stability (UES) There exists a positive constant γ > 0, and a constant λ, 0 < λ < 1, s.t. x k γλ k k 0 x k Upper bound Norm of response Response bounded above by an exponential decay curve. 8

9 U.E.S. Theorem x k γλ k k 0 x k 0 Φ k, k 0 i γλ k k 0 Proof of only k, k 0, k k 0 x k = Φ k, k 0 x k 0 Using norm inequalities and the condition x k Φ k, k 0 i x k 0 γλ k k 0 x k 0 Note that the bound on the state-transition matrix implies that Lim Φ k, 0 i is zero. k 9

10 Proof of Necessity Assume uniformly exponentially stable: There exists a positive constant γ > 0, and a constant λ, 0 < λ < 1, s.t. x k γλ k k 0 x k 0 For any k 0, there is a state x a, k a k 0, such that x a = 1, Φ k, k 0 x a = Φ k, k 0 i Initial state x 0 = x a x k a = Φ k, k 0 x a = Φ k, k 0 i Φ k, k 0 i γλ k k 0 k, k 0, k k 0 10

11 U.E.S Condition Theorem: The linear system x k = Φ k, k 0 x k 0 is u.e.s. iff there exist a finite positive constant β s. t. Φ k, k 0 i β, k 0 0 k=k 0 11

12 Proof (Necessity) If the system is U.E.S. k=k 0 Φ k, k 0 i γλ k k 0, k k 0, k 0 Φ k, k 0 i k=k 0 = γ 1 λ = β γλ k k 0 = k=0 γλ k 12

13 ҧ Lyapunov Eqn. Steady-state Solution P k+1 = Aҧ k P k A T k + തQ k, തQ k i < β Q, k Steady-state Solution P = Lim k P k = Lim k k 1 Φ k, 0 P 0 Φ T k, 0 + i=0 First term depends on Lim k Φ k, 0 Φ k, i + 1 തQ i Φ T k, i + 1 i 13

14 Steady-state Solution: UES Assuming u.e.s. x k = Φ k, k 0 x k 0 Lim Φ k, 0 i = 0, k P = Lim k i=0 P i i=0 k 1 k=k 0 Φ k, k 0 Φ k, i + 1 തQ i Φ T k, i + 1 i β Φ k, i + 1 i തQ k i Φ T k, i + 1 i < β 2 β Q <, തQ k i < β Q, k 14

15 ҧ LTI Case Aҧ k A = φ I n KH Φ k, 0 = n i i=1 n ҧ A k = i=1 Z i λ i k Z i λ i k γ λ max k, k 0 λ max = spectral radius of the matrix ҧ A Exponentially stable if and only if λ max < 1 15

16 ҧ ҧ ҧ Exponential Stability Exponential stability for eigenvalues of state matrix inside the unit circle λ max < 1. Aҧ k γ λ i max k, k 0 Exponential stability iff the solution of the algebraic Lyapunov equation is positive definite symmetric. AP A T P = തQ, P = i=0 Aҧ i തQ( Aҧ T ) i A = φ I n KH, തQ = φkrk T φ T + Q > 0 16

17 MATLAB: DLYAP MATLAB solution of algebraic Lyapunov equation >> phi=[0.1,0.2;.3,.4];h=[1,1] ;% observable >>k=[5;-3] ; A= phi*(eye(2)-k*h); >> P=dlyap(A,eye(2)) % Pos. Def. P, Q=I ans = >> eig(phi*(eye(2)-k*h)) % Fast stable dynamics ans =

18 Discrete Riccati Equation P k+1 = φ k P k P k H k T H k P k H k T + R k 1 Hk P k φ k T Derived earlier Nonlinear difference equation. +Q k Valid for the optimal Kalman gain only. 18

19 Algebraic Riccati Equation Consider a time-invariant system with stationary noise. Assume that the limiting solution to the Riccati equation exists. Lim k P k = P P = φ P P H T HP H T + R 1 HP φ T + Q 19

20 Theorem (Lewis, p. 100) If φ, H is detectable (observable) then for every initial matrix P 0 there is a bounded limiting solution to the Riccati equation. The solution is the positive semidefinite (definite) solution of the algebraic Riccati equation. 20

21 MATLAB: DARE (see Kalman) MATLAB solution of algebraic Riccati equation >> phi=[0.1,0.2;.3,.4];h=[1,1]; % Observable >> Q=eye(2) ; R=0.1; >> [X,L,G]=dare(phi,H,Q, R) % P=X, K=G, L=eig(phi*(I-K*H)) X = L = G =

