Modeling of Wire EDM slicing process for Silicon

Size: px
Start display at page:

Download "Modeling of Wire EDM slicing process for Silicon"

Transcription

1 Modeling of Wire EDM slicing process for Silicon Kamlesh Joshi 1, Gaurav Sharma 2, Ganesh Dongre 3, Suhas S. Joshi 4* 1,2,3,4 Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, joshi.kamleshmt@gmail.com, 2 gsharma993@gmail.com, 3 dongreganesh1978@gmail.com, 4* ssjoshi@iitb.ac.in Abstract Wire-EDM is an emerging technology for Si ingot slicing with minimum kerf- loss and crack-free surface. In this work, a mathematical model has been developed using dielectric-ingot material properties, heat transfer equations and steady state heat source characteristics to predict temperature profile, melt radius and erosion rate for the ingot and its dependence on voltage, current, wire diameter and pulse on-time have been considered. Modeling of plasma for different phases like ignition phase, heating phase and removal phase has been done and the concept of mean free path (MFP) of electron is used to obtain the temperature profile at plasma-anode interface. The erosion rate predicted using the model has been found to be greater than experimental values. However, with a consideration of plasma flushing efficiency, corrected erosion rate matched well with experimental values. Keywords:Kerf-loss, mean free path, melt radius, erosion rate 1 Introduction Silicon wafers are the most commonly used substrate materials for the production ofmicroelectronic components[1]. Wire EDM process has been used to cut silicon ingots. The process does not apply any cutting force on ingots unlike ID saw and wire saw,and gives highly finished, crack-free surface, irrespective of the size of the ingot [2]. A lot of work has been done to model the conventional EDM process. Jilani and Pandey[4] studied the effect of EDM input parameters, such as pulse duration, pulseenergy and material properties on metal removal and melt shape using a two-dimensional heat transfer model. Singh and Ghosh[5]showed thedifference in material removal in EDM due to short and long pulses and calculated the melt depth. In case of wire-edm, Banerjee [6] developed a modelto prevent wire breakage. Luo [7]evaluated the energy distribution of high-speed WEDM as a function of wire speed, wire diameter, and cutting width to obtain machining conditions for high-speed cutting. Saha [8] used an FEA based approach to model the heat distribution along the wire cross section to identify the parameters responsible for wire breakage. Dhanik and Joshi [9] formulated a comprehensive plasma model for a single electro spark in micro-edm. Das and Joshi [10] developed a model for wire temperature distribution using the clustered sparks. In the present model, various parameters like wire diameter, power supplied, properties of ingot, plasma characteristics and pulse on-time have been used in the evaluation of temperature distribution of ingot, melt radius and consequently the erosion rates for ingot. At present there is no such model that incorporates all these attributes. 2 Modeling The erosion in wire-edm is caused due to sparks generated between wire and work-piece while conversion of dielectric into a ionized gas of high temperature. The spark generation can be divided into three stages namely ignition or breakdown phase, heating phase and removal phase. During ignition phase a strong electric field is generated at the micro-peak of the cathode surface due to presence of electrons and ions. Collision of liquid particles in the inter-electrode gap with the emitted electrons results in heating and formation of a micro-vapor bubble at the micro-peaks surface. The further expansion of the bubble leads to breakdown and formation of a sustainable spark [17]. While in heating phase heating of cathode and anode surface takes place by the fraction of energy transferred from plasma. In the subsequent phase, material removal takes place by electro-thermal [4, 18] or electromechanical mechanisms [19]. At the end of the pulseon-time, the vapor bubble implodes suddenly and ejects debris particle. In this section, a plasma model is developed considering the variation of thermo-physical property of de-ionized water at high temperature and heat input to anode is calculated via plasma-sheath analysis. 2.1 Modeling of breakdown phase In wire-edm, the pulse on-time is usually of the order of µs, in which, the breakdown phase duration is of the order of around 200 ns,so 309-1

2 Modeling of Wire EDM slicing process for Silicon accurate calculations of breakdown phaseis an important aspect. As mentioned before, this phase comprises of thermal heating of liquid at the asperities (micro-peaks) and the growth of bubble to form a vapor bubble at micro-peaks. The plasma channel development occurs followed by three stages namely pre-breakdown phase, nucleation phase and bubble growth phase. In pre-breakdown phase emission of electrons from cathode starts and forms the pre-breakdown current j. In nucleation phase, nucleation of plasma bubble occurs due to emitted electrons at surface micro peaks. The nucleation temperature can be calculated from the relation between the nucleation temperature (T nuc ) and electric field (E p ) given as: λ Ne 2σ 16πσ T 3 2 / kt sat 3 exp r 3 ( ) 2 ( ) 2 t πm kt T Tsat ρ h fg Tsat Tnuc cp( l) X ρl + ρm dt 1 = 0 je p T0 Tsat HereN- number of molecules per unit volume, λ- heat of vaporization per molecule, σ-surface tension, m-mass of one molecule, P-external pressure,p v - pressure in bubble, T sat - saturation temperature, ρ v - densityof bubble, Cp(l)-liquid phase heat capacity and ρ l is liquid density [9]. In the growth phase, active growth of the nucleated bubble is achieved when the density of water vapor reaches2.99 kg/m 3 [8]. Figure1 shows growthof anucleated bubble. (1) Figure1 Bubble abridged the inter-electrode gap and fully developed plasma channel During the bubble expansion, continuous heating of the water vapor takes place,thereby the state of bubble keeps on changes with time. To take this in to account, the variation in thermo-physical properties of the dielectric during expansion of the bubble towards anode, an energy balance equation is required.it is given by, ρ T p C ( T ) dt = Ejτ av p growth Tnuc (2) where, ρ av average density during propagation and growth time is ratio of inter electrode gap to electron drift velocity [14]. The equation (2)gives the plasmatemperature. 2.2 Modeling of heating phase In this phase, interaction between the anode (workpiece) and plasma is considered which will further help in modeling of the removal phase.at the elevated temperature, the mechanism of heat transfer is radiation and particle bombardment.the properties of water vapor change drastically at high temperatures because of its ionization into various ions and neutral particles. The power towards the anode due to charged particle bombardment and radiations energy is given by [16] =2 + (3) where, R P (µm) is radius of plasma channel, e is net flux of charged particles and T e is plasma electron temperature. The net flux e is given by: = + 2 /2,, + /2 4 where, n p, m and T p are particle density, mass and temperature in plasma, respectively for ions and electrons and J thermo is current due to electron emission from anode. The plasma radius is calculated as: = (5) Here,I (A)is current and (µs) is pulse on-time. In this section, modeling of plasma channel was done to get the value of net flux going to anode ( P anode ), which is further used to predict temperature profile of the work-piece and hence the erosion rate. 2.3 Modeling for Erosion rate In this section, temperature at plasma-anode interface is evaluated and then temperature distribution in anode (work-piece) with the help of energy balance equation. The process is assumed to be a single discharge phenomenon around the semi-circular periphery of the wire. The wire is considered to be half way inside the work-piece as shown in Figure 2(a) Due to micro peaks, type of material and dielectric, conditionof emission is satisfied by electric field enhancement. Therefore, a constant β (Voltage/Gap), called field enhancement factor is multiplied to the original electric field to get the enhancement

