Approximation of Continuous Functions

Size: px
Start display at page:

Download "Approximation of Continuous Functions"

Transcription

1 Approximation of Continuous Functions Francis J. Narcowich October Modulus of Continuit Recall that ever function continuous on a closed interval < a x b < is uniforml continuous: For ever ɛ > 0, there is a δ > 0 such that f(x f( < ɛ (1.1 as long as x, [a, b] satisf x < δ. This differs from the definition of continuit at a single point in that δ is independent of, and depends onl on ε. Let s turn around the roles of ε and δ. In uniform continuit, we start with ε and look for δ. What we want to do now, is start with δ and, essentiall, find ε. With this in mind we make the following definition 1 Definition 1.1. The modulus of continuit for f C[0, 1] and δ > 0 is defined to be ω(f, δ = sup{ f(x f( : x δ, x, [0, 1]}. (1.2 Example 1.2. Let f(x = x, 0 x 1. Show that ω(f, δ C δ. Proof. Let 0 < x < 1. We note that 0 < x = x x + = x ( x + x = x x δ 1 x 1 + x 1 + x = x 1 x 1 + x 1 From now on, without loss of generalit, we will work with the closed interval [0, 1]. 1

2 Hence, ω(f, δ δ. To get equalit, take x = 0 and = δ. Example 1.3. Suppose that f C (1 [0, 1]. Show that ω(f, δ f δ. Proof. Because f C (1, we can estimate f(t f(s this wa: f(t f(s t which immediatel gives ω(f, δ δ f. s f (x dx (t s f δ f, (1.3 2 Approximation with Linear Splines One ver effective wa to approximate a continuous function f C[0, 1], given a finite set of points in {x } [0, 1] and values {f(x } at these points, is to use a connect-the-dots approach. The idea is to form a piecewiselinear, continuous function b oining neighboring points (x, f(x and (x +1, f(x +1 with a straight line. This procedure results in a linear spline. Linear splines are used for generating plots in man standard programs, such as Matlab or Mathematica. Defining a space of linear splines starts with sequence of points (or partition of [0, 1] = {x 0 = 0 < x 1 < x 2 < < x n = 1}, which is called a knot sequence. Linear splines on [0, 1] with knot sequence are the set of all piecewise linear functions that are continuous on [0, 1] and that (possibl have corners at the knots, but nowhere else. As described above, we can interpolate continuous functions using linear splines: Let f C[0, 1] and let = f(x. The linear spline s f (x is constructed b oining pairs of points (x, and (x +1, +1 with straight lines. The resulting spline is the unique and satisfies s f (x =. The result below gives an estimate of the error made b replacing f b s f. Proposition 2.1. Let f C[0, 1] and let = {x 0 = 0 < x 1 < < x n = 1} be a knot sequence with norm = max x x +1, = 0,..., n 1. If s f is the linear spline that interpolates f at the x s, then, f s f ω(f,. (2.1 Proof. Consider the interval I = [x, x +1 ]. We have on I that s f (x is a line oining (x, f(x and (x +1, f(x +1 ; it has the form s f (x = x +1 x f(x + x x f(x +1 2

3 Also, note that we have x +1 x + x x = 1. Using these equations, we see that f(x s f (x for an x [x, x +1 ] can be written as f(x s f (x = f(x ( x +1 x + x x sf (x = (f(x f(x x +1 x x x + (f(x f(x +1. B the definition of the modulus of continuit, f(x f( ω(f, δ for an x, such that x δ. If we set δ = x +1 x, then we see that on the interval I we have f(x s f (x (f(x f(x x +1 x + f(x f(x +1 x t ( x+1 x + x x ω(f, δ = ω(f, δ. Because the modulus of continuit is non decreasing (exercise 5.2(c and δ, we have ω(f, δ ω(f,. Consequentl, f(x s f (x ω(f,, uniforml in x. Taking the supremum on the right side of this inequalit then ields ( The Weierstrass Approximation Theorem The completeness of various sets of orthogonal polnomials relies on being able to uniforml approximate continuous functions b polnomials. The Weierstrass Approximation Theorem does exactl that. The proof that we will give here follows the one Sergei Bernstein gave in The proof is not the slickest, but it does introduce a number of important things. Here is the statement. Theorem 3.1 (Weierstrass Approximation Theorem. Let f C[0, 1]. Then, for ever ε > 0 we can find a polnomial p such that f p C[0,1] < ε. 3