22 Theorem (Lewis, p. 101) Assume that Q = Q 1/2 Q 1/2 T 0, R > 0 and φ, Q 1/2 is reachable. Then H, φ is detectable if and only if 1. There is a unique positive definite limiting solution to the algebraic Riccati equation. 2. The steady-state error system ҧ A = φ I n KH with steady-state Kalman gain K = P H T HP H T + R 1 is asymptotically stable. 22

23 Stability Test Check 1. Q = Q 1/2 Q 1/2 T 0, R > 0 2. φ, Q 1/2 is reachable. 3. H, φ is detectable Apply the last theorem to test the stability of the DKF before you design it. Book: Scalar system with one measurement is reachable and observable (trivial case). 23

24 Example: MATLAB >> phi=[0.1,0.2;.3,.4];h=[1,1]; % For Q= eye(2), Q 1/2 = eye(2) >0 ; R=0.1 >0 ; >> Q= ; eig(q) % Positive eigenvalues for pos. def. >> Qs=sqrt(Q); >> rank(ctrb(phi,qs)) % Check reachability ans = 2 >> rank(obsv(phi,h)) % Check observability ans = 2 24

25 Conclusion Suboptimal filter steady-state behavior: Lyapunov equation. Optimal filter steady-state behavior: Riccati equation. Exponential stability. Can test Kalman filter stability before it is designed and implemented. 25

26 References F. L. Lewis, Optimal Estimation: With an Introduction to Stochastic Control Theory, Wiley-Interscience, New York, W. J. Rugh, Linear System Theory, Prentice- Hall, Upper Saddle River, NJ,

Dissipativity. Outline. Motivation. Dissipative Systems. M. Sami Fadali EBME Dept., UNR

Dissipativity. Outline. Motivation. Dissipative Systems. M. Sami Fadali EBME Dept., UNR Dissipativity M. Sami Fadali EBME Dept., UNR 1 Outline Differential storage functions. QSR Dissipativity. Algebraic conditions for dissipativity. Stability of dissipative systems. Feedback Interconnections

More information

Particle Filters. Outline

Particle Filters. Outline Particle Filters M. Sami Fadali Professor of EE University of Nevada Outline Monte Carlo integration. Particle filter. Importance sampling. Degeneracy Resampling Example. 1 2 Monte Carlo Integration Numerical

More information

Outline. Input to state Stability. Nonlinear Realization. Recall: _ Space. _ Space: Space of all piecewise continuous functions

Outline. Input to state Stability. Nonlinear Realization. Recall: _ Space. _ Space: Space of all piecewise continuous functions Outline Input to state Stability Motivation for Input to State Stability (ISS) ISS Lyapunov function. Stability theorems. M. Sami Fadali Professor EBME University of Nevada, Reno 1 2 Recall: _ Space _

More information

OPTIMAL CONTROL AND ESTIMATION

OPTIMAL CONTROL AND ESTIMATION OPTIMAL CONTROL AND ESTIMATION Robert F. Stengel Department of Mechanical and Aerospace Engineering Princeton University, Princeton, New Jersey DOVER PUBLICATIONS, INC. New York CONTENTS 1. INTRODUCTION

More information

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance

The Kalman Filter. Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience. Sarah Dance The Kalman Filter Data Assimilation & Inverse Problems from Weather Forecasting to Neuroscience Sarah Dance School of Mathematical and Physical Sciences, University of Reading s.l.dance@reading.ac.uk July

More information

Linear-Quadratic Optimal Control: Full-State Feedback

Linear-Quadratic Optimal Control: Full-State Feedback Chapter 4 Linear-Quadratic Optimal Control: Full-State Feedback 1 Linear quadratic optimization is a basic method for designing controllers for linear (and often nonlinear) dynamical systems and is actually

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

6.435, System Identification

6.435, System Identification SET 6 System Identification 6.435 Parametrized model structures One-step predictor Identifiability Munther A. Dahleh 1 Models of LTI Systems A complete model u = input y = output e = noise (with PDF).