3 In this model, Mo wire is taken as cathode and Si as work-piece. Kildemo et al.[17] showed that the number of sparks at different location on the wire depend on the field enhancement factor () of the wire which in our case is coming around At the top of the wire, the number of sparks will be maximum and assumed to decrease along the wire length from top to bottom. For = 44.50, no. of sparks comes 90 [17]. For modeling of erosion rate along the length, we considered variation of sparks along the wire (Figure 2(b)). The number of sparks at the top of the wire has been taken 20 % more than the bottom. The wire of length 75 mm has been divided in 16 elements Plasma-anode interface temperature: As the ingot is in the water, it has initial temperature T W. The mean free path (MFP) is the average distance travelled by a moving particle between successive impacts. MFP of electron in ingot is given by [18]: = (6) where, σsiis conductivity, n si is electron density and v f is drift velocity of Si.A small slice of ingot with 3*MFP asthickness has been taken as electrons and ions will lose their energy after traveling this distance [18].Entire energy will be used to increase the temperature of this strip. Therefore, the plasma-interface temperature can be calculated as: = (7) where, C P is heat capacity and n i is no of sparks along the length for i th element (i= 1-16). Above equation will give the interface temperature Temperature profile for the anode:as the interface temperature of the anode is high, temperature of the remaining anode will increase due to conduction. But as convection is also taking place to dielectric (water) from both the top surface, the gradient of the conduction will decrease as we move along the anode length. Eventually, at some point, when the temperature of the ingot becomes same as, no further convection and conduction takes place and temperature will remain only. Some part of energy will be taken away by the eroded material also ( P anode ). P anode = P convection + P latent heat + P conduction (8) =2h + +, (9) There are two unknowns in the above equation T and r. Using recursion, T can be calculated for different values of r. In the direction along wire height (Fig. 2), the temperature profile can be assumed to be same as there is no heat generation within the volume of the anode. (b) (a) Figure 2Wire EDM process showing wire and ingot (a) Top View, (b) Front View 2.4Modeling of removal phase In this work, circular contours for the temperature profile have been assumed. With increasing r, the temperature along the radius length decreases. There comes aradius for which temperature becomes same as melting point of silicon i.e K. It is called melt depth which can be calculated for different values of voltage, current and pulse on-time. As the wire has been divided in 16 elements of 4.7 mm each, different melt radius and depths will occur. The interface temperature will decrease down the length of wire. Therefore, crate radius/depth also decreases. Total erosion rate will be a sum of erosion rates of all the 16 elements. Here, erosion rate (ER) has been considered (mm 2 /min) to be given by. ERi= πri +2ri +2ri / T +T (10) Total ER = (11) Finally, a program was written in Matlab to solve the equations of the model and simulations were performed for different machining parameters. 3. RESULTS AND ANALYSIS In this section, results of simulation for different machining parameters are discussed. In Fig. 3, variation of plasma and plasma-ingot interface temperature with current has been given for the top surface of the ingot. With an increase in current, both plasma and plasmaingot interface temperature increases. A similar trend was found for voltage and on time because as the input energy (V*I*T ON ) increases the temperature increases

4 Modeling of Wire EDM slicing process for Silicon Here, other parameters are T ON =24µs, T OFF =10µs, V=80 V and diameter of Mo wire was taken to be 100µm. fairly matches with the published experimental results[fig. 6and 7]. To verify the erosion rate eight experiments were conducted on wire-edm machine.it is observed that the theoretical ER was larger than experimental. This is possibly due to re-deposition of some eroded material (Fig. 8).The average PFEwas calculated for all the experiments and it comes out to be 25%. A corrected ER was obtained by multiplying theoretical ER with the average PFE. Fig. 9 shows that corrected ER is closer in value to experimental ER. Figure3Temperaturevariations with current. Melt depth was calculated for various voltages, currents, pulse on-time and wire diameter.a variation of erosion depth and erosion rate of the top sample part of the ingot is given in Fig. 4and5 respectively. Results predict that with an increase in voltage, current and pulse on-time, the erosion depth and erosion rate increase while they decrease with the wire diameter. Figure 6 Work-piece temperature distribution from literature [19]. Figure 4 Variation of erosion depth with current. Figure 7 Temperature distribution from model. Table 1 Experimental and Theoretical Erosion rate. Figure 5 Variation of erosion rate with current. 4. MODEL VERIFICATION To verify the work-piece temperature profile, modelresults were compared with the literature data for steel [19].A comparison of results shows that the trend 5. CONCLUSION In this work, wire EDM process was modeled by taking the work done by Dhanik and Joshi [9] as a basic model. It was observed from the model that as the voltage, current and pulse on time were increased, 309-4