4 3.1 Bernstein polnomials Let n be a positive integer. The binomial theorem states that (x + n = x n. We define the Bernstein polnomial using the terms in the n ( n expansion with = 1 x: β,n (x := ( n x (1 x n. (3.1 Proposition 3.2. The Bernstein polnomials {β,n } n form a basis for P n, the space of polnomials of degree n or less. Proof. The dimension of P n is n + 1. Since there are n + 1 Bernstein polnomials, we need onl show that the span P n. We will show that 1, x are in the span of the Bernstein polnomials, and leave x 2,..., x n as an exercise. To get 1, set = 1 x in the binomial expansion we get (x + 1 x n = n ( n x (1 x n, so that 1 = n β,n(x. For x, we take the partial derivative of (x + n with respect to x to get n(x + n 1 = n =1 ( n x 1 n. Multipling this b x, setting = 1 x and dividing b n, we obtain x = n =1 n β,n(x. The others are obtained similarl. We will need several identities involving the Bernstein polnomials, which we now list. The last two identities start the sum at = 0, rather than = 1. 1 = β,n (x x = 1 n x + (1 1 n x2 = n β,n(x 2 n 2 β,n(x. 3.2 Proof of the Weierstrass Approximation Theorem (3.2 All of the Bernstein polnomials are positive, except at 0 and 1, where the are 0. When n is ver large, the Bernstein polnomial β,n is highl peaked near its maximum at x = /n. That is, a small distance awa from /n, the polnomial β,n is itself quite small. With this in mind, if f C[0, 1], define the polnomial f n (x := f(/nβ,n (x P n. 4

5 The idea here is that near each point /n the main contribution to the sum of Bernstein polnomials making up f n should come from the term f(/nβ,n (x, so f n should be a good approximation to f. Proof. (Weierstrass Approximation Theorem Choose n large; let δ > 0. Using the first identit in (3.2, we have f(x = f(x 1 = n f(xβ,n(x. Thus the difference between f and f n is E n (x := f(x f n (x = (f(x f(/nβ,n (x. We want to show that, for sufficientl large n, E n C[0,1] < ε. Fix x. We are now going to break the sum into two parts. The first will be all those for which x /n δ. This is F n below. The second, G n consists of all remaining s namel, all such that x /n > δ. Carring this out breaks E n into the sum E n = F n + G n, where F n (x = (f(x f(/nβ,n (x (3.3 G n (x = x /n δ x /n >δ (f(x f(/nβ,n (x. (3.4 Using the triangle inequalit on the sum in F n ields F n (x f(x f(/n β,n (x. x /n δ Because x /n δ, we also have f(x f(/n ω(f, δ. Consequentl, ( F n (x x /n δ ( β,n (x ω(f, δ β,n (x ω(f, δ. Using the first identit in (3.2 in the inequalit above ields this: F n (x ω(f, δ. (3.5 Estimating G n requires more care. We will treat the case in which x > /n; the other case is similar. The idea is to think of δ as a unit of measure like inches or centimeters. Then there will be a smallest k such that x will be between kδ and (k + 1δ units from /n. More precisel, let k be the 5

6 smallest integer such that kδ < x /n (k + 1δ. Write f(x f(/n this wa: f(x f( n = [ f(x f( n + kδ] + [ f( n + kδ] f( n + (k 1δ] + = [ f(x f( n + kδ] + + [ f( n + δ f(/n] k 1 m=0 [ f( n + (k mδ f( n + (k m 1δ] Since n + (m + 1δ n mδ = δ, for m = 1,..., k 1 each term satisfies f( n + mδ f( n + (m + 1δ ω(f, δ. Also, because and x n kδ δ, the first term satisfies f(x f( n + kδ ω(f, δ. There are k + 1 terms in the sum, so f(x f( n (k + 1ω(f, δ. Since kδ < x /n, we have (k + 1δ < 1 + (x /n/δ. As we mentioned earlier, a similar argument will give (k + 1δ < 1 + x /n /δ; consequentl, in either case we have f(x f(/n (k + 1ω(f, δ ( 1 + x n /δ ω(f, δ. What we do next is use a trick that will help us to get an explicit bound on G n (x. The trick is to note that, since kδ < x /n, we have x /n 1, and we thus also have x /n δ inequalit results in f(x f(/n < (1 + δ > < x /n 2 δ 2. Using this in the previous x /n 2 δ 2 ω(f, δ. (3.6 While we derived this for /n > x, essentiall the same argument holds for /n < x. Thus (3.6 holds for both cases. Using the triangle inequalit on the sum in (3.4 and bounding each term b (3.6, we obtain ( G n (x < (1 + ( < x /n 2 δ 2 β,n (x ω(f, δ ( 1 + x 2 δ 2 2x δ 2 n + 2 β,n δ 2 n 2 (x ω(f, δ (3.7 Using the three identities in (3.2 allows us to do all of the sums in (3.7. The result, after a little algebra, is G n (x < ( 1 + x x2 δ 2 n ω(f, δ. Since the maximum of x x 2 over [0, 1] is 1/4; consequentl, G n (x < ( nδ 2 ω(f, δ. (3.8 6