More information

Outline. Random Variables. Examples. Random Variable

Outline. Random Variables. Examples. Random Variable Outline Random Variables M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Random variables. CDF and pdf. Joint random variables. Correlated, independent, orthogonal. Correlation,

More information

4 Derivations of the Discrete-Time Kalman Filter

4 Derivations of the Discrete-Time Kalman Filter Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof N Shimkin 4 Derivations of the Discrete-Time

More information

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31 Contents Preamble xiii Linear Systems I Basic Concepts 1 I System Representation 3 1 State-Space Linear Systems 5 1.1 State-Space Linear Systems 5 1.2 Block Diagrams 7 1.3 Exercises 11 2 Linearization

More information

ESTIMATOR STABILITY ANALYSIS IN SLAM. Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu

ESTIMATOR STABILITY ANALYSIS IN SLAM. Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu ESTIMATOR STABILITY ANALYSIS IN SLAM Teresa Vidal-Calleja, Juan Andrade-Cetto, Alberto Sanfeliu Institut de Robtica i Informtica Industrial, UPC-CSIC Llorens Artigas 4-6, Barcelona, 88 Spain {tvidal, cetto,

More information

Riccati difference equations to non linear extended Kalman filter constraints

Riccati difference equations to non linear extended Kalman filter constraints International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1 Riccati difference equations to non linear extended Kalman filter constraints Abstract Elizabeth.S 1 & Jothilakshmi.R

More information

Using Lyapunov Theory I

Using Lyapunov Theory I Lecture 33 Stability Analysis of Nonlinear Systems Using Lyapunov heory I Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Outline Motivation Definitions

More information

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México Nonlinear Observers Jaime A. Moreno JMorenoP@ii.unam.mx Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México XVI Congreso Latinoamericano de Control Automático October

More information

Conditions for Suboptimal Filter Stability in SLAM

Conditions for Suboptimal Filter Stability in SLAM Conditions for Suboptimal Filter Stability in SLAM Teresa Vidal-Calleja, Juan Andrade-Cetto and Alberto Sanfeliu Institut de Robòtica i Informàtica Industrial, UPC-CSIC Llorens Artigas -, Barcelona, Spain

More information

RECURSIVE ESTIMATION AND KALMAN FILTERING

RECURSIVE ESTIMATION AND KALMAN FILTERING Chapter 3 RECURSIVE ESTIMATION AND KALMAN FILTERING 3. The Discrete Time Kalman Filter Consider the following estimation problem. Given the stochastic system with x k+ = Ax k + Gw k (3.) y k = Cx k + Hv

More information

EE226a - Summary of Lecture 13 and 14 Kalman Filter: Convergence

EE226a - Summary of Lecture 13 and 14 Kalman Filter: Convergence 1 EE226a - Summary of Lecture 13 and 14 Kalman Filter: Convergence Jean Walrand I. SUMMARY Here are the key ideas and results of this important topic. Section II reviews Kalman Filter. A system is observable

More information

Georgia Institute of Technology Nonlinear Controls Theory Primer ME 6402

Georgia Institute of Technology Nonlinear Controls Theory Primer ME 6402 Georgia Institute of Technology Nonlinear Controls Theory Primer ME 640 Ajeya Karajgikar April 6, 011 Definition Stability (Lyapunov): The equilibrium state x = 0 is said to be stable if, for any R > 0,

More information

Exploring Granger Causality for Time series via Wald Test on Estimated Models with Guaranteed Stability

Exploring Granger Causality for Time series via Wald Test on Estimated Models with Guaranteed Stability Exploring Granger Causality for Time series via Wald Test on Estimated Models with Guaranteed Stability Nuntanut Raksasri Jitkomut Songsiri Department of Electrical Engineering, Faculty of Engineering,

More information

Optimal control and estimation

Optimal control and estimation Automatic Control 2 Optimal control and estimation Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

More information

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q

Kalman Filter. Predict: Update: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Kalman Filter Kalman Filter Predict: x k k 1 = F k x k 1 k 1 + B k u k P k k 1 = F k P k 1 k 1 F T k + Q Update: K = P k k 1 Hk T (H k P k k 1 Hk T + R) 1 x k k = x k k 1 + K(z k H k x k k 1 ) P k k =(I

More information

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances Journal of Mechanical Engineering and Automation (): 6- DOI: 593/jjmea Cramér-Rao Bounds for Estimation of Linear System oise Covariances Peter Matiso * Vladimír Havlena Czech echnical University in Prague

More information

EE451/551: Digital Control. Chapter 8: Properties of State Space Models

EE451/551: Digital Control. Chapter 8: Properties of State Space Models EE451/551: Digital Control Chapter 8: Properties of State Space Models Equilibrium State Definition 8.1: An equilibrium point or state is an initial state from which the system nevers departs unless perturbed

More information

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system 7 Stability 7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system ẋ(t) = A x(t), x(0) = x 0, A R n n, x 0 R n. (14) The origin x = 0 is a globally asymptotically

More information

Lessons in Estimation Theory for Signal Processing, Communications, and Control

Lessons in Estimation Theory for Signal Processing, Communications, and Control Lessons in Estimation Theory for Signal Processing, Communications, and Control Jerry M. Mendel Department of Electrical Engineering University of Southern California Los Angeles, California PRENTICE HALL

More information

Time-Invariant Linear Quadratic Regulators!