5 theincrease in plasma temperature, interface temperature, erosion depth and erosion ratetakes place. This was happening due to the fact that as we increase these input parameters,increasein input power takes place which ultimately increases the plasma energy. Also, the effect of wire diameter was studied on erosion rate and it was observed that with the use of bigger wires the erosion rate was getting decrease. As increase in wire diameter causes more surface area on the ingotfor bombardment of ions and electrons. So same amount of energy gets transferred to bigger surface of the ingot causing decrease in interface temperature. Due to this erosion rate decreases. Figure 8 ER from experimental and model results. Figure 9 ER (from model, experimental and corrected) in different experiments 6. REFRENCES 1. Madan A (2007),"Flexible solar cells and stable highefficiency four-terminal solar cells using thin silicon technology". Mater Manuf Process 22(4): Yan, M.T. and Chien, H.T (2006), Monitoring and control of the micro wire-edm process, International Journal of Machine Tools & Manufacture. Vol. 47, No 1, pp Erden, A., Arync, F. and Kogmen, M. (2005), "Comparison of mathematical models for electric discharge machining", Journal of Materials Processing and Manufacturing Science, Vol. 4, No 2, pp Jilani, S. T. and Pandey, P.C. (1982), Analysis and modeling of EDM parameters Precision engineering Butterworth & Co (Publishers) Lmt, pp Singh, A. and Ghosh, A. (1999), A thermo-electric model of material removal during electric discharge machining, International Journal of Machine Tools & Manufacture, Vol. 39, pp Banerjee S, Prasad BV, Mishra PK (1993) "A simple model to estimate the thermal loads on an EDM wire electrode". J Mater Process Technol 39: Luo YF, (1995), "An energy-distribution strategy in fast-cutting wire" EDM. J Mater Process Technol 55: Saha S, et al. (2005),"Finite element modeling and optimization to prevent wire breakage in electrodischarge machining". Mech ResCommun 31: Dhanik S, Joshi SS (2005),"Modeling of a single resistance capacitance pulse discharge in micro-electro discharge machinin"g. ASME J ManufSciEng 127: Saradindu Das, Suhas S. Joshi (2010), "Modeling of spark erosion rate in microwire-edm", Int J AdvManuf Technol,48: , Beroual, A.(1993), Electronic and gaseous processes in the pre-breakdown phenomena of dielectric liquids, Journal of Applied Physics, Vol. 73, pp Hockenberry, T. O. and Williams, E. M. (1967), Dynamic Evolution of events accompanying the lowvoltage discharge employed in EDM, IEEE Transactions on Industry and General Applications, v 3, n 4, pp , Dijck, F.V. and Snoeys, R.(1971), Investigation of electro discharge machining operations by means of thermo-mathematical model, Annals of CIRP, Vol. 20, No.1, pp Willimas, E.M. (1952), Theory of electric spark machining, AIEE Transactions, Vol. 71, pp Fox., R. W. and McDonald, A. T. (1994), Introduction to Fluid Mechanics, 4 th edition, John Willey & Sons. 16. Roth, J. R. (1995), Industrial plasma engineering, Bristol, Institute of Physics Publication. 17.Kildemo M et al. (2003)"Breakdown and field emission conditioning of Cu, Mo, and W". Phys Rev ST Accel Beams 7, Kalajahi M. et al. (2013), Experimental and finite element analysis of EDM process and investigation of material removal rate by response surface methodology" Int. Journal of Adv. Manu. Vol 69, Issue 1-4, pp

RESPONSE SURFACE ANALYSIS OF EDMED SURFACES OF AISI D2 STEEL

RESPONSE SURFACE ANALYSIS OF EDMED SURFACES OF AISI D2 STEEL Advanced Materials Research Vols. 264-265 (2011) pp 1960-1965 Online available since 2011/Jun/30 at www.scientific.net (2011) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.264-265.1960

More information

New Thermo-Physical Modeling of EDM with The Latent Heat Consumption

New Thermo-Physical Modeling of EDM with The Latent Heat Consumption International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 12, Issue 7 (July 2016), PP.54-63 New Thermo-Physical Modeling of EDM with The Latent

More information

Multiphysicss. 1 Indian Institute of. Machining. materials. In. for the anode tool. metal which leads to. form: made to study the.

Multiphysicss. 1 Indian Institute of. Machining. materials. In. for the anode tool. metal which leads to. form: made to study the. Thermal Model for Single Discharge EDM Process Using COMSOL Multiphysicss K. Gajjar 1, U. Maradia 2, and K. Wegener 2 1 Indian Institute of Technology Bombay, Maharashtra, India 2 Institute for Process

More information

Modeling of Wire Electrical Discharge Machining Parameters Using Titanium Alloy (Ti-6AL-4V)

Modeling of Wire Electrical Discharge Machining Parameters Using Titanium Alloy (Ti-6AL-4V) Modeling of Wire Electrical Discharge Machining Parameters Using Titanium Alloy (Ti-6AL-4V) Basil Kuriachen 1, Dr. Josephkunju Paul 2, Dr.Jose Mathew 3 1 Research Scholar, Department of Mechanical Engineering,

More information

All about sparks in EDM

All about sparks in EDM All about sparks in EDM (and links with the CLIC DC spark test) Antoine Descoeudres, Christoph Hollenstein, Georg Wälder, René Demellayer and Roberto Perez Centre de Recherches en Physique des Plasmas

More information

Study on Erosion Mechanism of Magnetic-field-assisted Micro-EDM

Study on Erosion Mechanism of Magnetic-field-assisted Micro-EDM Study on Erosion Mechanism of Magnetic-field-assisted Micro-EDM Xuyang Chu a, Kai Zhu b, Yiru Zhang c and Chunmei Wang d Department of mechanical and electrical engineering, Xiamen University, Xiamen 361005,

More information

FEM ANALYSIS WITH EXPERIMENTAL RESULTS TO STUDY EFFECT OF EDM PARAMETERS ON MRR OF AISI 1040 STEEL

FEM ANALYSIS WITH EXPERIMENTAL RESULTS TO STUDY EFFECT OF EDM PARAMETERS ON MRR OF AISI 1040 STEEL FEM ANALYSIS WITH EXPERIMENTAL RESULTS TO STUDY EFFECT OF EDM PARAMETERS ON MRR OF AISI 1040 STEEL Imran Patel 1 & Prashant Powar 2 1PG Student, Department of Production Engineering, KIT s College of Engineering,

More information

Study of water assisted dry wire-cut electrical discharge machining

Study of water assisted dry wire-cut electrical discharge machining Indian Journal of Engineering & Materials Sciences Vol. 1, February 014, pp. 75-8 Study of water assisted dry wire-cut electrical discharge machining S Boopathi* & K Sivakumar Department of Mechanical

More information

Percentage of harmful discharges for surface current density monitoring in electrical discharge machining process

Percentage of harmful discharges for surface current density monitoring in electrical discharge machining process 1677 Percentage of harmful discharges for surface current density monitoring in electrical discharge machining process O Blatnik*, J Valentincic, and M Junkar Faculty of Mechanical Engineering, University