7 Combining (3.5, (3.8 and E n (x = F n (x + G n (x F n (x + G n (x ields E n (x < ( nδ 2 ω(f, δ. (3.9 The parameter δ > 0 is free for us to choose. Take it to be δ = n 1/2. With this choice we arrive at f(x f n (x = E n (x < 9 4 ω(f, n 1/2. (3.10 Taking the maximum of f(x f n (x over x [0, 1] gives us f f n < 9 4 ω(f, n 1/2. Choosing n so large that 9 4 ω(f, n 1/2 < ε then completes the proof. Previous: orthonormal sets and expansions Next: pointwise convergence of Fourier series 7

Polynomial approximation and Splines

Polynomial approximation and Splines Polnomial approimation and Splines 1. Weierstrass approimation theorem The basic question we ll look at toda is how to approimate a complicated function f() with a simpler function P () f() P () for eample,

More information

Math 328 Course Notes

Math 328 Course Notes Math 328 Course Notes Ian Robertson March 3, 2006 3 Properties of C[0, 1]: Sup-norm and Completeness In this chapter we are going to examine the vector space of all continuous functions defined on the

More information

A. Derivation of regularized ERM duality

A. Derivation of regularized ERM duality A. Derivation of regularized ERM dualit For completeness, in this section we derive the dual 5 to the problem of computing proximal operator for the ERM objective 3. We can rewrite the primal problem as

More information

6. This sum can be rewritten as 4( ). We then recall the formula n =

6. This sum can be rewritten as 4( ). We then recall the formula n = . c = 9b = 3 b = 3 a 3 = a = = 6.. (3,, ) = 3 + + 3 = 9 + + 3 = 6 6. 3. We see that this is equal to. 3 = ( +.) 3. Using the fact that (x + ) 3 = x 3 + 3x + 3x + and replacing x with., we find that. 3

More information

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION . Limits at Infinit; End Behavior of a Function 89. LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION Up to now we have been concerned with its that describe the behavior of a function f) as approaches some

More information

4 Inverse function theorem

4 Inverse function theorem Tel Aviv Universit, 2013/14 Analsis-III,IV 53 4 Inverse function theorem 4a What is the problem................ 53 4b Simple observations before the theorem..... 54 4c The theorem.....................

More information

Most Continuous Functions are Nowhere Differentiable

Most Continuous Functions are Nowhere Differentiable Most Continuous Functions are Nowhere Differentiable Spring 2004 The Space of Continuous Functions Let K = [0, 1] and let C(K) be the set of all continuous functions f : K R. Definition 1 For f C(K) we

More information

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L 2 Limits and Continuous Functions 2.2 Introduction to Limits We first interpret limits loosel. We write lim f() = L and sa the limit of f() as approaches c, equals L if we can make the values of f() arbitraril

More information

MATH 5640: Fourier Series

MATH 5640: Fourier Series MATH 564: Fourier Series Hung Phan, UMass Lowell September, 8 Power Series A power series in the variable x is a series of the form a + a x + a x + = where the coefficients a, a,... are real or complex

More information

Interpolation. 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter

Interpolation. 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter Key References: Interpolation 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter 6. 2. Press, W. et. al. Numerical Recipes in C, Cambridge: Cambridge University Press. Chapter 3

More information

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y).

Autonomous Equations / Stability of Equilibrium Solutions. y = f (y). Autonomous Equations / Stabilit of Equilibrium Solutions First order autonomous equations, Equilibrium solutions, Stabilit, Longterm behavior of solutions, direction fields, Population dnamics and logistic

More information

VECTORS IN THREE DIMENSIONS

VECTORS IN THREE DIMENSIONS 1 CHAPTER 2. BASIC TRIGONOMETRY 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW VECTORS IN THREE DIMENSIONS 1 Vectors in Two Dimensions A vector is an object which has magnitude

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS )

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER : Limits and continuit of functions in R n. -. Sketch the following subsets of R. Sketch their boundar and the interior. Stud

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module 1 11 Order of Operations 16 Signed Numbers 1 Factorization of Integers 17 Further Signed Numbers 13 Fractions 18 Power Laws 14 Fractions and Decimals 19 Introduction to Algebra