Time-Invariant Linear Quadratic Regulators! Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 17 Asymptotic approach from time-varying to constant gains Elimination of cross weighting

More information

Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015

Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015 Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 15 Asymptotic approach from time-varying to constant gains Elimination of cross weighting

More information

Lecture 4. Chapter 4: Lyapunov Stability. Eugenio Schuster. Mechanical Engineering and Mechanics Lehigh University.

Lecture 4. Chapter 4: Lyapunov Stability. Eugenio Schuster. Mechanical Engineering and Mechanics Lehigh University. Lecture 4 Chapter 4: Lyapunov Stability Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 4 p. 1/86 Autonomous Systems Consider the autonomous system ẋ

More information

Final Exam Solutions

Final Exam Solutions EE55: Linear Systems Final Exam SIST, ShanghaiTech Final Exam Solutions Course: Linear Systems Teacher: Prof. Boris Houska Duration: 85min YOUR NAME: (type in English letters) I Introduction This exam

More information

Recursive Solutions of the Matrix Equations X + A T X 1 A = Q and X A T X 1 A = Q

Recursive Solutions of the Matrix Equations X + A T X 1 A = Q and X A T X 1 A = Q Applied Mathematical Sciences, Vol. 2, 2008, no. 38, 1855-1872 Recursive Solutions of the Matrix Equations X + A T X 1 A = Q and X A T X 1 A = Q Nicholas Assimakis Department of Electronics, Technological

More information

Chap 3. Linear Algebra

Chap 3. Linear Algebra Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

More information

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points Nonlinear Control Lecture # 3 Stability of Equilibrium Points The Invariance Principle Definitions Let x(t) be a solution of ẋ = f(x) A point p is a positive limit point of x(t) if there is a sequence

More information

THE PYTHAGOREAN THEOREM

THE PYTHAGOREAN THEOREM THE STORY SO FAR THE PYTHAGOREAN THEOREM USES OF THE PYTHAGOREAN THEOREM USES OF THE PYTHAGOREAN THEOREM SOLVE RIGHT TRIANGLE APPLICATIONS USES OF THE PYTHAGOREAN THEOREM SOLVE RIGHT TRIANGLE APPLICATIONS

More information

Converse Lyapunov theorem and Input-to-State Stability

Converse Lyapunov theorem and Input-to-State Stability Converse Lyapunov theorem and Input-to-State Stability April 6, 2014 1 Converse Lyapunov theorem In the previous lecture, we have discussed few examples of nonlinear control systems and stability concepts

More information

6.4 Kalman Filter Equations

6.4 Kalman Filter Equations 6.4 Kalman Filter Equations 6.4.1 Recap: Auxiliary variables Recall the definition of the auxiliary random variables x p k) and x m k): Init: x m 0) := x0) S1: x p k) := Ak 1)x m k 1) +uk 1) +vk 1) S2:

More information

Lecture 2: Discrete-time Linear Quadratic Optimal Control

Lecture 2: Discrete-time Linear Quadratic Optimal Control ME 33, U Berkeley, Spring 04 Xu hen Lecture : Discrete-time Linear Quadratic Optimal ontrol Big picture Example onvergence of finite-time LQ solutions Big picture previously: dynamic programming and finite-horizon

More information

ECE 516: System Control Engineering

ECE 516: System Control Engineering ECE 516: System Control Engineering This course focuses on the analysis and design of systems control. This course will introduce time-domain systems dynamic control fundamentals and their design issues

More information

FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control FEL3210 Multivariable Feedback Control Lecture 8: Youla parametrization, LMIs, Model Reduction and Summary [Ch. 11-12] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 8: Youla, LMIs, Model Reduction

More information

Stability lectures. Stability of Linear Systems. Stability of Linear Systems. Stability of Continuous Systems. EECE 571M/491M, Spring 2008 Lecture 5

Stability lectures. Stability of Linear Systems. Stability of Linear Systems. Stability of Continuous Systems. EECE 571M/491M, Spring 2008 Lecture 5 EECE 571M/491M, Spring 2008 Lecture 5 Stability of Continuous Systems http://courses.ece.ubc.ca/491m moishi@ece.ubc.ca Dr. Meeko Oishi Electrical and Computer Engineering University of British Columbia,