More information

MULTIPHYSICS BASED ELECTRICAL DISCHARGE MODELING

MULTIPHYSICS BASED ELECTRICAL DISCHARGE MODELING MULTIPHYSICS BASED ELECTRICAL DISCHARGE MODELING Abhishek Mishra MSD,BARC Dr. D.Datta HPD,BARC S.Bhattacharya RRDPD,BARC Dr. G.K Dey MSD,BARC Santosh Kr. MSD,BARC ELECTRIC DISCHARGE MACHINING o Electric

More information

Optimization of EDM process parameters using Response Surface Methodology for AISI D3 Steel

Optimization of EDM process parameters using Response Surface Methodology for AISI D3 Steel Optimization of EDM process parameters using Response Surface Methodology for AISI D3 Steel Mr.B.Gangadhar 1, Mr.N. Mahesh Kumar 2 1 Department of Mechanical Engineering, Sri Venkateswara College of Engineering

More information

MODELING OF SURFACE ROUGHNESS IN WIRE ELECTRICAL DISCHARGE MACHINING USING ARTIFICIAL NEURAL NETWORKS

MODELING OF SURFACE ROUGHNESS IN WIRE ELECTRICAL DISCHARGE MACHINING USING ARTIFICIAL NEURAL NETWORKS Int. J. Mech. Eng. & Rob. Res. 013 P Vijaya Bhaskara Reddy et al., 013 Research Paper ISSN 78 0149 www.ijmerr.com Vol., No. 1, January 013 013 IJMERR. All Rights Reserved MODELING OF SURFACE ROUGHNESS

More information

Modeling and Simulation of Surface Roughness in Wire Electrical Discharge Turning Process

Modeling and Simulation of Surface Roughness in Wire Electrical Discharge Turning Process nd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 7) Modeling and Simulation of Surface Roughness in Wire Electrical Discharge Turning Process Xiaoteng

More information

Study of EDM Parameters on Mild Steel Using Brass Electrode

Study of EDM Parameters on Mild Steel Using Brass Electrode Study of EDM Parameters on Mild Steel Using Brass Electrode Amit Kumar #1, Abhishek Gaikwad *2, Amit Tiwari #3 # 1,3, Production Engineering (ME), SSET, Allahabad-211007, SHIATS, Allahabad, Uttar Pradesh

More information

Modelling And Optimization Of Electro Discharge Machining In C45 Material

Modelling And Optimization Of Electro Discharge Machining In C45 Material IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 25-32 www.iosrjournals.org Modelling And Optimization Of Electro Discharge Machining In C45 Material

More information

Modeling and Optimization of WEDM Process Parameters on Machining of AISI D2 steel using Response Surface Methodology (RSM)

Modeling and Optimization of WEDM Process Parameters on Machining of AISI D2 steel using Response Surface Methodology (RSM) Modeling and Optimization of WEDM Process Parameters on Machining of AISI D2 steel using Response Surface Methodology (RSM) Sk. Mohammed Khaja 1, Ratan Kumar 2 Vikram Singh 3 1,2 CIPET- Hajipur, skmdkhaja@gmail.com

More information

A study to achieve a fine surface finish in Wire-EDM

A study to achieve a fine surface finish in Wire-EDM Journal of Materials Processing Technology 149 (24) 165 171 A study to achieve a fine surface finish in Wire-EDM Y.S. Liao a,, J.T. Huang b, Y.H. Chen a a Department of Mechanical Engineering, National

More information

Parameter Optimization of EDM on En36 Alloy Steel For MRR and EWR Using Taguchi Method

Parameter Optimization of EDM on En36 Alloy Steel For MRR and EWR Using Taguchi Method IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-184,p-ISSN: 2320-334X, Volume 13, Issue 3 Ver. VII (May- Jun. 201), PP 5-5 www.iosrjournals.org Parameter Optimization of EDM on

More information

Single Discharge Simulations of Needle Pulses for Electrothermal Ablation

Single Discharge Simulations of Needle Pulses for Electrothermal Ablation Single Discharge Simulations of Needle Pulses for Electrothermal Ablation Matthias Hackert-Oschätzchen *,1, Markus Kreißig 1, Michael Kowalick 1, Henning Zeidler 1, Andreas Schubert 1,4, Oliver Kröning

More information

Modeling of Electromagmetic Processes in Wire Electric Discharge Machining

Modeling of Electromagmetic Processes in Wire Electric Discharge Machining Modeling of Electromagmetic Processes in Wire Electric Discharge Machining V.M. Volgin, V.V. Lyubimov, V.D. Kukhar To cite this version: V.M. Volgin, V.V. Lyubimov, V.D. Kukhar. Modeling of Electromagmetic

More information

A Parametric Optimization of Electric Discharge Drill Machine Using Taguchi Approach

A Parametric Optimization of Electric Discharge Drill Machine Using Taguchi Approach A Parametric Optimization of Electric Discharge Drill Machine Using Taguchi Approach Samar Singh, Lecturer, Dept of Mechanical Engineering, R.P. Indraprastha Institute of Technology (Karnal) MukeshVerma,

More information

Optimization of WEDM Parameters for Super Ni-718 using Neutrosophic Sets and TOPSIS Method

Optimization of WEDM Parameters for Super Ni-718 using Neutrosophic Sets and TOPSIS Method Optimization of WEDM Parameters for Super Ni-718 using Neutrosophic Sets and TOPSIS Method Y Rameswara Reddy 1*, B Chandra Mohan Reddy 2 1,2 Department of Mechanical Engineering, Jawaharlal Nehru Technological

More information

Optimization of Cutting Parameter of (SS302) on EDM using Taguchi Method Chintan A. Prajapati 1 Prof. Dr. Prashant Sharma 2 Prof.