More information

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y Paul J. Bruillard MATH 0.970 Problem Set 6 An Introduction to Abstract Mathematics R. Bond and W. Keane Section 3.1: 3b,c,e,i, 4bd, 6, 9, 15, 16, 18c,e, 19a, 0, 1b Section 3.: 1f,i, e, 6, 1e,f,h, 13e,

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part I NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Comple Analsis II Lecture Notes Part I Chapter 1 Preliminar results/review of Comple Analsis I These are more detailed notes for the results

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n ANALYSIS QUALIFYING EXAM FALL 206: SOLUTIONS Problem. Let m be Lebesgue measure on R. For a subset E R and r (0, ), define E r = { x R: dist(x, E) < r}. Let E R be compact. Prove that m(e) = lim m(e /n).

More information

3.2 Differentiability; Tangent planes; differentials

3.2 Differentiability; Tangent planes; differentials 4 Chapter 3 Draft October 23, 2009 3.2 Differentiabilit; Tangent planes; differentials Overview: In this section, differentiabilit is defined in terms of linear approximation. A function is differentiable

More information

Tensor products in Riesz space theory

Tensor products in Riesz space theory Tensor products in Riesz space theor Jan van Waaij Master thesis defended on Jul 16, 2013 Thesis advisors dr. O.W. van Gaans dr. M.F.E. de Jeu Mathematical Institute, Universit of Leiden CONTENTS 2 Contents

More information

Lecture 7. The Cluster Expansion Lemma

Lecture 7. The Cluster Expansion Lemma Stanford Universit Spring 206 Math 233: Non-constructive methods in combinatorics Instructor: Jan Vondrák Lecture date: Apr 3, 206 Scribe: Erik Bates Lecture 7. The Cluster Expansion Lemma We have seen

More information

be the set of complex valued 2π-periodic functions f on R such that

be the set of complex valued 2π-periodic functions f on R such that . Fourier series. Definition.. Given a real number P, we say a complex valued function f on R is P -periodic if f(x + P ) f(x) for all x R. We let be the set of complex valued -periodic functions f on

More information

11.4 Polar Coordinates

11.4 Polar Coordinates 11. Polar Coordinates 917 11. Polar Coordinates In Section 1.1, we introduced the Cartesian coordinates of a point in the plane as a means of assigning ordered pairs of numbers to points in the plane.

More information

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A).

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A). Math 344 Lecture #19 3.5 Normed Linear Spaces Definition 3.5.1. A seminorm on a vector space V over F is a map : V R that for all x, y V and for all α F satisfies (i) x 0 (positivity), (ii) αx = α x (scale

More information

MA123, Chapter 1: Equations, functions and graphs (pp. 1-15)

MA123, Chapter 1: Equations, functions and graphs (pp. 1-15) MA123, Chapter 1: Equations, functions and graphs (pp. 1-15) Date: Chapter Goals: Identif solutions to an equation. Solve an equation for one variable in terms of another. What is a function? Understand

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Graphs of Factored Polnomials page Sample Problems. Plot the graph of f () = ( + ) ( ).. Plot the graph of f () = ( ) ( + ) ( ) ( ) (6 ) ( + ). Practice Problems Plot the graph of each of

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 2 November 6 November Deadline to hand in the homeworks: your exercise class on week 9 November 13 November Exercises (1) Let X be the following space of piecewise

More information

6. Linear transformations. Consider the function. f : R 2 R 2 which sends (x, y) (x, y)

6. Linear transformations. Consider the function. f : R 2 R 2 which sends (x, y) (x, y) Consider the function 6 Linear transformations f : R 2 R 2 which sends (x, ) (, x) This is an example of a linear transformation Before we get into the definition of a linear transformation, let s investigate

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

2 Ordinary Differential Equations: Initial Value Problems

2 Ordinary Differential Equations: Initial Value Problems Ordinar Differential Equations: Initial Value Problems Read sections 9., (9. for information), 9.3, 9.3., 9.3. (up to p. 396), 9.3.6. Review questions 9.3, 9.4, 9.8, 9.9, 9.4 9.6.. Two Examples.. Foxes

More information

A.5. Complex Numbers AP-12. The Development of the Real Numbers

A.5. Complex Numbers AP-12. The Development of the Real Numbers AP- A.5 Comple Numbers Comple numbers are epressions of the form a + ib, where a and b are real numbers and i is a smbol for -. Unfortunatel, the words real and imaginar have connotations that somehow

More information

QUADRATIC FUNCTION REVIEW

QUADRATIC FUNCTION REVIEW Name: Date: QUADRATIC FUNCTION REVIEW Linear and eponential functions are used throughout mathematics and science due to their simplicit and applicabilit. Quadratic functions comprise another ver important