More information

NETWORK ANALYSIS WITH APPLICATIONS

NETWORK ANALYSIS WITH APPLICATIONS NETWORK ANALYSIS WITH APPLICATIONS Third Edition William D. Stanley Old Dominion University Prentice Hall Upper Saddle River, New Jersey I Columbus, Ohio CONTENTS 1 BASIC CIRCUIT LAWS 1 1-1 General Plan

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Regulation and trajectory tracking Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Organization and

More information

Estimation, Detection, and Identification CMU 18752

Estimation, Detection, and Identification CMU 18752 Estimation, Detection, and Identification CMU 18752 Graduate Course on the CMU/Portugal ECE PhD Program Spring 2008/2009 Instructor: Prof. Paulo Jorge Oliveira pjcro @ isr.ist.utl.pt Phone: +351 21 8418053

More information

ECE504: Lecture 8. D. Richard Brown III. Worcester Polytechnic Institute. 28-Oct-2008

ECE504: Lecture 8. D. Richard Brown III. Worcester Polytechnic Institute. 28-Oct-2008 ECE504: Lecture 8 D. Richard Brown III Worcester Polytechnic Institute 28-Oct-2008 Worcester Polytechnic Institute D. Richard Brown III 28-Oct-2008 1 / 30 Lecture 8 Major Topics ECE504: Lecture 8 We are

More information

High School Mathematics Honors PreCalculus

High School Mathematics Honors PreCalculus High School Mathematics Honors PreCalculus This is an accelerated course designed for the motivated math students with an above average interest in mathematics. It will cover all topics presented in Precalculus.

More information

Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Dennis S. Bernstein

Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Dennis S. Bernstein Matrix Mathematics Theory, Facts, and Formulas with Application to Linear Systems Theory Dennis S. Bernstein PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Contents Special Symbols xv Conventions, Notation,

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XII - Lyapunov Stability - Hassan K. Khalil

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XII - Lyapunov Stability - Hassan K. Khalil LYAPUNO STABILITY Hassan K. Khalil Department of Electrical and Computer Enigneering, Michigan State University, USA. Keywords: Asymptotic stability, Autonomous systems, Exponential stability, Global asymptotic

More information

ADAPTIVE FILTER THEORY

ADAPTIVE FILTER THEORY ADAPTIVE FILTER THEORY Fourth Edition Simon Haykin Communications Research Laboratory McMaster University Hamilton, Ontario, Canada Front ice Hall PRENTICE HALL Upper Saddle River, New Jersey 07458 Preface

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

The stability of limit cycles in nonlinear systems

The stability of limit cycles in nonlinear systems Nonlinear Dyn 009) 56: 69 75 DOI 10.1007/s11071-008-9398-3 O R I G I NA L PA P E R The stability of limit cycles in nonlinear systems Ali Ghaffari Masayoshi Tomizuka Reza A. Soltan Received: 1 March 007

More information

An Iteration-Domain Filter for Controlling Transient Growth in Iterative Learning Control

An Iteration-Domain Filter for Controlling Transient Growth in Iterative Learning Control 21 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 21 WeC14.1 An Iteration-Domain Filter for Controlling Transient Growth in Iterative Learning Control Qing Liu and Douglas

More information

Linear Systems Control

Linear Systems Control Linear Systems Control Elbert Hendricks Ole Jannerup Paul Haase Sørensen Linear Systems Control Deterministic and Stochastic Methods Elbert Hendricks Department of Electrical Engineering Automation Technical

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

Steady State Kalman Filter for Periodic Models: A New Approach. 1 Steady state Kalman filter for periodic models

Steady State Kalman Filter for Periodic Models: A New Approach. 1 Steady state Kalman filter for periodic models Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 5, 201-218 Steady State Kalman Filter for Periodic Models: A New Approach N. Assimakis 1 and M. Adam Department of Informatics with Applications to Biomedicine

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 9, SEPTEMBER 2008 937 Analytical Stability Condition of the Latency Insertion Method for Nonuniform GLC Circuits Subramanian N.