Optimization of Cutting Parameter of (SS302) on EDM using Taguchi Method Chintan A. Prajapati 1 Prof. Dr. Prashant Sharma 2 Prof. IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 01, 14 ISSN (online): 2321-013 Optimization of tting Parameter of (SS302) on EDM using Taguchi Method Chintan A. Prajapati

More information

Study of the effect of machining parameters on material removal rate and electrode wear during Electric Discharge Machining of mild steel

Study of the effect of machining parameters on material removal rate and electrode wear during Electric Discharge Machining of mild steel Journal of Engineering Science and Technology Review 5 (1) (2012) 14-18 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org Study of the effect of machining parameters on

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 2026 Modelling of Process Parameters on D2 Steel using Wire Electrical Discharge Machining with combined approach

More information

A STUDY OF THE ACCURACY OF THE MICRO ELECTRICAL DISCHARGE MACHINING DRILLING PROCESS

A STUDY OF THE ACCURACY OF THE MICRO ELECTRICAL DISCHARGE MACHINING DRILLING PROCESS A STUDY OF TE ACCURACY OF TE MICRO ELECTRICAL DISCARGE MACINING DRILLING PROCESS D.T. Pham, S.S. Dimov, S. Bigot, A. Ivanov, and K. Popov Manufacturing Engineering Centre, School of Engineering, Cardiff

More information

Estimating the exchanged energy distribution in micro-edm

Estimating the exchanged energy distribution in micro-edm Estimating the exchanged energy distribution in micro-edm ICOMM 2014 No. 57 Samuel Bigot 1, Jean-Philippe Pernot 2, Gianluca D Urso 3, Cristina Merla 3, Jérémy Peyroutet 2, Anthony Surleraux 1,2 1 Cardiff

More information

Surface Integrity in Micro-Hole Drilling Using Micro-Electro Discharge Machining

Surface Integrity in Micro-Hole Drilling Using Micro-Electro Discharge Machining Materials Transactions, Vol. 44, No. 12 (2003) pp. 2718 to 2722 #2003 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Surface Integrity in Micro-Hole Drilling Using Micro-Electro Discharge Machining

More information

Experimental Investigation of Micro-EDM Process on Brass using Taguchi Technique

Experimental Investigation of Micro-EDM Process on Brass using Taguchi Technique Experimental Investigation of Micro-EDM Process on Brass using Taguchi Technique Ananya Upadhyay ananya.upadhyay@gmail.com Vijay Pandey Vinay Sharma Ved Prakash CSIR- Central Mechanical Engineering Research

More information

Application of Plasma Phenomena Lecture /3/21

Application of Plasma Phenomena Lecture /3/21 Application of Plasma Phenomena Lecture 3 2018/3/21 2018/3/21 updated 1 Reference Industrial plasma engineering, volume 1, by J. Reece Roth, Chapter 8-13. Plasma physics and engineering, by Alexander Fridman

More information

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition Metal Deposition Filament Evaporation E-beam Evaporation Sputter Deposition 1 Filament evaporation metals are raised to their melting point by resistive heating under vacuum metal pellets are placed on

More information

Associate Professor, Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, India

Associate Professor, Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, India Optimization of machine process parameters on material removal rate in EDM for EN19 material using RSM Shashikant 1, Apurba Kumar Roy 2, Kaushik Kumar 2 1 Research Scholar, Department of Mechanical Engineering,

More information

Mr. Harshit K. Dave 1, Dr. Keyur P. Desai 2, Dr. Harit K. Raval 3

Mr. Harshit K. Dave 1, Dr. Keyur P. Desai 2, Dr. Harit K. Raval 3 Investigations on Prediction of MRR and Surface Roughness on Electro Discharge Machine Using Regression Analysis and Artificial Neural Network Programming Mr. Harshit K. Dave 1, Dr. Keyur P. Desai 2, Dr.

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

EXPERIMENTAL INVESTIGATIONS ON ORBITAL ELECTRO DISCHARGE MACHINING OF INCONEL 718 USING TAGUCHI TECHNIQUE

EXPERIMENTAL INVESTIGATIONS ON ORBITAL ELECTRO DISCHARGE MACHINING OF INCONEL 718 USING TAGUCHI TECHNIQUE International Journal of Modern Manufacturing Technologies ISSN 2067 3604, Vol. IV, No. 1 / 2012 53 EXPERIMENTAL INVESTIGATIONS ON ORBITAL ELECTRO DISCHARGE MACHINING OF INCONEL 718 USING TAGUCHI TECHNIQUE

More information

Taguchi-grey relational based multi response optimization of electrical process parameters in electrical discharge machining

Taguchi-grey relational based multi response optimization of electrical process parameters in electrical discharge machining Indian Journal of Engineering & Materials Science Vol. 20, December 2013, pp. 471-475 Taguchi-grey relational based multi response optimization of electrical process parameters in electrical discharge

More information

Drilling Microholes in Hot Tool Steel by Using Micro-Electro Discharge Machining

Drilling Microholes in Hot Tool Steel by Using Micro-Electro Discharge Machining Materials Transactions, Vol. 48, No. 2 (27) pp. 25 to 21 #27 The Japan Institute of Metals Drilling Microholes in Hot Tool Steel by Using Micro-Electro Discharge Machining T. Y. Tai 1, T. Masusawa 2 and

More information

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding Miniature Vacuum Arc Thruster with Controlled Cathode Feeding Igal Kronhaus and Matteo Laterza Aerospace Plasma Laboratory, Faculty of Aerospace Engineering, Technion - Israel Institute of Technology,

More information

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING UNIT 1: BREAKDOWN IN SOLIDS 1.) Introduction: The solid dielectric materials are used in all kinds of electrical apparatus and devices to insulate current carrying part from another when they operate at

More information

A Review Paper on Rotary Electro-Discharge Machining

A Review Paper on Rotary Electro-Discharge Machining A Review Paper on Rotary Electro-Discharge Machining 1 Mr. Ganesh Pandurang Jadhav, 2 Dr. Narendra Narve 1 P.G.Student, 2 Professor Department Of Mechanical Engineering, JSPM Bhagwant Institute of Technology,

More information

Research Article Study of Tool Wear and Overcut in EDM Process with Rotary Tool and Magnetic Field

Research Article Study of Tool Wear and Overcut in EDM Process with Rotary Tool and Magnetic Field Advances in Tribology Volume 212, Article ID 895918, 8 pages doi:1.1155/212/895918 Research Article Study of Tool Wear and Overcut in EDM Process with Rotary Tool and Magnetic Field Reza Teimouri and Hamid

More information

Plasma shielding during ITER disruptions

Plasma shielding during ITER disruptions Plasma shielding during ITER disruptions Sergey Pestchanyi and Richard Pitts 1 Integrated tokamak code TOKES is a workshop with various tools objects Radiation bremsstrahlung recombination s line s cyclotron

More information

Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges Napoleon Leoni, Bhooshan Paradkar

Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges Napoleon Leoni, Bhooshan Paradkar Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges Napoleon Leoni, Bhooshan Paradkar HP Laboratories HPL-2009-234 Keyword(s): Townsend Discharge, Paschen Breakdown,

More information

Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation

Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation Quanming Lu* School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China