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Discontinuous Galerkin method for a class of elliptic multi-scale problems

Discontinuous Galerkin method for a class of elliptic multi-scale problems INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 000; 00: 6 [Version: 00/09/8 v.0] Discontinuous Galerkin method for a class of elliptic multi-scale problems Ling Yuan

More information

Hilbert Spaces. Contents

Hilbert Spaces. Contents Hilbert Spaces Contents 1 Introducing Hilbert Spaces 1 1.1 Basic definitions........................... 1 1.2 Results about norms and inner products.............. 3 1.3 Banach and Hilbert spaces......................

More information

On the NP-Hardness of Bounded Distance Decoding of Reed-Solomon Codes

On the NP-Hardness of Bounded Distance Decoding of Reed-Solomon Codes On the NP-Hardness of Bounded Distance Decoding of Reed-Solomon Codes Venkata Gandikota Purdue Universit Badih Ghazi MIT Elena Grigorescu Purdue Universit Abstract Guruswami and Vard (IEEE Trans. Inf.

More information

PROBLEM SET 6. E [w] = 1 2 D. is the smallest for w = u, where u is the solution of the Neumann problem. u = 0 in D u = h (x) on D,

PROBLEM SET 6. E [w] = 1 2 D. is the smallest for w = u, where u is the solution of the Neumann problem. u = 0 in D u = h (x) on D, PROBLEM SET 6 UE ATE: - APR 25 Chap 7, 9. Questions are either directl from the text or a small variation of a problem in the text. Collaboration is oka, but final submission must be written individuall.

More information

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph.

5. Zeros. We deduce that the graph crosses the x-axis at the points x = 0, 1, 2 and 4, and nowhere else. And that s exactly what we see in the graph. . Zeros Eample 1. At the right we have drawn the graph of the polnomial = ( 1) ( 2) ( 4). Argue that the form of the algebraic formula allows ou to see right awa where the graph is above the -ais, where

More information

MAT389 Fall 2016, Problem Set 2

MAT389 Fall 2016, Problem Set 2 MAT389 Fall 2016, Problem Set 2 Circles in the Riemann sphere Recall that the Riemann sphere is defined as the set Let P be the plane defined b Σ = { (a, b, c) R 3 a 2 + b 2 + c 2 = 1 } P = { (a, b, c)

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define

HILBERT SPACES AND THE RADON-NIKODYM THEOREM. where the bar in the first equation denotes complex conjugation. In either case, for any x V define HILBERT SPACES AND THE RADON-NIKODYM THEOREM STEVEN P. LALLEY 1. DEFINITIONS Definition 1. A real inner product space is a real vector space V together with a symmetric, bilinear, positive-definite mapping,

More information

0.1 Pointwise Convergence

0.1 Pointwise Convergence 2 General Notation 0.1 Pointwise Convergence Let {f k } k N be a sequence of functions on a set X, either complex-valued or extended real-valued. We say that f k converges pointwise to a function f if

More information

The Inverse Function Theorem

The Inverse Function Theorem Inerse Function Theorem April, 3 The Inerse Function Theorem Suppose and Y are Banach spaces and f : Y is C (continuousl differentiable) Under what circumstances does a (local) inerse f exist? In the simplest

More information

Functional Analysis HW #5

Functional Analysis HW #5 Functional Analysis HW #5 Sangchul Lee October 29, 2015 Contents 1 Solutions........................................ 1 1 Solutions Exercise 3.4. Show that C([0, 1]) is not a Hilbert space, that is, there

More information

You don't have to be a mathematician to have a feel for numbers. John Forbes Nash, Jr.

You don't have to be a mathematician to have a feel for numbers. John Forbes Nash, Jr. Course Title: Real Analsis Course Code: MTH3 Course instructor: Dr. Atiq ur Rehman Class: MSc-II Course URL: www.mathcit.org/atiq/fa5-mth3 You don't have to be a mathematician to have a feel for numbers.