More information

Nonlinear systems. Lyapunov stability theory. G. Ferrari Trecate

Nonlinear systems. Lyapunov stability theory. G. Ferrari Trecate Nonlinear systems Lyapunov stability theory G. Ferrari Trecate Dipartimento di Ingegneria Industriale e dell Informazione Università degli Studi di Pavia Advanced automation and control Ferrari Trecate

More information

Applied Nonlinear Control

Applied Nonlinear Control Applied Nonlinear Control JEAN-JACQUES E. SLOTINE Massachusetts Institute of Technology WEIPING LI Massachusetts Institute of Technology Pearson Education Prentice Hall International Inc. Upper Saddle

More information

Control Systems. Internal Stability - LTI systems. L. Lanari

Control Systems. Internal Stability - LTI systems. L. Lanari Control Systems Internal Stability - LTI systems L. Lanari outline LTI systems: definitions conditions South stability criterion equilibrium points Nonlinear systems: equilibrium points examples stable

More information

Digital Control Engineering Analysis and Design

Digital Control Engineering Analysis and Design Digital Control Engineering Analysis and Design M. Sami Fadali Antonio Visioli AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is

More information

Discrete-Time State-Space Equations. M. Sami Fadali Professor of Electrical Engineering UNR

Discrete-Time State-Space Equations. M. Sami Fadali Professor of Electrical Engineering UNR Discrete-Time State-Space Equations M. Sami Fadali Professor of Electrical Engineering UNR 1 Outline Discrete-time (DT) state equation from solution of continuous-time state equation. Expressions in terms

More information

OUTPUT REGULATION OF RÖSSLER PROTOTYPE-4 CHAOTIC SYSTEM BY STATE FEEDBACK CONTROL

OUTPUT REGULATION OF RÖSSLER PROTOTYPE-4 CHAOTIC SYSTEM BY STATE FEEDBACK CONTROL International Journal in Foundations of Computer Science & Technology (IJFCST),Vol., No., March 01 OUTPUT REGULATION OF RÖSSLER PROTOTYPE-4 CHAOTIC SYSTEM BY STATE FEEDBACK CONTROL Sundarapandian Vaidyanathan

More information

Output Regulation of the Tigan System

Output Regulation of the Tigan System Output Regulation of the Tigan System Dr. V. Sundarapandian Professor (Systems & Control Eng.), Research and Development Centre Vel Tech Dr. RR & Dr. SR Technical University Avadi, Chennai-6 6, Tamil Nadu,

More information

Elements of Multivariate Time Series Analysis

Elements of Multivariate Time Series Analysis Gregory C. Reinsel Elements of Multivariate Time Series Analysis Second Edition With 14 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1. Vector Time Series

More information

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin LQR, Kalman Filter, and LQG Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin May 2015 Linear Quadratic Regulator (LQR) Consider a linear system

More information

Stability of Parameter Adaptation Algorithms. Big picture

Stability of Parameter Adaptation Algorithms. Big picture ME5895, UConn, Fall 215 Prof. Xu Chen Big picture For ˆθ (k + 1) = ˆθ (k) + [correction term] we haven t talked about whether ˆθ(k) will converge to the true value θ if k. We haven t even talked about

More information

Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix

Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix KAIST wit Lab 2012. 07. 10 남성호 Introduction The signs of the eigenvalues can be important. The signs can also be related to the minima,

More information

Optimal Distributed Lainiotis Filter

Optimal Distributed Lainiotis Filter Int. Journal of Math. Analysis, Vol. 3, 2009, no. 22, 1061-1080 Optimal Distributed Lainiotis Filter Nicholas Assimakis Department of Electronics Technological Educational Institute (T.E.I.) of Lamia 35100

More information

4 Second-Order Systems

4 Second-Order Systems 4 Second-Order Systems Second-order autonomous systems occupy an important place in the study of nonlinear systems because solution trajectories can be represented in the plane. This allows for easy visualization

More information

Linear Systems. Manfred Morari Melanie Zeilinger. Institut für Automatik, ETH Zürich Institute for Dynamic Systems and Control, ETH Zürich

Linear Systems. Manfred Morari Melanie Zeilinger. Institut für Automatik, ETH Zürich Institute for Dynamic Systems and Control, ETH Zürich Linear Systems Manfred Morari Melanie Zeilinger Institut für Automatik, ETH Zürich Institute for Dynamic Systems and Control, ETH Zürich Spring Semester 2016 Linear Systems M. Morari, M. Zeilinger - Spring

More information

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Time-varying Systems ẋ = f(t,x) f(t,x) is piecewise continuous in t and locally Lipschitz in x for all t 0 and all x D, (0 D). The origin

More information

Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate

Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate www.scichina.com info.scichina.com www.springerlin.com Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate WEI Chen & CHEN ZongJi School of Automation