More information

Comparative Assessment of the Transient Temperature Response during Single-discharge Machining by Micro-EDM and LIP-MM Processes

Comparative Assessment of the Transient Temperature Response during Single-discharge Machining by Micro-EDM and LIP-MM Processes Comparative Assessment of the Transient Temperature Response during Single-discharge Machining by Micro-EDM and LIP-MM Processes ICOMM 2014 No. 37 Ishan Saxena #1, Xiaochun Li 2, K. F. Ehmann 1 1 Department

More information

EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A

EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A 1. Mention the gases used as the insulating medium in electrical apparatus? Most of the electrical apparatus use air as the insulating

More information

3. Gas Detectors General introduction

3. Gas Detectors General introduction 3. Gas Detectors 3.1. General introduction principle ionizing particle creates primary and secondary charges via energy loss by ionization (Bethe Bloch, chapter 2) N0 electrons and ions charges drift in

More information

Laser processing of materials. Temperature distributions

Laser processing of materials. Temperature distributions Laser processing of materials Temperature distributions Prof. Dr. Frank Mücklich Dr. Andrés Lasagni Lehrstuhl für Funktionswerkstoffe Sommersemester 7 Contents: Temperature distributions 1. Definitions.

More information

The Influence of EDM Parameters in Finishing Stage on Surface Quality, MRR and EWR

The Influence of EDM Parameters in Finishing Stage on Surface Quality, MRR and EWR Research Journal of Applied Sciences, Engineering and Technology 4(10): 1287-1294, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: December 09, 2011 Accepted: December 26, 2011 Published:

More information

MODELING AND OPTIMIZATION FOR DRILLING OF HIGH ASPECT RATIO BLIND MICRO HOLES IN MICRO EDM

MODELING AND OPTIMIZATION FOR DRILLING OF HIGH ASPECT RATIO BLIND MICRO HOLES IN MICRO EDM MODELING AND OPTIMIZATION FOR DRILLING OF HIGH ASPECT RATIO BLIND MICRO HOLES IN MICRO EDM Swapan Barman 1*, Kousv Mondol 2, Nagahanumaiah 3, Asit Baran Puri 4 1* CSIR-Central Mechanical Engineering Research

More information

GEM: A new concept for electron amplification in gas detectors

GEM: A new concept for electron amplification in gas detectors GEM: A new concept for electron amplification in gas detectors F. Sauli, Nucl. Instr. & Methods in Physics Research A 386 (1997) 531-534 Contents 1. Introduction 2. Two-step amplification: MWPC combined

More information

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam Lecture 10 Outline 1. Wet Etching/Vapor Phase Etching 2. Dry Etching DC/RF Plasma Plasma Reactors Materials/Gases Etching Parameters

More information

APPLICATION OF GREY RELATIONAL ANALYSIS TO MACHINING PARAMETERS DETERMINATION OF WIRE ELECTRICAL DISCHARGE MACHINING

APPLICATION OF GREY RELATIONAL ANALYSIS TO MACHINING PARAMETERS DETERMINATION OF WIRE ELECTRICAL DISCHARGE MACHINING APPLICATION OF GREY RELATIONAL ANALYSIS TO MACHINING PARAMETERS DETERMINATION OF WIRE ELECTRICAL DISCHARGE MACHINING J.T. Huang 1 and Y.S. Liao 1 Department of Automatic Engineering, Kaoyuan Institute

More information

Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites

Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites 1/25 Pico-Satellite Orbit Control by Vacuum Arc Thrusters as Enabling Technology for Formations of Small Satellites Igal Kronhaus, Mathias Pietzka, Klaus Schilling, Jochen Schein Department of Computer

More information

Modelling Of Micro Electric Discharge Machining Using FEM

Modelling Of Micro Electric Discharge Machining Using FEM 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 214) December 12 th 14 th, 214, IIT Guwahati, Assam, India Modelling Of Micro Electric Discharge Machining

More information

General Overview of Gas Filled Detectors

General Overview of Gas Filled Detectors GAS-FILLED DETECTOR General Overview of Gas Filled Detectors Gas-Filled Detectors Ion chamber Proportional counter G-M (Geiger-Miller) counter Diagram of a Generic Gas-Filled Detector A Anode High-voltage

More information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell Galvanic cells convert different forms of energy (chemical fuel, sunlight, mechanical pressure, etc.) into electrical energy and heat. In this lecture, we are interested in some examples of galvanic cells.

More information

Statistical and regression analysis of Material Removal Rate for wire cut Electro Discharge Machining of SS 304L using design of experiments

Statistical and regression analysis of Material Removal Rate for wire cut Electro Discharge Machining of SS 304L using design of experiments Vol. 2(5), 200, 02028 Statistical and regression analysis of Material Removal Rate for wire cut Electro Discharge Machining of SS 304L using design of experiments Vishal Parashar a*, A.Rehman b, J.L.Bhagoria

More information

Electron Current Extraction and Interaction of RF mdbd Arrays

Electron Current Extraction and Interaction of RF mdbd Arrays Electron Current Extraction and Interaction of RF mdbd Arrays Jun-Chieh Wang a), Napoleon Leoni b), Henryk Birecki b), Omer Gila b), and Mark J. Kushner a) a), Ann Arbor, MI 48109 USA mkush@umich.edu,

More information

STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA *

STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA * STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA * V. TIRON 1, L. MIHAESCU 1, C.P. LUNGU 2 and G. POPA 1 1 Faculty of Physics, Al. I. Cuza University, 700506, Iasi, Romania 2 National Institute

More information

EE143 Fall 2016 Microfabrication Technologies. Lecture 6: Thin Film Deposition Reading: Jaeger Chapter 6

EE143 Fall 2016 Microfabrication Technologies. Lecture 6: Thin Film Deposition Reading: Jaeger Chapter 6 EE143 Fall 2016 Microfabrication Technologies Lecture 6: Thin Film Deposition Reading: Jaeger Chapter 6 Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 1 Vacuum Basics Units 1 atmosphere

More information

Progress Report on Chamber Dynamics and Clearing

Progress Report on Chamber Dynamics and Clearing Progress Report on Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark S. Tillack, John Pulsifer, Zoran Dragovlovic (UCSD) Ahmed Hassanein (ANL) Laser-IFE Program Workshop May31-June 1,