More information

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES PHILIP GADDY Abstract. Throughout the course of this paper, we will first prove the Stone- Weierstrass Theroem, after providing some initial

More information

Heat-diffusion maximal operators for Laguerre semigroups with negative parameters

Heat-diffusion maximal operators for Laguerre semigroups with negative parameters Journal of Functional Analsis 9 5 3 36 www.elsevier.com/locate/jfa Heat-diffusion maximal operators for Laguerre semigroups with negative parameters R. Macías a,,c.segovia b,, J.L. Torrea c, a IMAL-FIQ,

More information

Bounded uniformly continuous functions

Bounded uniformly continuous functions Bounded uniformly continuous functions Objectives. To study the basic properties of the C -algebra of the bounded uniformly continuous functions on some metric space. Requirements. Basic concepts of analysis:

More information

2.5 CONTINUITY. a x. Notice that Definition l implicitly requires three things if f is continuous at a:

2.5 CONTINUITY. a x. Notice that Definition l implicitly requires three things if f is continuous at a: SECTION.5 CONTINUITY 9.5 CONTINUITY We noticed in Section.3 that the it of a function as approaches a can often be found simpl b calculating the value of the function at a. Functions with this propert

More information

Introduction to Fourier Analysis

Introduction to Fourier Analysis Lecture Introduction to Fourier Analysis Jan 7, 2005 Lecturer: Nati Linial Notes: Atri Rudra & Ashish Sabharwal. ext he main text for the first part of this course would be. W. Körner, Fourier Analysis

More information

Bases in Banach spaces

Bases in Banach spaces Chapter 3 Bases in Banach spaces Like every vector space a Banach space X admits an algebraic or Hamel basis, i.e. a subset B X, so that every x X is in a unique way the (finite) linear combination of

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Having completed our study of Lebesgue measure, we are now ready to consider the Lebesgue integral. Before diving into the details of its construction, though, we would like to give

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

Interpolation Theory

Interpolation Theory Numerical Analysis Massoud Malek Interpolation Theory The concept of interpolation is to select a function P (x) from a given class of functions in such a way that the graph of y P (x) passes through the

More information

Exercise 11. Isao Sasano

Exercise 11. Isao Sasano Exercise Isao Sasano Exercise Calculate the value of the following series by using the Parseval s equality for the Fourier series of f(x) x on the range [, π] following the steps ()-(5). () Calculate the

More information

2.5. Infinite Limits and Vertical Asymptotes. Infinite Limits

2.5. Infinite Limits and Vertical Asymptotes. Infinite Limits . Infinite Limits and Vertical Asmptotes. Infinite Limits and Vertical Asmptotes In this section we etend the concept of it to infinite its, which are not its as before, but rather an entirel new use of

More information

Iowa State University. Instructor: Alex Roitershtein Summer Exam #1. Solutions. x u = 2 x v

Iowa State University. Instructor: Alex Roitershtein Summer Exam #1. Solutions. x u = 2 x v Math 501 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 015 Exam #1 Solutions This is a take-home examination. The exam includes 8 questions.

More information

Math 61CM - Solutions to homework 6

Math 61CM - Solutions to homework 6 Math 61CM - Solutions to homework 6 Cédric De Groote November 5 th, 2018 Problem 1: (i) Give an example of a metric space X such that not all Cauchy sequences in X are convergent. (ii) Let X be a metric

More information

Expansion formula using properties of dot product (analogous to FOIL in algebra): u v 2 u v u v u u 2u v v v u 2 2u v v 2

Expansion formula using properties of dot product (analogous to FOIL in algebra): u v 2 u v u v u u 2u v v v u 2 2u v v 2 Least squares: Mathematical theory Below we provide the "vector space" formulation, and solution, of the least squares prolem. While not strictly necessary until we ring in the machinery of matrix algera,

More information

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x 5A galler of graphs Objectives To recognise the rules of a number of common algebraic relations: = = = (rectangular hperbola) + = (circle). To be able to sketch the graphs of these relations. To be able

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Re(z) = a, For example, 3 + 2i = = 13. The complex conjugate (or simply conjugate") of z = a + bi is the number z defined by

Re(z) = a, For example, 3 + 2i = = 13. The complex conjugate (or simply conjugate) of z = a + bi is the number z defined by F COMPLEX NUMBERS In this appendi, we review the basic properties of comple numbers. A comple number is a number z of the form z = a + bi where a,b are real numbers and i represents a number whose square

More information

Cubic Splines; Bézier Curves

Cubic Splines; Bézier Curves Cubic Splines; Bézier Curves 1 Cubic Splines piecewise approximation with cubic polynomials conditions on the coefficients of the splines 2 Bézier Curves computer-aided design and manufacturing MCS 471

More information

1 Greedy Graph Algorithms

1 Greedy Graph Algorithms +//+ Algorithms & Data Structures (DL) Exam of 7 December 5 Instructions: This is a multiple-choice exam, to save ou the time of tiding up the presentation of our answers. There is exactl one correct answer