More information

A Characterization of the Hurwitz Stability of Metzler Matrices

A Characterization of the Hurwitz Stability of Metzler Matrices 29 American Control Conference Hyatt Regency Riverfront, St Louis, MO, USA June -2, 29 WeC52 A Characterization of the Hurwitz Stability of Metzler Matrices Kumpati S Narendra and Robert Shorten 2 Abstract

More information

Module 06 Stability of Dynamical Systems

Module 06 Stability of Dynamical Systems Module 06 Stability of Dynamical Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha October 10, 2017 Ahmad F. Taha Module 06

More information

WORD: EXAMPLE(S): COUNTEREXAMPLE(S): EXAMPLE(S): COUNTEREXAMPLE(S): WORD: EXAMPLE(S): COUNTEREXAMPLE(S): EXAMPLE(S): COUNTEREXAMPLE(S): WORD:

WORD: EXAMPLE(S): COUNTEREXAMPLE(S): EXAMPLE(S): COUNTEREXAMPLE(S): WORD: EXAMPLE(S): COUNTEREXAMPLE(S): EXAMPLE(S): COUNTEREXAMPLE(S): WORD: Bivariate Data DEFINITION: In statistics, data sets using two variables. Scatter Plot DEFINITION: a bivariate graph with points plotted to show a possible relationship between the two sets of data. Positive

More information

N.G.Bean, D.A.Green and P.G.Taylor. University of Adelaide. Adelaide. Abstract. process of an MMPP/M/1 queue is not a MAP unless the queue is a

N.G.Bean, D.A.Green and P.G.Taylor. University of Adelaide. Adelaide. Abstract. process of an MMPP/M/1 queue is not a MAP unless the queue is a WHEN IS A MAP POISSON N.G.Bean, D.A.Green and P.G.Taylor Department of Applied Mathematics University of Adelaide Adelaide 55 Abstract In a recent paper, Olivier and Walrand (994) claimed that the departure

More information

Semidefinite Programming Duality and Linear Time-invariant Systems

Semidefinite Programming Duality and Linear Time-invariant Systems Semidefinite Programming Duality and Linear Time-invariant Systems Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 2 July 2004 Workshop on Linear Matrix Inequalities in Control LAAS-CNRS,

More information

SEC POWER METHOD Power Method

SEC POWER METHOD Power Method SEC..2 POWER METHOD 599.2 Power Method We now describe the power method for computing the dominant eigenpair. Its extension to the inverse power method is practical for finding any eigenvalue provided

More information

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities. 19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that

More information

State estimation and the Kalman filter

State estimation and the Kalman filter State estimation and the Kalman filter PhD, David Di Ruscio Telemark university college Department of Technology Systems and Control Engineering N-3914 Porsgrunn, Norway Fax: +47 35 57 52 50 Tel: +47 35

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

João P. Hespanha. January 16, 2009

João P. Hespanha. January 16, 2009 LINEAR SYSTEMS THEORY João P. Hespanha January 16, 2009 Disclaimer: This is a draft and probably contains a few typos. Comments and information about typos are welcome. Please contact the author at hespanha@ece.ucsb.edu.

More information

Remarks on stability of time-varying linear systems

Remarks on stability of time-varying linear systems IEEE Transactions on Automatic Control 62(11), 6039 6043, 2017 doi: 10.1109/TAC.2017.2702104 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

More information

Probability and Statistics for Final Year Engineering Students

Probability and Statistics for Final Year Engineering Students Probability and Statistics for Final Year Engineering Students By Yoni Nazarathy, Last Updated: May 24, 2011. Lecture 6p: Spectral Density, Passing Random Processes through LTI Systems, Filtering Terms

More information

Converse to Lagrange s Theorem Groups

Converse to Lagrange s Theorem Groups Converse to Lagrange s Theorem Groups Blain A Patterson Youngstown State University May 10, 2013 History In 1771 an Italian mathematician named Joseph Lagrange proved a theorem that put constraints on

More information

Identify the graph of a function, and obtain information from or about the graph of a function.