More information

Chapter 3 Engineering Science for Microsystems Design and Fabrication

Chapter 3 Engineering Science for Microsystems Design and Fabrication Lectures on MEMS and MICROSYSTEMS DESIGN and MANUFACTURE Chapter 3 Engineering Science for Microsystems Design and Fabrication In this Chapter, we will present overviews of the principles of physical and

More information

Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method

Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method Plasma Science and Technology, Vol.14, No.9, Sep. 2012 Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method Benyssaad KRALOUA, Ali HENNAD Electrical Engineering

More information

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma Kallol Bera a, Shahid Rauf a and Ken Collins a a Applied Materials, Inc. 974 E. Arques Ave., M/S 81517, Sunnyvale, CA 9485, USA

More information

Simulation of Gas Discharge in Tube and Paschen s Law

Simulation of Gas Discharge in Tube and Paschen s Law Optics and Photonics Journal, 2013, 3, 313-317 doi:10.4236/opj.2013.32b073 Published Online June 2013 (http://www.scirp.org/journal/opj) Simulation of Gas Discharge in Tube and Paschen s Law Jing Wang

More information

Benefits of cryogenic cooling on the operation of a pulsed CO 2 laser

Benefits of cryogenic cooling on the operation of a pulsed CO 2 laser PRAMANA c Indian Academy of Sciences Vol. 82, No. 1 journal of January 2014 physics pp. 147 152 Benefits of cryogenic cooling on the operation of a pulsed CO 2 laser UTPAL NUNDY BH-2-76, Kendriya Vihar,

More information

Impact of Microchannel Geometrical Parameters in W-EDM Using RSM

Impact of Microchannel Geometrical Parameters in W-EDM Using RSM International Journal of Bioinformatics and Biomedical Engineering Vol. 1, No. 2, 2015, pp. 137-142 http://www.aiscience.org/journal/ijbbe Impact of Microchannel Geometrical Parameters in W-EDM Using RSM

More information

Table of Content. Mechanical Removing Techniques. Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB)

Table of Content. Mechanical Removing Techniques. Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB) Table of Content Mechanical Removing Techniques Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB) Ultrasonic Machining In ultrasonic machining (USM), also called ultrasonic grinding,

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors 20th February 2007 Fergus Wilson, RAL 1 How do we detect Particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Outline 1. Ionisation 2. Plasma definition 3. Plasma properties 4. Plasma classification 5. Energy transfer in non-equilibrium plasma 6.

More information

Modeling of the 3D Electrode Growth in Electroplating

Modeling of the 3D Electrode Growth in Electroplating Modeling of the 3D Electrode Growth in Electroplating Marius PURCAR, Calin MUNTEANU, Alexandru AVRAM, Vasile TOPA Technical University of Cluj-Napoca, Baritiu Street 26-28, 400027 Cluj-Napoca, Romania;

More information

On machine measurements of electrode wear in micro EDM milling

On machine measurements of electrode wear in micro EDM milling Downloaded from orbit.dtu.dk on: Nov 13, 2018 On machine measurements of electrode wear in micro EDM milling Valentincic, J.; Bissacco, Giuliano; Tristo, G. Published in: ISMTII 2003 Publication date:

More information

CHAPTER -6 ANALYSIS AND DISCUSSION OF RESULTS

CHAPTER -6 ANALYSIS AND DISCUSSION OF RESULTS CHAPTER -6 ANALYSIS AND DISCUSSION OF RESULTS This chapter presents the analysis and discussion of the results obtained from the experimental work conducted in Chapter-5. The effect of cryogenic treated

More information

ELECTRIC DISCHARGE MACHINING AND MATHEMATICAL MODELING OF Al-ALLOY-20 % SiC p COMPOSITES USING COPPER ELECTRODE

ELECTRIC DISCHARGE MACHINING AND MATHEMATICAL MODELING OF Al-ALLOY-20 % SiC p COMPOSITES USING COPPER ELECTRODE International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) ISSN 2249-6890 Vol.2, Issue 2 June 2012 37-46 TJPRC Pvt. Ltd., ELECTRIC DISCHARGE MACHINING AND MATHEMATICAL

More information

A New Model of Investigating the Electric Field in Dielectric Liquid for Streamer Initiation

A New Model of Investigating the Electric Field in Dielectric Liquid for Streamer Initiation A New Model of Investigating the Electric Field in Dielectric Liquid for Streamer Initiation E A. El-Zein and M. Talaat Electrical Power & Machines Department, Faculty of Engineering, Zagazig University,

More information

Lecture 6: High Voltage Gas Switches

Lecture 6: High Voltage Gas Switches Lecture 6: High Voltage Gas Switches Switching is a central problem in high voltage pulse generation. We need fast switches to generate pulses, but in our case, they must also hold off high voltages before

More information

Section 5: Thin Film Deposition part 1 : sputtering and evaporation. Jaeger Chapter 6. EE143 Ali Javey

Section 5: Thin Film Deposition part 1 : sputtering and evaporation. Jaeger Chapter 6. EE143 Ali Javey Section 5: Thin Film Deposition part 1 : sputtering and evaporation Jaeger Chapter 6 Vacuum Basics 1. Units 1 atmosphere = 760 torr = 1.013x10 5 Pa 1 bar = 10 5 Pa = 750 torr 1 torr = 1 mm Hg 1 mtorr =

More information

Effect of Applied Electric Field and Pressure on the Electron Avalanche Growth

Effect of Applied Electric Field and Pressure on the Electron Avalanche Growth Effect of Applied Electric Field and Pressure on the Electron Avalanche Growth L. ZEGHICHI (), L. MOKHNACHE (2), and M. DJEBABRA (3) () Department of Physics, Ouargla University, P.O Box.5, OUARGLA 3,

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes,, and Yuepeng Deng Department of Materials Science and Engineering University

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT ELECTROMAGNETIC WAVES SPECTRA PRODUCED BY DISCHARGE TUBES CATHODE RAYS (electron beams) Streams of electrons (negatively charged particles) observed in vacuum

More information

OPTIMIZATION OF MATERIAL REMOVAL RATE AND SURFACE ROUGHNESSIN WED-MACHINING OF TiNi SMA USING GREY RELATION ANALYSIS

OPTIMIZATION OF MATERIAL REMOVAL RATE AND SURFACE ROUGHNESSIN WED-MACHINING OF TiNi SMA USING GREY RELATION ANALYSIS OPTIMIZATION OF MATERIAL REMOVAL RATE AND SURFACE ROUGHNESSIN WED-MACHINING OF TiNi SMA USING GREY RELATION ANALYSIS Manjaiah M 1*, Narendranath S 2, Basavarajappa S 3 1* Dept. of Mechanical Engineering,