More information

INTRODUCTION TO DIOPHANTINE EQUATIONS

INTRODUCTION TO DIOPHANTINE EQUATIONS INTRODUCTION TO DIOPHANTINE EQUATIONS In the earl 20th centur, Thue made an important breakthrough in the stud of diophantine equations. His proof is one of the first eamples of the polnomial method. His

More information

Symmetry Arguments and the Role They Play in Using Gauss Law

Symmetry Arguments and the Role They Play in Using Gauss Law Smmetr Arguments and the Role The la in Using Gauss Law K. M. Westerberg (9/2005) Smmetr plas a ver important role in science in general, and phsics in particular. Arguments based on smmetr can often simplif

More information

1.6 CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL, AND INVERSE FUNCTIONS

1.6 CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL, AND INVERSE FUNCTIONS .6 Continuit of Trigonometric, Eponential, and Inverse Functions.6 CONTINUITY OF TRIGONOMETRIC, EXPONENTIAL, AND INVERSE FUNCTIONS In this section we will discuss the continuit properties of trigonometric

More information

Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering Mathematical Methods for Physics and Engineering Lecture notes for PDEs Sergei V. Shabanov Department of Mathematics, University of Florida, Gainesville, FL 32611 USA CHAPTER 1 The integration theory

More information

4. Product measure spaces and the Lebesgue integral in R n.

4. Product measure spaces and the Lebesgue integral in R n. 4 M. M. PELOSO 4. Product measure spaces and the Lebesgue integral in R n. Our current goal is to define the Lebesgue measure on the higher-dimensional eucledean space R n, and to reduce the computations

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

Notes on Convexity. Roy Radner Stern School, NYU. September 11, 2006

Notes on Convexity. Roy Radner Stern School, NYU. September 11, 2006 Notes on Convexit Ro Radner Stern School, NYU September, 2006 Abstract These notes are intended to complement the material in an intermediate microeconomic theor course. In particular, the provide a rigorous

More information

Introduction to Vector Spaces Linear Algebra, Spring 2011

Introduction to Vector Spaces Linear Algebra, Spring 2011 Introduction to Vector Spaces Linear Algebra, Spring 2011 You probabl have heard the word vector before, perhaps in the contet of Calculus III or phsics. You probabl think of a vector like this: 5 3 or

More information

Riemann s explicit formula

Riemann s explicit formula Garrett 09-09-20 Continuing to review the simple case (haha!) of number theor over Z: Another example of the possibl-suprising application of othe things to number theor. Riemann s explicit formula More

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

Function Space and Convergence Types

Function Space and Convergence Types Function Space and Convergence Types PHYS 500 - Southern Illinois University November 1, 2016 PHYS 500 - Southern Illinois University Function Space and Convergence Types November 1, 2016 1 / 7 Recall

More information

R N Completeness and Compactness 1

R N Completeness and Compactness 1 John Nachbar Washington University in St. Louis October 3, 2017 R N Completeness and Compactness 1 1 Completeness in R. As a preliminary step, I first record the following compactness-like theorem about

More information

1 Orthonormal sets in Hilbert space

1 Orthonormal sets in Hilbert space Math 857 Fall 15 1 Orthonormal sets in Hilbert space Let S H. We denote by [S] the span of S, i.e., the set of all linear combinations of elements from S. A set {u α : α A} is called orthonormal, if u

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions Economics 24 Fall 211 Problem Set 2 Suggested Solutions 1. Determine whether the following sets are open, closed, both or neither under the topology induced by the usual metric. (Hint: think about limit

More information

p-adic Analysis Compared to Real Lecture 1

p-adic Analysis Compared to Real Lecture 1 p-adic Analysis Compared to Real Lecture 1 Felix Hensel, Waltraud Lederle, Simone Montemezzani October 12, 2011 1 Normed Fields & non-archimedean Norms Definition 1.1. A metric on a non-empty set X is

More information

MATRIX TRANSFORMATIONS

MATRIX TRANSFORMATIONS CHAPTER 5. MATRIX TRANSFORMATIONS INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRIX TRANSFORMATIONS Matri Transformations Definition Let A and B be sets. A function f : A B

More information

Math General Topology Fall 2012 Homework 11 Solutions

Math General Topology Fall 2012 Homework 11 Solutions Math 535 - General Topology Fall 2012 Homework 11 Solutions Problem 1. Let X be a topological space. a. Show that the following properties of a subset A X are equivalent. 1. The closure of A in X has empty