Identify the graph of a function, and obtain information from or about the graph of a function. PS 1 Graphs: Graph equations using rectangular coordinates and graphing utilities, find intercepts, discuss symmetry, graph key equations, solve equations using a graphing utility, work with lines and

More information

Asymptotic Stability by Linearization

Asymptotic Stability by Linearization Dynamical Systems Prof. J. Rauch Asymptotic Stability by Linearization Summary. Sufficient and nearly sharp sufficient conditions for asymptotic stability of equiiibria of differential equations, fixed

More information

Notes on Linear Minimum Mean Square Error Estimators

Notes on Linear Minimum Mean Square Error Estimators Notes on Linear Minimum Mean Square Error Estimators Ça gatay Candan January, 0 Abstract Some connections between linear minimum mean square error estimators, maximum output SNR filters and the least square

More information

Represent this system in terms of a block diagram consisting only of. g From Newton s law: 2 : θ sin θ 9 θ ` T

Represent this system in terms of a block diagram consisting only of. g From Newton s law: 2 : θ sin θ 9 θ ` T Exercise (Block diagram decomposition). Consider a system P that maps each input to the solutions of 9 4 ` 3 9 Represent this system in terms of a block diagram consisting only of integrator systems, represented

More information

Distributed Adaptive Consensus Protocol with Decaying Gains on Directed Graphs

Distributed Adaptive Consensus Protocol with Decaying Gains on Directed Graphs Distributed Adaptive Consensus Protocol with Decaying Gains on Directed Graphs Štefan Knotek, Kristian Hengster-Movric and Michael Šebek Department of Control Engineering, Czech Technical University, Prague,

More information

Output Regulation of the Arneodo Chaotic System

Output Regulation of the Arneodo Chaotic System Vol. 0, No. 05, 00, 60-608 Output Regulation of the Arneodo Chaotic System Sundarapandian Vaidyanathan R & D Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi-Alamathi Road, Avadi, Chennai-600

More information

Hybrid Systems - Lecture n. 3 Lyapunov stability

Hybrid Systems - Lecture n. 3 Lyapunov stability OUTLINE Focus: stability of equilibrium point Hybrid Systems - Lecture n. 3 Lyapunov stability Maria Prandini DEI - Politecnico di Milano E-mail: prandini@elet.polimi.it continuous systems decribed by

More information

Postface to Model Predictive Control: Theory and Design

Postface to Model Predictive Control: Theory and Design Postface to Model Predictive Control: Theory and Design J. B. Rawlings and D. Q. Mayne August 19, 2012 The goal of this postface is to point out and comment upon recent MPC papers and issues pertaining

More information

process on the hierarchical group

process on the hierarchical group Intertwining of Markov processes and the contact process on the hierarchical group April 27, 2010 Outline Intertwining of Markov processes Outline Intertwining of Markov processes First passage times of

More information

An Input-Output Approach to Structured Stochastic Uncertainty

An Input-Output Approach to Structured Stochastic Uncertainty 1 An Input-Output Approach to Structured Stochastic Uncertainty Bassam Bamieh, Fellow, IEEE, and Maurice Filo, Member, IEEE arxiv:1806.07473v1 [cs.sy] 19 Jun 2018 Abstract We consider linear time invariant

More information

Hybrid Systems Course Lyapunov stability

Hybrid Systems Course Lyapunov stability Hybrid Systems Course Lyapunov stability OUTLINE Focus: stability of an equilibrium point continuous systems decribed by ordinary differential equations (brief review) hybrid automata OUTLINE Focus: stability

More information

Lecture 3: Functions of Symmetric Matrices

Lecture 3: Functions of Symmetric Matrices Lecture 3: Functions of Symmetric Matrices Yilin Mo July 2, 2015 1 Recap 1 Bayes Estimator: (a Initialization: (b Correction: f(x 0 Y 1 = f(x 0 f(x k Y k = αf(y k x k f(x k Y k 1, where ( 1 α = f(y k x

More information

Stability theory is a fundamental topic in mathematics and engineering, that include every

Stability theory is a fundamental topic in mathematics and engineering, that include every Stability Theory Stability theory is a fundamental topic in mathematics and engineering, that include every branches of control theory. For a control system, the least requirement is that the system is

More information

Invertibility and stability. Irreducibly diagonally dominant. Invertibility and stability, stronger result. Reducible matrices

Invertibility and stability. Irreducibly diagonally dominant. Invertibility and stability, stronger result. Reducible matrices Geršgorin circles Lecture 8: Outline Chapter 6 + Appendix D: Location and perturbation of eigenvalues Some other results on perturbed eigenvalue problems Chapter 8: Nonnegative matrices Geršgorin s Thm:

More information

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL 1. Optimal regulator with noisy measurement Consider the following system: ẋ = Ax + Bu + w, x(0) = x 0 where w(t) is white noise with Ew(t) = 0, and x 0 is a stochastic

More information

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Time-varying Systems ẋ = f(t,x) f(t,x) is piecewise continuous in t and locally Lipschitz in x for all t 0 and all x D, (0 D). The origin

More information