More information

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25) 1 TMT4320 Nanomaterials November 10 th, 2015 Thin films by physical/chemical methods (From chapter 24 and 25) 2 Thin films by physical/chemical methods Vapor-phase growth (compared to liquid-phase growth)

More information

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68 Lecture 6 Plasmas Chapters 10 &16 Wolf and Tauber 1/68 Announcements Homework: Homework will be returned to you on Thursday (12 th October). Solutions will be also posted online on Thursday (12 th October)

More information

Optimization of Machining Parameters in Wire Cut EDM of Stainless Steel 304 Using Taguchi Techniques

Optimization of Machining Parameters in Wire Cut EDM of Stainless Steel 304 Using Taguchi Techniques Advanced Materials Manufacturing & Characterization Vol. 8 Issue 1 (018) Advanced Materials Manufacturing & Characterization journal home page: www.ijammc-griet.com Optimization of Machining Parameters

More information

ANALYSIS OF TRANSIENT HEAT CONDUCTION IN DIFFERENT GEOMETRIES BY POLYNOMIAL APPROXIMATION METHOD

ANALYSIS OF TRANSIENT HEAT CONDUCTION IN DIFFERENT GEOMETRIES BY POLYNOMIAL APPROXIMATION METHOD Int. J. Mech. Eng. & Rob. Res. Devanshu Prasad, Research Paper ISSN 78 9 www.ijmerr.com Vol., No., April IJMERR. All Rights Reserved ANALYSIS OF TRANSIENT HEAT CONDUCTION IN DIFFERENT GEOMETRIES Y POLYNOMIAL

More information

Heat Sink Design and Temperature Distribution Analysis for Millimeter Wave IMPATT Oscillators using Finite Difference Method

Heat Sink Design and Temperature Distribution Analysis for Millimeter Wave IMPATT Oscillators using Finite Difference Method Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2011, 3 (2):107-120 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Heat Sink

More information

MICRO ELECTRO DISCHARGE MACHINING OF Γ -TITANIUM ALUMINIDE ALLOY

MICRO ELECTRO DISCHARGE MACHINING OF Γ -TITANIUM ALUMINIDE ALLOY MICRO ELECTRO DISCHARGE MACHINING OF Γ -TITANIUM ALUMINIDE ALLOY S.Mitra 1, G. Paul 2, S.Sarkar 1, and Nagahanumaiah 3 1 Department of Production Engineering, Jadavpur University, Kolkata, India 2 Department

More information

Nanosecond-scale Processes in a Plasma Pilot for Ignition and Flame Control

Nanosecond-scale Processes in a Plasma Pilot for Ignition and Flame Control Nanosecond-scale Processes in a Plasma Pilot for Ignition and Flame Control Yu. D. Korolev, I. B. Matveev Institute of High Current Electronics, 634055 Tomsk, Russia Applied Plasma Technologies, Falls

More information

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons.

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons. 10.3.1.1 Excitation and radiation of spectra 10.3.1.1.1 Plasmas A plasma of the type occurring in spectrochemical radiation sources may be described as a gas which is at least partly ionized and contains

More information

Computational Study on the Effect of the Pulse Length on Laser Ablation Processes

Computational Study on the Effect of the Pulse Length on Laser Ablation Processes Lasers in Manufacturing Conference 015 Computational Study on the Effect of the Pulse Length on Laser Ablation Processes "Stefan Tatra *, Rodrigo Gómez Vázquez, Andreas Otto" "Vienna University of Technology,

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors Lecture 2 2nd May 2014 Fergus Wilson, RAL 1/31 How do we detect particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge

Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge Two-dimensional Fluid Simulation of an RF Capacitively Coupled Ar/H 2 Discharge Lizhu Tong Keisoku Engineering System Co., Ltd., Japan September 18, 2014 Keisoku Engineering System Co., Ltd., 1-9-5 Uchikanda,

More information

Repetition: Practical Aspects

Repetition: Practical Aspects Repetition: Practical Aspects Reduction of the Cathode Dark Space! E x 0 Geometric limit of the extension of a sputter plant. Lowest distance between target and substrate V Cathode (Target/Source) - +

More information

Optimization of MnO2 Electrodeposits using Graphenated Carbon Nanotube Electrodes for Supercapacitors

Optimization of MnO2 Electrodeposits using Graphenated Carbon Nanotube Electrodes for Supercapacitors Optimization of MnO2 Electrodeposits using Graphenated Carbon Nanotube Electrodes for Supercapacitors Waleed Nusrat, 100425398 PHY 3090U Material Science Thursday April 9 th 2015 Researchers optimize the

More information

Chapter VI: Cold plasma generation

Chapter VI: Cold plasma generation Introduction This photo shows the electrical discharge inside a highpressure mercury vapor lamp (Philips HO 50) just after ignition (Hg + Ar) Chapter VI: Cold plasma generation Anode Positive column Cathode

More information

Simulation of a two-dimensional sheath over a flat wall with an insulatorõconductor interface exposed to a high density plasma

Simulation of a two-dimensional sheath over a flat wall with an insulatorõconductor interface exposed to a high density plasma JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 5 1 SEPTEMBER 2003 Simulation of a two-dimensional sheath over a flat wall with an insulatorõconductor interface exposed to a high density plasma Doosik Kim

More information

Discovered by German scientist Johann Hittorf in 1869 and in 1876 named by Eugen Goldstein.

Discovered by German scientist Johann Hittorf in 1869 and in 1876 named by Eugen Goldstein. DO PHYSICS ONLINE CATHODE RAYS CATHODE RAYS (electron beams) Streams of electrons (negatively charged particles) observed in vacuum tubes - evacuated glass tubes that are equipped with at least two metal

More information

Simulation of Prebreakdown Phenomena in Air Gaps of Rod Plane Configuration of Electrodes

Simulation of Prebreakdown Phenomena in Air Gaps of Rod Plane Configuration of Electrodes Simulation of Prebreakdown Phenomena in Air s of Rod Plane Configuration of Electrodes V. P. CHARALAMBAKOS, C. P. STAMATELATOS, D. P. AGORIS, E. C. PYRGIOTI Department of Electrical and Computer Engineering

More information