More information

arxiv: v3 [math.cv] 7 Jul 2015

arxiv: v3 [math.cv] 7 Jul 2015 UDC 57.5 S.О. Chaicheno (Donbass State Pedagogical Universit, Slavans, Uraine) CONVERGENCE OF FOURIER SERIES ON THE SYSTEM OF RATIONAL FUNCTIONS ON THE REAL AXIS arxiv:57.994v3 [math.cv 7 Jul 5 We consider

More information

LECTURE NOTES IN EQUIVARIANT ALGEBRAIC GEOMETRY. Spec k = (G G) G G (G G) G G G G i 1 G e

LECTURE NOTES IN EQUIVARIANT ALGEBRAIC GEOMETRY. Spec k = (G G) G G (G G) G G G G i 1 G e LECTURE NOTES IN EQUIVARIANT ALEBRAIC EOMETRY 8/4/5 Let k be field, not necessaril algebraicall closed. Definition: An algebraic group is a k-scheme together with morphisms (µ, i, e), k µ, i, Spec k, which

More information

Review Topics for MATH 1400 Elements of Calculus Table of Contents

Review Topics for MATH 1400 Elements of Calculus Table of Contents Math 1400 - Mano Table of Contents - Review - page 1 of 2 Review Topics for MATH 1400 Elements of Calculus Table of Contents MATH 1400 Elements of Calculus is one of the Marquette Core Courses for Mathematical

More information

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1 Math 8B Solutions Charles Martin March 6, Homework Problems. Let (X i, d i ), i n, be finitely many metric spaces. Construct a metric on the product space X = X X n. Proof. Denote points in X as x = (x,

More information

2.1 Rates of Change and Limits AP Calculus

2.1 Rates of Change and Limits AP Calculus .1 Rates of Change and Limits AP Calculus.1 RATES OF CHANGE AND LIMITS Limits Limits are what separate Calculus from pre calculus. Using a it is also the foundational principle behind the two most important

More information

Marcinkiewicz Interpolation Theorem by Daniel Baczkowski

Marcinkiewicz Interpolation Theorem by Daniel Baczkowski 1 Introduction Marcinkiewicz Interpolation Theorem b Daniel Baczkowski Let (, µ be a measure space. Let M denote the collection of all extended real valued µ-measurable functions on. Also, let M denote

More information

Problem Set 5: Solutions Math 201A: Fall 2016

Problem Set 5: Solutions Math 201A: Fall 2016 Problem Set 5: s Math 21A: Fall 216 Problem 1. Define f : [1, ) [1, ) by f(x) = x + 1/x. Show that f(x) f(y) < x y for all x, y [1, ) with x y, but f has no fixed point. Why doesn t this example contradict

More information

Notes on the Lebesgue Integral by Francis J. Narcowich Septemmber, 2014

Notes on the Lebesgue Integral by Francis J. Narcowich Septemmber, 2014 1 Introduction Notes on the Lebesgue Integral by Francis J. Narcowich Septemmber, 2014 In the definition of the Riemann integral of a function f(x), the x-axis is partitioned and the integral is defined

More information

SEPARABLE EQUATIONS 2.2

SEPARABLE EQUATIONS 2.2 46 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 4. Chemical Reactions When certain kinds of chemicals are combined, the rate at which the new compound is formed is modeled b the autonomous differential equation

More information

The Lebesgue Integral

The Lebesgue Integral The Lebesgue Integral Brent Nelson In these notes we give an introduction to the Lebesgue integral, assuming only a knowledge of metric spaces and the iemann integral. For more details see [1, Chapters

More information

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote Real Variables, Fall 4 Problem set 4 Solution suggestions Exercise. Let f be of bounded variation on [a, b]. Show that for each c (a, b), lim x c f(x) and lim x c f(x) exist. Prove that a monotone function

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

3 Orthogonality and Fourier series

3 Orthogonality and Fourier series 3 Orthogonality and Fourier series We now turn to the concept of orthogonality which is a key concept in inner product spaces and Hilbert spaces. We start with some basic definitions. Definition 3.1. Let

More information

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations Ch 3 Alg Note Sheet.doc 3.1 Graphing Sstems of Equations Sstems of Linear Equations A sstem of equations is a set of two or more equations that use the same variables. If the graph of each equation =.4

More information

Section 1.5 Formal definitions of limits

Section 1.5 Formal definitions of limits Section.5 Formal definitions of limits (3/908) Overview: The definitions of the various tpes of limits in previous sections involve phrases such as arbitraril close, sufficientl close, arbitraril large,

More information

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx.

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx. Math 321 Final Examination April 1995 Notation used in this exam: N 1 π (1) S N (f,x) = f(t)e int dt e inx. 2π n= N π (2) C(X, R) is the space of bounded real-valued functions on the metric space X, equipped

More information